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Abstract In this paper a weighted short-step primal-dual interior-point algorithm for
linear optimization over symmetric cones is proposed that uses new search directions.
The algorithm uses at each interior-point iteration a full Nesterov-Todd step and the
strategy of the central path to obtain a solution of symmetric optimization. We estab-
lish the iteration bound for the algorithm, which matches the currently best-known
iteration bound for these methods, and prove that the algorithm is quadratically con-
vergent.
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1 Introduction

Let (J ,◦) be an Euclidean Jordan Algebra (EJA) with rank r equipped with the stan-
dard inner product 〈x, y〉 = T r(x ◦ y). Let K be the corresponding symmetric cone.
We consider the symmetric cone optimization (SCO) problem given in the standard
form

min
{〈c, x〉 : Ax = b, x ∈ K

}
, (CP)

and its dual problem

max
{
bT y : AT y + s = c, s ∈K

}
, (CD)

where c and the rows of A lie in J , and b ∈ R
m. We assume that the matrix A has

full rank, i.e., rank(A) = m.
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In recent years it has been established that symmetric cones which are cones of
squares of EJAs, serve as a unifying framework to which the important cases of cones
used in optimization. The classical monograph of Faraut and Korányi [6] provides a
wealth of information on Jordan algebras, symmetric cones and related topics.

Nesterov and Todd [14, 15] provided a theoretical foundation for efficient primal-
dual interior-point methods (IPMs) on a special class of convex optimization prob-
lems, where the associated cone was self-scaled. However, they did not make the
connection to EJAs. The first work connecting EJAs and optimization is due to Güler
[10]. He observed that the family of the self-scaled cones is identical to the set of sym-
metric cones for which there exists a complete classification theory. The application
of the EJA as a basic tool for analyzing complexity proofs of the IPMs for SCO and
SCLCP was started by Faybusovich [8], who extended earlier works of Nesterov and
Todd, and Kojima et al. [13, 15]. Schmieta and Alizadeh [16, 17] studied primal-dual
IPMs for SCO extensively under the framework of EJA. Rangarajan [19] proved the
polynomial-time convergence of infeasible IPMs for conic programming over sym-
metric cones using a wide neighborhood of the central path for a commutative family
of search directions. Vieira [21] proposed primal-dual IPMs for SCO based on the
so-called eligible kernel functions and obtained the currently best-known iteration
bounds for the large- and small-update methods. Darvay [3] proposed a full-Newton
step primal-dual interior-point algorithm for LO. The search direction of his algo-
rithm is introduced by using an algebraic equivalent transformation of the nonlinear
equations which define the central path and then applying Newton’s method for the
new system of equations. Later on, Wang and Bai [23–25], Wang [22] and Wang et
al. [27], respectively, extended Darvay’s algorithm for LO to second-order cone op-
timization (SOCO), semi-definite optimization (SDO), symmetric cone optimization
(SCO), monotone linear complementarity problem over symmetric cones and convex
quadratic optimization over symmetric cone. Very recent, Kheirfam [12] proposed
a full Nesterov-Todd step infeasible IPM (IIPM) based on Darvay’s technique for
SCO, and proved that the complexity of the algorithm coincides with the best-known
iteration bound for IIPMs.

Feasible primal-dual path-following methods are an important class of IPMs due
to their numerical efficiency and theoretical polynomial complexity. These methods
used the so-called central path as a guideline to obtain a solution of SCO. However,
the theoretical issues of these methods show that they require that starting primal-
dual points must be strictly feasible and closed to the central path. Still, it is uneasy
to find suitable centered strictly feasible starting points. Therefore, it is worth analyz-
ing other cases when points are not on the central path. Target-following primal-dual
IPMs belong to the strategies to overcome this restriction. These methods are based
on the observation that with every central-path algorithm we can associate a target
sequence on the central path. For a study of comprehension we refer the reader to
[11]. Weighted-path-following methods can be viewed as a particular case of target-
following methods [1, 4, 11]. In contrast with classical path-following methods, one
multi-dimensional parameter v̄ is used instead of the one dimensional parameter μ.
These methods were studied by Ding and Li [5] for monotone linear complementarity
problem (LCP), and by Roos and Hertog [20] for linear optimization (LO). Later on,
Darvay [4], Achache [1] and Wang et al. [26], respectively, extended it for LO, mono-
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tone LCP and monotone horizontal LCP by using new search directions of Newton
method.

