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Abstract
A unified convergence theory is derived for a class of stationary iterative methods
for solving linear equality constrained quadratic programs or saddle point problems.
This class is constructed from essentially all possible splittings of the submatrix
residing in the (1,1)-block of the augmented saddle point matrix that would produce
non-expansive iterations. The classic augmented Lagrangian method and alternating
direction method of multipliers are two special members of this class.

Keywords Saddle point problem · Quadratic program · Matrix splitting · Stationary
iterations · Spectral radius · Q-linear convergence
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1 Introduction

Consider the equality constrained quadratic program:

min
x∈Rn

1

2
xTAx − bTx s.t. Bx = c, (1.1)
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where A ∈ R
n×n is symmetric and B ∈ R

m×n with m < n. The matrix A can be
indefinite, but is assumed to be positive definite in the null space of B. Without loss
of generality, we assume that B is of full rank m. The system of stationarity for the
quadratic program (1.1) is

Ax + BTy − b = 0,

Bx − c = 0,

where x ∈ R
n is the primal variable and y ∈ R

m is the Lagrangian multiplier (or dual
variable). In matrix form, the n + m by n + m system is

(
A BT

B 0

) (
x
y

)
=

(
b
c

)
, (1.2)

which is commonly called the augmented system or saddle point system—a prob-
lem with a wide range of applications in various areas of computational science and
engineering. Numerical solutions of this problem have been extensively studied in the
literature; see the survey paper [1] for a comprehensive review and a thorough list of
references up to 2004.

The augmented Lagrangian technique has been used to make the (1,1)-block of the
saddle point system positive definite. In this approach, an equivalent system is solved,

Ax + BTy − b + γ BT(Bx − c) = 0,

Bx − c = 0

with a parameter γ > 0, which has the matrix form

(
A + γ BTB BT

B 0

) (
x
y

)
=

(
b + γ BTc

c

)
. (1.3)

The following result is a well-known fact.

Proposition 1.1 Let A be symmetric positive definite in the null space of B. If A � 0,
then A+ γ BTB � 0 for γ ∈ (0,+∞); otherwise, there exists some γ̂ > 0 such that

γ ∈ (γ̂ ,+∞) �⇒ A + γ BTB � 0. (1.4)

1.1 Notation

For matrix M ∈ R
n×n , σ(M) denotes the spectrum of M and ρ(M) the spectral

radius of M . For symmetric M , λmax(M) (λmin(M)) is the maximum (minimum)
eigenvalue of M . By M � 0 (M � 0), we mean that M is symmetric positive definite
(semi-definite). For a complex number z ∈ C, �(z) denotes the real part of z and 	(z)
the imaginary part.
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2 A Class of Stationary Iterative Methods

In this section, we describe a class of stationary iterative methods for solving the
saddle point problem (1.3) where the (1,1)-block has been made positive definite. For
convenience, we re-parameterize the first equation and introduce another parameter
into the second. The equivalent system under consideration is

(
H(α) −BT

τ B 0

) (
x
y

)
=

(
αb + BTc

τc

)
, (2.1)

where α > 0, τ 
= 0 and

H(α) = αA + BTB � 0.

Comparing (1.3) to (2.1), we see that α = 1/γ > 0 and the multiplier y has been
rescaled along with a sign change. These changes are cosmetic except that one more
parameter τ is introduced into the second equation of (2.1).

Since the equation Bx = c is equivalent to QBx = Qc for any non-singular
Q ∈ R

m×m , B and c in (2.1) can obviously be replaced by QB and Qc, respectively.

2.1 Splitting of the (1,1)-Block

In our framework, the (1,1)-block submatrix H(α) in (2.1) is split into a “left part”
L and a “right part” R; that is,

H := αA + BTB = L − R. (2.2)

We drop the α-dependence from H , as well as from L and R, since α will always be
fixed in our analysis as long as H � 0 is maintained, even though it can also be varied
to improve convergence performance.

In this report, unless otherwise noted, splittings refer to those for the (1,1)-block
submatrix H rather than for the entire (2 × 2)-block augmented matrix of the saddle
point problem. Moreover, we will associate a splitting with a left–right pair (L, R).
Simplest examples of splittings include

L = H , R = 0;

or after partitioning H into 2-by-2 blocks,

L =
(
H11 0
0 H22

)
, R = −

(
0 H12
H21 0

)
,

which is of block Jacobi type; or

L =
(
H11 0
H21 H22

)
, R = −

(
0 H12
0 0

)
, (2.3)
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which is of block Gauss–Seidel type.We note that when H � 0 and (L, R) is a Gauss–
Seidel splitting, either element-wise or block-wise, it is known that ρ(L−1R) < 1.

