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Abstract
This article is an introduction to recent development of optimization theory on set
functions, the nonsubmodular optimization, which contains two interesting results, DS
(difference of submodular) functions decomposition and sandwich theorem, together
with iterated sandwich method and data-dependent approximation. Some potential
research problems will be mentioned.

Keywords Set function · Optimization · DS decomposition · Sandwich theorem ·
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1 Introduction

In recent development of computer technology, such as wireless networks [1,2],
cloud computing [3,4], sentiment analysis [5–8], and machine learning [9], many
nonlinear optimization problems come out with discrete structure. They form a large
group of new problems, which belong to a research area, nonlinear combinatorial
optimization. The nonlinear combinatorial optimization has been studied for a long
time, but recently becomes very active. One of the important fields in this area is the
set function optimization. Its development can be roughly divided into three periods.
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The first period is before 2000. The research works came mainly from researchers
in operations research. Those works are mainly on submodular function optimization,
often with monotone nondecreasing property. For any set function f : 2E → R, f is
submodular if

f (A) + f (B) � f (A ∪ B) + f (A ∩ B).

f is monotone nondecreasing if

A ⊂ B implies f (A) � f (B).

In this period, major results include following:

• Unconstrained submodular minimization can be solved in polynomial time [10–
12].

• For constrained monotone nondecreasing submodular maximization, it has (1 −
1/e)-approximation with size-constraint [13] or a knapsack constraints [14,15].

• For nonlinear-constrained linear optimization, the linear maximization with k
matroid constraints has (1/(k + 1))-approximation [16,17], and the linear mini-
mization with submodular cover constraint, called the submodular cover problem,
has (1+ ln γ )-approximation where γ is a number determined by the submodular
function defining the constraint [18].

The second period is from 2007 to 2012, the research activity occurs mainly in
the theoretical computer science. The major results are about nonmonotone submod-
ular optimization, including submodular maximization with knapsack constraints and
matroid constraints [19–21] and submodular minimization with size-constraint [22].
Most of them were published in theoretical computer science conferences, such as
ACM Symposium on Theory of Computing, IEEE Symposium on Foundations of
Computer Science, ACM-SIAM Symposium on Discrete Algorithms, and journals,
such as SIAM Journal on Computing.

The third period is starting from 2014. The research is in application-driving. The
main focus is on nonsubmodular optimization. In the study of nonsubmodular opti-
mization, we may find four clusters of research efforts.

• supermodular degree [23,24].
• Difference of Submodular (DS) functions [25–27].
• Discrete Difference of Convex (DC) functions [28,29].
• Nonlinear integer programming.

In this article, we discuss research works on DS functions, especially introduce two
surprising results, the DS decomposition and the sandwich theorem together with the
iterated sandwich method.

2 DS Decomposition

The first one is as follows.
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Theorem 2.1 [26] Every set function f : 2X → R can be expressed as the difference
of two monotone nondecreasing submodular functions g and h, i.e., f = g−h, where
X is a finite set.

To prove this theorem, we first show two lemmas.

Lemma 2.1 [25] Every set function f : 2X → R can be expressed as the difference
of two submodular functions g and h, i.e., f = g − h.

Proof Define

α( f ) = min
A⊂B,x∈X\B(�x f (A) − �x f (B)),

where �x f (A) = f (A ∪ {x}) − f (A). It is well-known that f is submodular if and
only if α( f ) � 0 (see [26]). If f is submodular, then set g = f and h = 0, which
meets lemma’s requirement. Thus, we may assume α( f ) < 0. Choose a submodular
function h such that α(h) > 0. For example, set h(A) = √|A|. Then, we have

α(h) = min
A⊂B⊆X\x

(√|A| + 1 − √|A| − √|B| + 1 + √|B|
)

= min
A⊂X\x

(√|A| + 1 − √|A| − √|A| + 2 + √|A| + 1
)

= 2
√
n + 1 − √

n − √
n + 2 > 0,

where n = |X |. Set g(A) = f (A)+ |α( f )|
α(h)

h(A). Then, α(g) � 0, i.e., g is submodular
and moreover, f = g − h.

Lemma 2.2 [30] Every submodular function g can be expressed as g = p +m where
p is a polymatroid function (i.e., a monotone nondecreasing submodular function with
p(∅) = 0) andm is amodular function (i.e., for any two sets A and B,m(A)+m(B) =
m(A ∪ B) + m(A ∩ B)).

Proof Define m(A) = f (∅) − ∑
x∈A �x f (X\x) and p = f − m. It is easy to

verify that m is a modular function. Thus, p is a submodular function. Moreover,
p(∅) = f (∅) − m(∅) = 0 and for any set A and x ∈ X\A, �x p(A) = �x f (A) −
�x f (X\x) � 0, i.e., p is monotone nondecreasing. Therefore, p is a polymatroid
function.