The purpose of the paper is to generalize Darvay’s weighted-path-following algo-
rithm for LO to SCO by using EJA. At each iteration, we use only full Nesterov-Todd
steps (NT) which have the advantage that no line searches are needed. We derive the
complexity bound.

The paper is organized as follows: In the next section, we briefly introduce the
theory of the Euclidean Jordan algebras and their associated symmetric cones, which
are needed in this paper. In Sect. 3, after briefly reviewing the concept of the central
path for SCO, we provide the target-following search directions for SCO. In Sect. 4,
we present the weighted-path-following algorithm for SCO. In Sect. 5, we analyze the
algorithm and derive the complexity bound. In Sect. 6, a numerical result is reported.
Finally, some conclusions follow in Sect. 7.

2 Euclidean Jordan Algebra

A Jordan algebra J is a finite dimensional vector space endowed with a bilinear map
◦ : J ×J → J if for all x, y ∈ J , x ◦y = y ◦x, and x ◦ (x2 ◦y) = x2 ◦ (x ◦y), where
x2 = x ◦ x. A Jordan algebra (J ,◦) is called Euclidean if there exists a symmetric
positive definite quadratic form P on J such that P(x ◦y, z) = P(x, y ◦ z). A Jordan
algebra has an identity element, if there exists a unique element e ∈ J such that
x ◦ e = e ◦x = x, for all x ∈ J . The set K := K(J ) = {x2 : x ∈ J } is called the cone
of squares of Euclidean Jordan algebra (J ,◦, 〈., .〉). A cone is symmetric if and only
if it is the cone of squares of an EJA [6].

An element c ∈ J is idempotent if c ◦ c = c. An idempotent c is primitive if it is
nonzero and can not be expressed by the sum of two other nonzero idempotents. A
set of primitive idempotents {c1, c2, · · · , ck} is called a Jordan frame if ci ◦ cj = 0,
for any i �= j ∈ {1,2, · · · , k} and

∑k
i=1 ci = e. For any x ∈ J , let r be the smallest

positive integer such that {e, x, x2, · · · , xr} is linearly dependent; r is called the de-
gree of x and is denoted by deg(x). The rank of J , denoted by rank(J ), is defined
as the maximum of deg(x) over all x ∈ J .

Theorem 2.1 (Theorem III.1.2 in [6]) Let (J ,◦, 〈., .〉) be a Euclidean Jordan
algebra with rank(J ) = r . Then, for any x ∈ J , there exists a Jordan frame
{c1, c2, · · · , cr} and real numbers λ1(x), λ2(x), · · · , λr(x) such that x =∑r

i=1 λi(x)ci .

Every λi(x) is called an eigenvalue of x. We denote λmin(x)(λmax(x)) as the
minimal (maximal) eigenvalue of x. We can define the following: the square root,

x
1
2 := ∑r

i=1
√

λi(x)ci , wherever all λi � 0, the inverse, x−1 := ∑r
i=1 λi(x)−1ci ,

wherever all λi �= 0, the square x2 := ∑r
i=1 λi(x)2ci , the trace Tr(x) := ∑r

i=1 λi(x).
Since “◦” is bilinear map, for every x ∈ J , a linear operator L(x) can be defined

such that L(x)y = x ◦ y for all y ∈ J . In particular, L(x)e = x and L(x)x = x2. For
each x ∈ J , define

P(x) := 2L(x)2 − L
(
x2),
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where L(x)2 = L(x)L(x). The map P(x) is called the quadratic representation of
x. For any x, y ∈ J , x and y are said to be operator commutable if L(x) and L(y)

commute, i.e., L(x)L(y) = L(y)L(x). In other words, x and y operator commutable
if for all z ∈ J , x ◦ (y ◦ z) = y ◦ (x ◦ z) (see [16]). For any x, y ∈ J , the inner
product is defined as 〈x, y〉 = T r(x ◦ y), and the Frobenius norm of x as follows:

‖x‖F = √
T r(x2) =

√∑r
i=1 λ2

i (x). Observe that ‖e‖F = √
r , since identity element

e has eigenvalue 1.