In general, one can first partition H into p-by-p blocks for any p ∈ {1, 2, · · · , n},
then perform a block splitting. In addition, splittings can be of SOR type involving an
extra relaxation parameter. To keep notation simple, however, we will not carry such
a parameter in a splitting (L, R) since it does not affect our analysis.

2.2 A Stationary Iteration Class

We consider a class of stationary iterations consisting of all possible splittings
(L, R) for which the spectral radius of L−1R does not exceed the unity (plus an
additional technical condition to be specified soon). This class of stationary iterative
methods, that we call the {L,R}-class for lack of a more descriptive term, iterates as
follows:

xk+1 = L−1
(
Rxk + BT(yk + c) + αb

)
, (2.4a)

yk+1 = yk − τ
(
Bxk+1 − c

)
, (2.4b)

where (L, R) is any admissible splitting and τ represents a step length in multiplier
updates.

It is easy to see that the {L,R}-class iterations (2.4) correspond to the following
splitting of the (2 × 2)-block augmented matrix in system (2.1):

(
H −BT

τ B 0

)
=

(
L 0

τ B I

)
−

(
R BT

0 I

)
. (2.5)

Therefore, the resulting iteration matrix is

M(τ ) :=
(

L 0
τ B I

)−1(
R BT

0 I

)
=

(
L−1R L−1BT

−τ BL−1R I − τ BL−1BT

)
. (2.6)

It is worth observing that the results of the present paper still hold if in the right-
hand side of (2.5) the identity matrix in the (2,2)-blocks is replaced by any symmetric
positive definite matrix1.

From the well-known theory for stationary iterative methods for linear systems, we
have

Proposition 2.1 A member of the {L,R}-class converges Q-linearly from any initial
point if and only if the corresponding iterationmatrix M(τ ), for some value τ , satisfies

ρ(M(τ )) < 1. (2.7)

In this paper, we establish that, under two reasonable assumptions, condition (2.7)
holds for the entire {L,R}-class.
1 Yang, J.: Private communications. (August, 2010)
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2.3 Classic Methods ALM and ADMM

The trivial splitting (L, R) = (H , 0) gives the classic augmented Lagrangian mul-
tiplier (ALM) method [2,3], which is also equivalent to Uzawa’s method [4] applied
to (1.3). In this case,

M(τ ) =
(
0 H−1BT

0 I − τ BH−1BT

)
,

and

ρ(M(τ )) = ρ
(
I − τ BH−1BT

)
(2.8)

leading to the well-known convergence result for the multiplier method.

Proposition 2.2 The augmented Lagrangian multiplier method applied to the
quadratic program (1.1) converges Q-linearly from any initial point for
τ∈ (

0, 2/λmax(BH−1BT)
)
, where H = αA + BTB � 0. Moreover, when A � 0,

τ ∈ (0, 2) suffices for convergence.

The classic ALMmethod, or Uzawa’s method applied to (1.3), is the unique mem-
ber of the {L,R}-class that requires solving systems involving the entire (1,1)-block
submatrix H (with a different right-hand side from iteration to iteration). On the other
hand, all other {L,R}-class members only require solving systems involving the left
part L which can be much less expensive if L are chosen to exploit problem structures.

When the splitting of H is of the (2 × 2)-block Gauss–Seidel type as is defined in
(2.3), the associated {L,R}-class member reduces to the classic alternating direction
method of multipliers, i.e., ADMM [5,6], for which convergence has been established
for general convex functions not restricted to quadratics. However, such a general
theory requires objective functions to be a sum of two separable functions with respect
to two block variables, and both convex in the entire space.Apparently, no convergence
results are available, to the best of our knowledge, when the objective is non-separable,
or is convex only in a subspace, or the number of block variables exceeds two (unless
algorithmic modifications are introduced).

3 Convergence of the Entire Class

Wepresent a unified convergence result for the entire {L,R}-class under two assump-
tions:

A1. H := αA + BTB � 0, where B is of rank m.
A2. H = L − R satisfies ρ(L−1R) � 1 and the condition (3.1).