Now, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 By Lemma 2.1, f can be expressed as f = g−h where g and h
are submodular functions. By Lemma 2.2, g and h can be expressed as g = pg +mg

and h = ph + mh where pg and ph are polymatroid functions, and mg and mh

are modular functions. Therefore, f = (pg + mg(∅)) − (ph + mh(∅)) + m where
m = mg − mg(∅) − mh + mh(∅) which is a modular function with m(∅) = 0.
Define m+(x) = max(0,m(x)) for x ∈ X and m+(A) = ∑

x∈A m
+(x) for any set A.

Define m−(x) = −min(0,m(x)) for x ∈ X and m−(A) = ∑
x∈A m

−(x) for any set
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A. Then, m = m+ −m− and both m+ and m− are monotone nondecreasing modular
functions. Set g′ = pg +mg(∅) +m+ and h′ = ph +mh(∅) +m−. Then, g′ and h′
are monotone nondecreasing submodular functions such that f = g′ − h′.

The following is an example of DS functions.

Example 2.1 (ProfitMaximization [31]) The profitmaximization is a problem in social
computing. Consider a social network which is a directed graph G = (V , E) with
an information diffusion model m. Usually, an information diffusion process consists
of discrete steps. Consider every node has two states, active and inactive. Initially,
every node is inactive. The process starts to activate a subset of nodes, called seeds.
After seeds become active, they can activate their neighbors based on certain rules
of model m. The process ends when no node newly becomes active. Let S be the set
of seeds and I (S) the set of active nodes at the end of process. Then, maximization
of |I (S)| (or E(|I (S)|) when m is a probabilistic model), called the influence spread,
is an important problem, called the influence maximization, in many applications of
social networks. However, in viral marketing, seeds are often free samples or coupons
for a certain product, i.e., distribution of seeds needs cost. Therefore, the objective
function of maximization should be the difference of the influence spread and the seed
cost, called the profit. When the seed cost is a submodular function with respect to
seed set S, the profit becomes a DS function.

3 Sandwich Theorem

The second surprising result is the following sandwich theorem.

Theorem 3.1 (Sandwich Theorem) For any set function f : 2X → R and any set
Y ⊆ X, there are two modular functions mu : 2X → R and ml : 2X → R such that
mu � f � ml and mu(Y ) = f (Y ) = ml(Y ).

Why is this result surprising? To explain this, let us look at a property of modular
functions.

Lemma 3.1 For any modular function m : 2X → R,

m(A) = m(∅) +
∑
x∈A

(m(x) − m(∅))

for any set A ⊆ X.

Proof This lemma can be proved by induction on |A|. For |A| = 1, it is trivial. For
|A| � 2, suppose y ∈ A. Then,

m(y) + m(A\y) = m(A) + m(∅).

Therefore,
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m(A) = m(A\y) + (m(y) − m(∅))

= m(∅) +
∑

x∈A\y
(m(x) − m(∅)) + (m(y) − m(∅))

= m(∅) +
∑
x∈A

(m(x) − m(∅)).

This lemma indicates that the modular function is a linear set function. Theorem 3.1
contains two different modular functions passing through the same set and one is
always smaller than or equal to the other. This phenomenon cannot occur for contin-
uous linear functions. A continuous linear function with n variables can be expressed
as an n-dimensional plane in the (n + 1)-dimensional space. A pair of different n-
dimensional planes with a point in common cannot have a coordinate along which one
is always smaller than or equal to the other. Therefore, this theorem states a special
property of the set function.

To prove the sandwich theorem, we show two lemmas.

Lemma 3.2 [26] For any submodular function f : 2X → R and any set Y ⊆ X, there
exists a modular function mu : 2X → R such that mu � f and mu(Y ) = f (Y ).

Proof Define

mu(A) = f (Y ) +
∑
j∈A\Y

� j f (∅) −
∑
j∈Y\A

� j f (Y\ j).

Clearly, ml is modular and mu(Y ) = f (Y ). Next, we show that ml � f .
Assume A\Y = { j1, · · · , jk}. Then,

f (A) − f (A ∩ Y ) = � j1 f (A ∩ Y ) + � j2 f ((A ∩ Y ) ∪ { j1})
+ · · · + � jk f ((A ∩ Y ) ∪ { j1, · · · , jk−1})

�
∑
j∈A\Y

� j f (A ∩ Y ).

Assume Y\A = {i1, .., ik}. Then,

f (Y ) − f (A ∩ Y ) = �i1 f (A ∩ Y ) + �i2 f ((A ∩ Y ) ∪ {i1})
+ · · · + �ik f ((A ∩ Y ) ∪ {i1, · · · , ik−1})

�
∑
j∈A\Y

� j f (Y\ j).