Lemma 2.1 (Lemma 3.2 in [7]) Let x, s ∈ intK. Then, there exists a unique w ∈ intK
such that

x = P(w)s.

Moreover,

w = P
(
x

1
2
)(

P
(
x

1
2
)
s
)− 1

2 = P
(
s− 1

2
)(

P
(
s

1
2
)
x
) 1

2 .

The point w is called the scaling point of x and s. Hence, there exists ṽ ∈ intK
such that

ṽ = P(w)−
1
2 x = P(w)

1
2 s,

which is the so-called NT-scaling of Rn.
Let x, y ∈ J . We say that two elements x and y are similar, as denoted by x ∼ y,

if and only if x and y share the same set of eigenvalues. We say x ∈ K if and only
if λi � 0 and x ∈ intK if and only if λi > 0, for all i = 1,2, · · · , r . We also say x is
positive semi-definite (positive definite) if x ∈K (x ∈ intK).

Here, we list some results which needed in this paper.

Lemma 2.2 (Proposition 2.1 in [16]) Let x, s, u ∈ intK. Then

(i) P(x
1
2 )s ∼ P(s

1
2 )x.

(ii) P((P (u)x)
1
2 )P (u−1)s ∼ P(x

1
2 )s.

Lemma 2.3 (Proposition 3.2.4 in [21]) Let x, s ∈ intK, and w be the scaling point
of x and s. Then

(
P

(
x

1
2
)
s
) 1

2 ∼ P
(
w

1
2
)
s.

Lemma 2.4 (Theorem 4 in [18]) Let x, s ∈ intK. Then

λmin
(
P(x)

1
2 s

)
� λmin(x ◦ s).

Lemma 2.5 (Lemma 4.1 in [25]) Let x(α) = x + α�x, s(α) = s + α�s for 0 � α �
1 with x, s ∈ intK and x(α) ◦ s(α) ∈ intK for α ∈ [0, ᾱ]. Then, x(ᾱ) ∈ intK and
s(ᾱ) ∈ intK.
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3 The Central Path and New Search Directions

Throughout the paper, we assume that both (CP) and (CD) satisfy the interior-point
condition (IPC), i.e., there exist x0 ∈ intK and s0 ∈ intK such that Ax0 = b and
AT y0 + s0 = c. Under the IPC, finding an optimal solution of (CP) and (CD) is
equivalent to solving the following system:

Ax = b, x ∈ K,

AT y + s = c, s ∈K, (3.1)

x ◦ s = 0.

The basic idea of primal-dual IPMs is to replace the third equation in (3.1), the so-
called complementarity condition for (CP) and (CD), by the parameterized equation
x ◦ s = μe, with μ > 0. Thus, one may consider

Ax = b, x ∈ K,

AT y + s = c, s ∈K, (3.2)

x ◦ s = μe.

For each μ > 0, the system (3.2) has a unique solution (x(μ), y(μ), s(μ)), and we
call x(μ) and (y(μ), s(μ)) the μ-center of (CP) and (CD), respectively. The set of
μ-centers (with μ running through all positive real numbers) gives a homotopy path,
which is called the central path of (CP) and (CD) [9]. The target-following approach
starts from the observation that the system (3.2) can be generalized by replacing the
vector μe with an arbitrary positive vector v̄2. Thus we obtain the following system:

Ax = b, x ∈ K,

AT y + s = c, s ∈K, (3.3)

x ◦ s = v̄2,

where v̄ > 0. It is known that there exists one unique solution denoted by (x(v̄), y(v̄),

s(v̄)) of (3.3) [2]. The path v̄ → (x(v̄), y(v̄), s(v̄)) is called the weighted path of (CP)
and (CD). If v̄ goes to zero, then the limit of the weighted path exists and since the
limit point satisfies the complementarity condition, the limit yields a solution for (CP)
and (CD).

Remark 3.1 If v̄2 = μe with μ > 0, then the weighted path coincides with the classi-
cal central path.