We know that Assumption A1 holds for appropriate α values if A ∈ R
n×n is positive

definite in the null space of B, see Proposition 1.1. We further require that L−1R
have no eigenvalue of unit modulus or greater except possibly the unity itself being
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an eigenvalue; that is,

max
{
|μ| : μ ∈ σ(L−1R)\{1}

}
< 1. (3.1)

Now we present a unified convergence theorem for the entire {L,R}-class.
Theorem 3.1 Let {(xk, yk)} be generated from any initial point by a member of the
{L,R}-class defined by (2.4). Under Assumptions A1–A2, there exists η > 0 such that
for all τ ∈ (0, 2η) the sequence {(xk, yk)} converges Q-linearly to the solution of
(1.1).

The proof is left to the next section after we develop some technical results. We
note that the convergence interval (0, 2η) is member-dependent. It can also depend on
the value of the parameter α > 0 in H(α) = αA + BTB � 0.

It is worth noting that the theorem only requires L−1R, as a linear mapping in Rn ,
to be non-expansive (plus a technical condition) rather than contractive. Convergence
would not necessarily happen if one kept iterating on the primal variable x only.
However, timely updating the multiplier y helps iterates for the pair (x, y) converge
together.

4 Technical Results and Proof of Convergence

We first derive some useful technical lemmas. Let λ(τ) be an eigenvalue of M(τ ),
i.e.,

λ(τ) ∈ σ(M(τ )). (4.1)

The eigenvalue system corresponding to λ is

(
L−1R L−1BT

−τ BL−1R I − τ BL−1BT

)(
u(τ )

v(τ )

)
= λ(τ)

(
u(τ )

v(τ )

)
, (4.2)

where (u, v) ∈ C
n×C

m is nonzero. For simplicity,wewill often skip the τ -dependence
of the eigenpair if no confusion arises.

Lemma 4.1 If ρ(L−1R) � 1, then

ρ(M(0)) = 1.

Under condition (3.1), the maximum eigenvalue of M(τ ) in modulus, λ(τ), satisfies

lim
τ→0

λ(τ) − 1

λ(τ)
= 0. (4.3)
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Proof From the definition of M(τ ) in (2.6),

M(0) =
(
L−1R L−1BT

0 I

)
.

Hence by our assumptionρ(M(0)) = max(1, ρ(L−1R)) = 1 ∈ σ(M(0)). The second
part follows from the continuity of eigenvalues as functions of matrix elements and
condition (3.1).

Lemma 4.2 Let the matrix A be positive definite in the null space of B and α > 0,
or the sum H = αA + BTB be positive definite. Then for any τ > 0, 1 /∈ σ(M(τ ))

where M(τ ) is defined as in (2.6).

Proof We examine eigensystem (4.2). Rearranging the first equation of (4.2), we have

(λL − R)u = BTv. (4.4)

Multiplying the first equation by τ B and adding to the second of (4.2), after rearranging
we obtain

(1 − λ)v = λτ Bu. (4.5)

Suppose that λ = 1. Then (4.5) implies Bu = 0. By definition (2.2), equation (4.4)
reduces to

(L − R)u ≡ (αA + BTB)u = BTv.

Multiplying the above equation by u∗ and invoking Bu = 0, we arrive at u∗Hu =
u∗Au = 0, contradicting to the assumption of the lemma.

Lemma 4.3 Let (λ, (u, v))be an eigenpair of M(τ )as is given in (4.2)whereλ /∈ {0, 1}
and Bu 
= 0, then

λ = 1 − τ

(
u∗Hu

u∗BTBu
+ λ − 1

λ

u∗Ru
u∗BTBu

)−1

. (4.6)

Proof It follows readily from (4.5) that

v = λτ

1 − λ
Bu. (4.7)

Substituting the above into (4.4) and in view of (2.2), we have

(λH + (λ − 1)R) u = λτ

1 − λ
BTBu,
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or after a rearrangement,

(
H − τ

1 − λ
BTB

)
u = 1 − λ

λ
Ru. (4.8)

Multiplying both sides of (4.8) by u∗, we have

u∗Hu − τ

1 − λ
u∗BTBu = 1 − λ

λ
u∗Ru.

Since u∗BTBu 
= 0, the above equation can be rewritten into

τ

1 − λ
= u∗Hu

u∗BTBu
+ λ − 1

λ

u∗Ru
u∗BTBu

. (4.9)

Solving for the λ on the left-hand side of (4.9) while fixing the ones on the right, we
obtain the desired result where the denominator term must be nonzero.