Therefore,

f (A) � f (Y ) +
∑
j∈A\Y

� j f (A ∩ Y ) −
∑
j∈A\Y

� j f (Y\ j)

� f (Y ) +
∑
j∈A\Y

� j f (∅) −
∑
j∈A\Y

� j f (Y\ j)

= mu(A).
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Lemma 3.3 [26] For any submodular function f : 2X → R and any set Y ⊆ X, there
exists a modular function ml : 2X → R such that f � ml and f (Y ) = ml(Y ).

Proof Put all elements of X into an ordering X = {x1, x2, · · · , xn} such that Y =
{x1, x2, · · · , x|Y |}. Denote Si = {x1, x2, · · · , xi }. Define ml(∅) = f (∅) and for
∅ 
= A ⊆ X , define

ml(A) = f (∅) +
∑
xi∈A

( f (Si ) − f (Si−1)).

Clearly ml is modular and

ml(Y ) = f (∅) +
∑
xi∈Y

( f (Si ) − f (Si−1)) = f (Y ).

Moreover, for any set A ⊆ X with A 
= ∅, suppose A = {xi1 , xi2 , · · · , xik } and then
we have

ml(A) = f (∅) + ( f (Si1) − f (Si1−1)) + ( f (Si2) − f (Si2−1))

+ · · · + ( f (Sik ) − f (Sik−1))

� f (∅) + ( f ({xi1}) − f (∅)) + ( f ({xi1 , xi2}) − f ({x1}))
+ · · · + ( f (A) − f ({xi1 , · · · xik−1}))

= f (A).

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 By Theorem 2.1, there exist submodular functions g and h
such that f = g − h. By Lemmas 3.2 and 3.3, there exist modular functions
mgu,mgl ,mhu,mhl such that mgu � g � mgl , mgu(Y ) = g(Y ) = mgl(Y ), mhu �
g � mhl and mhu(Y ) = h(Y ) = mhl(Y ). Set mu = mgu −mhl and ml = mgl −mhu .
Then, mu � f � ml and mu(Y ) = g(Y ) − h(Y ) = f (Y ) = g(Y ) − h(Y ) = ml(Y ).

4 Iterated SandwichMethod

Based on the sandwich theorem, we can design following algorithm for minA∈2X
f (A):
Iterated Sandwich Method:

• Input a set function f : 2X → R.
• Initially, compute a DS decomposition f = g − h and choose an arbitrary set

A ⊆ X .
• At each iteration, carry out following

– Compute a modular upper bound mgu and a modular lower bound mgl for g
such that g(A) = mgu(A) = mgl(A).
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– Compute a modular upper bound mhu and a modular lower bound mhl for h
such that h(A) = mhu(A) = mhl(A).

– Compute mu = mgu − mhl , ml = mgl − mhu and mo = mgl − mhl .
– Compute an optimal solution Au for mu , an optimal solution Al for ml and an
optimal solution Ao for mo.

– Set A+ = argmin( f (Au), f (Al), f (Ao)).
– If f (A+) = f (A), then stop iteration and go to output; else set A ← A+ and
start a new iteration.

• Output A.
A similar one can be designed for minA∈2X f (A). What can we say about the

solution obtained by this algorithm? Is it a local optimal solution? Oh, let us first
explain what is a local optimal solution for the set function optimization.

For a submodular set function f : 2X → R, the subgradient at set A consists
of all linear functions c : X → R satisfying f (Y ) � f (A) + c(Y ) − c(A) where
c(Y ) = ∑

y∈Y c(y). Each linear function c can also be seen as a vector in R
X , i.e., a

vector c with components labeled by elements in X . The characteristic vector of each
subset Y of X is a vector in {0, 1}X such that the component with label x ∈ X is equal
to 1 if and only if x ∈ Y . For simplicity of notation, we may use the same notation Y
to represent the set Y and its characteristic vector. Then, the subgradient of f at set A
can be described as

∂ f (A) = {c ∈ R
X | f (Y ) � f (A)+ < c,Y − A >}.

If c, d ∈ ∂ f (A), then for any 0 � λ � 1, λc + (1 − λ)d ∈ ∂ f (A), that is, ∂ f (A)

is a convex set in R
X . The extreme point of this convex set can be characterized as

follows.

Theorem 4.1 [32] A point c ∈ R
X is an extreme point of ∂ f (A) if and only if there

is a permutation σ for elements in X, i.e., X = {σ(1), σ (2), · · · , σ (|X |)}, such that
A = {σ(1), σ (2), · · · , σ (|A|)} and c({σ(i)}) = f (Si ) − f (Si−1) for 1 � i � |X |,
where S0 = ∅ and Si = {σ(1), σ (2), · · · , σ (i)}.