Now we propose a new search direction for (CP) and (CD) based on Darvay’s
method for LO [4]. Consider the function

ϕ ∈ C1, ϕ : R+ →R
+,
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and suppose that the inverse function ϕ−1 exists. Then, the system (3.3) can be written
in the following equivalent form:

Ax = b, x ∈ K,

AT y + s = c, s ∈K, (3.4)

ϕ(x ◦ s) = ϕ
(
v̄2).

We apply Newton’s method to this system, and obtain the following relations for the
corresponding displacements in the x-, y- and s-spaces:

A�x = 0,

AT �y + �s = 0, (3.5)

x ◦ �s + s ◦ �x = (
ϕ′(x ◦ s)

)−1 ◦ (
ϕ
(
v̄2) − ϕ(x ◦ s)

)
.

Due to the fact that x and s do not operator commute, in general, i.e., L(x)L(s) �=
L(s)L(x), the system (3.5) does not always have a unique solution. It is now well
known that this difficulty can be resolved by applying a scaling scheme. This is given
in the following lemma.

Lemma 3.1 (Lemma 28 in [16]) Let u ∈ intK. Then

x ◦ s = μe ⇔ P(u)x ◦ P(u)−1s = μe.

Now, replacing the third equation in (3.4) by ϕ(P (u)x ◦ P(u−1)s) = ϕ(v̄2), and
then applying Newton’s method, we obtain the system

A�x = 0,

AT �y + �s = 0,

P (u)x ◦ P(u)−1�s + P(u)−1s ◦ P(u)�x

= (
ϕ′(P(u)x ◦ P(u)−1s

))−1 ◦ (
ϕ
(
v̄2) − ϕ

(
P(u)x ◦ P(u)−1s

))
.

(3.6)

Here, we consider the NT-scaling scheme [15]. Let u = w− 1
2 , where w is the NT-

scaling point of x and s as defined in Lemma 2.1. We define

v := P(w)
1
2 s

[= P(w)−
1
2 x

]
, (3.7)

and

Ā := AP(w)
1
2 , dx := P(w)−

1
2 �x, ds := P(w)

1
2 �s. (3.8)

Using (3.7) and (3.8), after some elementary reductions, we obtain

Ādx = 0,
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ĀT �y + ds = 0, (3.9)

dx + ds = pv,

where

pv = v−1 ◦ ϕ′(v2)−1 ◦ (
ϕ
(
v̄2) − ϕ

(
v2)).

It easily follows that the above system has a unique solution in intK [21]. Hence, this
system uniquely defines the scaled directions dx and ds . To get the search directions
�x and �s in the original space, we simply transform the scaled search directions
back to the x-space and s-space by using (3.8):

�x = P(w)
1
2 dx, �s = P(w)−

1
2 ds. (3.10)

The new iterate is obtained by taking a full NT-step as follows:

x+ := x + �x, y+ := y + �y, s+ := s + �s. (3.11)

4 An Interior-Point Algorithm

In this section, we take ϕ(t) = √
t based on Darvay’s technique for LO [4] and we

develop a new weighted-path-following algorithm based on the appropriate search
directions. In the analysis of target-following algorithm we will need a measure for
the proximity of the current iterate v to the current target point v̄. For this purpose we
introduce the following proximity measure:

σ(v, v̄) = ‖pv‖F

2λmin(v̄)
= ‖v̄ − v‖F

λmin(v̄)
,

where

pv = 2(v̄ − v), λmin(v̄) = min
{
λi(v̄) : 1 � i � r

}
. (4.1)

We also use the vector qv , defined by

qv = dx − ds. (4.2)

Note that the orthogonality of dx and ds , 〈dx, ds〉 = 0, implies that

‖pv‖F = ‖qv‖F .