Lemma 4.4 Let τ, κ ∈ R and z = �(z) + i	(z) ∈ C such that κ + �(z) > 0. Then

τ ∈ (0, 2(κ + �(z))) ⇐⇒
∣∣∣∣1 − τ

κ + z

∣∣∣∣ < 1. (4.10)

Moreover, τ = κ + �(z) minimizes the above modulus so that

min
τ

∣∣∣∣1 − τ

κ + z

∣∣∣∣ =
∣∣∣∣1 − κ + �(z)

κ + z

∣∣∣∣ = |	(z)|
|κ + z| . (4.11)

Proof By direct calculation,

∣∣∣∣1 − τ

κ + z

∣∣∣∣
2

= 1 − τ
2(κ + �(z)) − τ

|κ + z|2 = (κ + �(z) − τ)2 + 	(z)2

(κ + �(z))2 + 	(z)2
, (4.12)

from which both (4.10) and (4.11) follow.

Now we are ready to prove Theorem 3.1.

Proof The proof is based on Lemmas 4.1, 4.3 and 4.4, while Lemma 4.2 is implicitly
used.

Let (λ(τ ), (u(τ ), v(τ ))) be an eigenpair of M(τ ) corresponding to an eigenvalue
of maximum modulus. Clearly, λ(τ) /∈ {0, 1}. We need to prove that |λ(τ)| < 1 for
some values of τ > 0. In the rest of the proof, we often skip the dependence on τ .

We consider two cases: Bu = 0 and Bu 
= 0. If Bu = 0, then (4.5) implies
v = 0, and (4.4) implies that (λ, u) is an eigenpair of L−1R. Therefore, |λ| < 1 by
Assumption A2. Now we assume that Bu 
= 0. By Lemmas 4.3 and 4.4, |λ(τ)| < 1 if
and only if the following inclusion is feasible,

τ ∈ (0, 2
(τ)) , (4.13)
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where


(τ) := u∗Hu

u∗BTBu
+ �

(
λ − 1

λ

u∗Ru
u∗BTBu

)

= u∗u
u∗BTBu

(
u∗Hu

u∗u
+ �

(
λ − 1

λ

u∗Ru
u∗u

))
. (4.14)

Under Assumption A2, we know from (4.3) in Lemma 4.1 that 1 − 1/λ(τ) → 0 as
τ → 0. Hence, in view of the boundedness of u∗Ru/u∗u, for any δ ∈ (0, 1) there
exists ξδ > 0 such that

�
(

λ − 1

λ

u∗Ru
u∗u

)
� −

∣∣∣∣λ − 1

λ

∣∣∣∣ |u∗Ru|
u∗u

� −δλmin(H), ∀ τ ∈ (0, 2ξδ). (4.15)

We now estimate 
(τ) for τ ∈ (0, 2ξδ) from (4.14) and (4.15),


(τ) � λmin(H) − δλmin(H)

λmax(BTB)
= (1 − δ)

λmin(H)

λmax(BTB)
:= θδ > 0,

∀ τ ∈ (0, 2ξδ). (4.16)

It follows from (4.16) that inclusion (4.13) indeed holds for all τ ∈ (0, 2η), where

η := min(ξδ, θδ). (4.17)

This completes the proof.

In viewof the second part of Lemma4.4, if there exists τo > 0 such that τo = 
(τo),
then the optimal rate of convergence (for a given α > 0 and a given splitting) would
be

|	(z(τo))|
|u(τo)∗Hu(τo) + z(τo)| =

(
1 + (u(τo)

∗Hu(τo) + �(z(τo)))2

	(z(τo))2

)− 1
2

< 1, (4.18)

where z(τ ) := λ(τ)−1
λ(τ)

(u(τ )∗Ru(τ ))whose imaginary part must be nonzero at τ = τo.
Of course, such an optimal rate of convergence is generally not computable in practice.

5 Remarks

The {L,R}-class defined by (2.4) is constructed from splittings of the (1,1)-block of
the saddle point systemmatrix that includes, but is not limited to, all known convergent
splittings for positive definite matrices, offering adaptivity to problem structures with
guaranteed convergence.

Those {L,R}-class members associated with block Gauss–Seidel splittings are nat-
ural extensions to the classic ADMM specialized to quadratic programs. In contrast
to the existing general convergence theory for ADMM, Theorem 3.1 does not require
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separability, nor convexity in the entire space, and imposes no restriction on the number
of blocks, while giving a Q-linear rate of convergence. It should be of great interest
to extend these properties beyond quadratic programs, which will be a topic to be
addressed in another work.

The convergence of certain members of the {L,R}-class has been studied in [7]
under the assumption that L is symmetric positive definite. In [8], a special case
corresponding to the SOR-splitting has been analyzed.
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