Consider a DS function f = g − h where g and h are submodular functions. A set
A is a local minimum (the first type) for f if

∂h(A) ⊆ ∂g(A). (4.1)

Actually, (4.1) is a necessary condition for set A to be a minimum solution.

Theorem 4.2 Let f = g − h be a set function and g and h submodular functions on
subsets of X. If set A is a minimum solution (the first type) for minY⊆X f (Y ), then
∂h(A) ⊆ ∂g(A).

Proof Since A is a minimum solution, we have f (A) � f (Y ) and hence g(Y ) −
g(A) � h(Y ) − h(A) for any Y ⊆ X . Therefore, for any c ∈ ∂h(A),

g(Y ) − g(A) � h(Y ) − h(A) � c(Y ) − c(A).

This means that (4.1) holds.
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Condition (4.1) is also sufficient for certain minimality.

Theorem 4.3 Suppose A satisfies condition (4.1). Then, for any Y ∈ U , f (A) � f (Y ),
where

U = {Y | ∂h(Y ) ∩ ∂g(A) 
= ∅}.

Proof Choose c ∈ ∂h(Y ) ∩ ∂g(A). Then,

h(A) � h(Y ) + (c(A) − c(Y )) and g(Y ) � g(A) + (c(Y ) − c(A)).

Hence h(Y ) − h(A) � c(Y ) − c(A) � g(Y ) − g(A). Therefore, f (Y ) � f (A).

Now, we come back to the iterated sandwich method. Could the method produce a
solution satisfying condition (4.1) surely? It is a problem for further research.However,
if we look at a local minimum (the second type) as a set for which adding or removing
an element would not decrease the objective function value. A positive answer would
be reached with an approach given by [25,26] with a little modification as follows.

Theorem 4.4 In the iterated sandwichmethod, computemgl andmhl by using the same
permutation of elements of X. At each iteration, try at most n permutations σ1, · · · , σk
such that A = {σ1(|A|−1), · · · , σk(|A|−1)} and X\A = {σ1(|A|+1), · · · , σk(|A|+
1)}. Then, the iterated sandwich method would stop at a local minimum (the second
type).

What can we say about the approximation performance for the iterated sandwich
method? At least, it may produce a solution comparable with the data-dependent
approximation described in the next section.

5 Data-Dependent Approximation

The sandwich method has been used quite often for solving several nonsubmodular
optimization problems in the literature [33–36]. It runs as follows.
Sandwich Method:

• Input a set function f : 2X → R.
• Initially, find two submodular functions u and l such that u(A) � f (A) � l(A)

for A ∈ � where � is a collection of subsets of X . Then carry out following

– Compute an α-approximation solution Su for minA∈Omega u(A) and a β-
approximation solution Sl for minA∈� l(A).

– Compute a solution So for f .
– Set S = argmin( f (Su), f (So), f (Sl)).

• Output S.

This method is called a data-dependent approximation algorithm with following
guaranteed performance.
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Theorem 5.1 [33] The solution S produced by the sandwich method satisfies the fol-
lowing:

f (S) � min

{
f (S1)

l(Sl)
· β,

optu
opt f

· α

}
· opt f ,

where opt f (optu) is the objective function value of the minimum solution for
minA∈� f (A) (minA∈� u(A)).

Proof Since Sl is a β-approximation solution for minA∈� l(A), we have

f (Sl) = f (Sl)

l(Sl)
· l(Sl) � f (Sl)

l(Sl)
· β · optl � f (Sl)

l(Sl)
· β · l(OPT f ) � f (Sl)

l(Sl)
· β · opt f ,

where OPT f is an optimal solution for minA∈� f (A). Since Su is an α-approximation
solution for minA∈� u(A), we have

f (Su) � u(Su) � α · optu = α · optu
opt f

· opt f .

Therefore, the theorem holds.

From theoretical point of view, the sandwich method is always applicable since we
have following.

Theorem 5.2 For any set function f on 2X , there exist two monotone nondecreasing
submodular functions u and l such that u(A) � f (A) � l(A) for every A ∈ 2X .

Proof By the DS decomposition theorem, there exist two monotone nondecreasing
submodular functions g and h such that f = g − h. Note that for every A ∈ 2X ,
h(∅) � h(A) � h(X). Set u(A) = g(A) − h(∅) and l(A) = g(A) − h(X) for any
A ∈ 2X . Then, u and l meet our requirement.

However, in practice, it is often quite hard to find such an upper bound u and a
lower bound l which are easily computable. Therefore, more efforts are required to
construct them for specific real-world problems.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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