We also have

dx = pv + qv

2
, ds = pv − qv

2
, dx ◦ ds = pv ◦ pv − qv ◦ qv

4
. (4.3)

The algorithm starts with (v0, v̄0) such that σ(v0, v̄0) � τ . In each iteration the search
directions at the current iterates with respect to the current value of v̄ be computed and
then the new iterate is obtained. The algorithm terminates with a point that satisfies
Tr(x ◦ s) � ε. We summarize the steps of the algorithm as Algorithm 1 below.
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Algorithm 1 A weighted-path-following algorithm
Input: Accuracy parameter ε > 0;

update parameter θ , 0 < θ < 1 (default value λmin(v̄
0)

4
√

rλmax(v̄0)
);

threshold parameter 0 < τ < 1;
strictly feasible solution x0, s0 and ‖v̄0‖F = √

Tr(x0 ◦ s0).
begin:

x := x0, s := s0, v̄ := v̄0;
while Tr(x ◦ s) � ε

x := x + �x;
y := y + �y;
s := s + �s;
v̄ := (1 − θ)v̄;

endwhile
end

5 Analysis of the Algorithm

5.1 Feasibility

We proceed by investigating when the full NT-step to the target point v̄ can be made
without becoming infeasible. So, we want to know under which conditions the new
iterates x := x + �x and s := s + �s are strictly positive. The next lemma gives a
simple condition on σ(v, v̄), which guarantees that the property is met after a full
NT-step. For this purpose, from (3.7), (3.8) and (3.11) we have

x+ = x + �x = P(w)
1
2 (v + dx), s+ = s + �s = P(w)−

1
2 (v + ds).

Since P(w)
1
2 and P(w)− 1

2 are automorphisms of intK (Theorem III.2.1 in [6]), x+
and s+ belong to intK if and only if v + dx and v + ds belong to intK.

Lemma 5.1 The full NT-step is strictly feasible if σ := σ(v, v̄) < 1.

Proof Introduce a step length α with α ∈ [0,1] and define vx(α) = v + αdx, vs(α) =
v + αds . Using the third equation of (3.9) and (4.3) we have

vx(α) ◦ vs(α) = v ◦ v + αv ◦ (dx + ds) + α2dx ◦ ds

= v ◦ v + αv ◦ pv + α2 pv ◦ pv − qv ◦ qv

4

= (1 − α)v ◦ v + α(v ◦ v + v ◦ pv) + α2 pv ◦ pv − qv ◦ qv

4

= (1 − α)v ◦ v + α

(
v̄ ◦ v̄ − (1 − α)

pv ◦ pv

4
− α

qv ◦ qv

4

)
, (5.1)

which the last equality holds by

v ◦ v + v ◦ pv = v ◦ v + 2v ◦ (v̄ − v) = v̄ ◦ v̄ − (v̄ − v) ◦ (v̄ − v) = v̄ ◦ v̄ − pv ◦ pv

4
.
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Furthermore, for 0 � α � 1, by the definition of σ(v, v̄) and (5.1) we have
∥∥∥∥(1 − α)

pv ◦ pv

4
+ α

qv ◦ qv

4

∥∥∥∥
F

� (1 − α)
‖pv ◦ pv‖F

4
+ α

‖qv ◦ qv‖F

4

� (1 − α)
‖pv‖2

F

4
+ α

‖qv‖2
F

4

= (1 − α)
‖pv‖2

F

4
+ α

‖pv‖2
F

4

= σ 2λmin(v̄)2 < λmin(v̄)2,

which shows that

v̄ ◦ v̄ − (1 − α)
pv ◦ pv

4
− α

qv ◦ qv

4
∈ intK.

Thus

(1 − α)v ◦ v + α

(
v̄ ◦ v̄ − (1 − α)

pv ◦ pv

4
− α

qv ◦ qv

4

)
∈ intK.

If 0 � α � 1, then we have vx(α) ◦ vs(α) ∈ intK. Hence, since x, s ∈ intK,
Lemma 2.5 implies that vx(1) = v + dx ∈ intK and vs(1) = v + ds ∈ intK. This
completes the proof. �

5.2 Effect on the Proximity Measure

According to (3.7), the v-vector after the step is given by

v+ = P
(
w+)− 1

2 x+ [= P
(
w+) 1

2 s+]
, (5.2)

where w+ is the scaling point of x+ and s+. Using (5.1), Lemma 2.3 and Lemma 2.2,
we have

(
v+)2 ∼ P

(
x+) 1

2 s+

= P
(
P(w)

1
2 (v + dx)

) 1
2 P(w)−

1
2 (v + ds)

∼ P(v + dx)
1
2 (v + ds). (5.3)

Lemma 5.2 The following holds:

λmin
(
v+)

� λmin(v̄)
√

1 − σ 2.

Proof By using (5.3), Lemma 2.4, (4.3) and (5.1) with α = 1, we get

λmin
((

v+)2) = λmin
(
P(v + dx)

1
2 (v + ds)

)

� λmin
(
(v + dx) ◦ (v + ds)

)
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= λmin

(
v̄ ◦ v̄ − qv ◦ qv

4

)

� λmin(v̄)2 − ‖qv‖2
F

4

= λmin(v̄)2 − ‖pv‖2
F

4

= λmin(v̄)2(1 − σ 2).

This completes the proof. �

We are interested in showing that closing a full NT-step brings us to the target point
v̄. In this respect the following lemma is of interest. It shows that if the current iterate
v is close enough to the target point v̄, the full NT-step ensures quadratic convergence
of the proximity measure.

Lemma 5.3 Let σ := σ(v, v̄) < 1. Then

σ
(
v+, v̄

)
� σ 2

1 + √
1 − σ 2

.

Thus σ(v+, v̄)� σ 2, which shows the quadratical convergence of the algorithm.

Proof From (5.1) with α = 1, we have

(v + dx) ◦ (v + ds) = v̄ ◦ v̄ − qv ◦ qv

4
. (5.4)

Using (5.4), Lemma 5.2 and (4.3), we get

σ
(
v+, v̄

) = ‖v̄ − v+‖F

λmin(v̄)
= 1

λmin(v̄)

∥∥∥∥
v̄ ◦ v̄ − v+ ◦ v+

v̄ + v+

∥∥∥∥
F

� ‖v̄ ◦ v̄ − (v + dx) ◦ (v + ds)‖F

λmin(v̄)(λmin(v̄) + λmin(v+))

� ‖qv ◦ qv‖F

(2λmin(v̄))2(1 + √
1 − σ 2)

�
‖qv‖2

F

(2λmin(v̄))2(1 + √
1 − σ 2)

= ‖pv‖2
F

(2λmin(v̄))2(1 + √
1 − σ 2)

= σ 2

1 + √
1 − σ 2

.

This completes the proof. �



A Full Nesterov-Todd Step Feasible Weighted Algorithm 477

5.3 Effect on the Duality Gap

The next lemma gives the effect of full NT-step on duality gap.

Lemma 5.4 Let the primal-dual feasible pair (x+, s+) be obtained after a full NT-
step with respect to v̄. Then, one has

〈
x+, s+〉

� ‖v̄‖2
F .

Proof Using (5.4), we have

〈
x+, s+〉 = 〈v + dx, v + ds〉 = Tr

(
(v + dx) ◦ (v + ds)

)

= Tr

(
v̄ ◦ v̄ − qv ◦ qv

4

)

= ‖v̄‖2
F − 1

4
‖qv‖2

F

� ‖v̄‖2
F .

The proof is complete. �

5.4 Updating the Target

The following lemma describes the effect on the proximity measure of a full NT-step
followed by an update in the target.

Theorem 5.1 Let v and v̄ be such that σ := σ(v, v̄) < 1 and v̄+ = (1 − θ)v̄, where
0 < θ < 1. Then

σ
(
v+, v̄+)

� θ
√

r

1 − θ

λmax(v̄)

λmin(v̄)
+ σ 2

(1 − θ)(1 + √
1 − σ 2)

.

Proof We have

σ
(
v+, v̄+) = 1

λmin(v̄+)

∥∥v̄+ − v+∥∥
F

� 1

λmin(v̄+)

(∥∥v̄+ − v̄
∥∥

F
+ ∥∥v̄ − v+∥∥

F

)

� θ

1 − θ

‖v̄‖F

λmin(v̄)
+ 1

1 − θ
σ
(
v+, v̄

)

� θ
√

r

1 − θ

λmax(v̄)

λmin(v̄)
+ σ 2

(1 − θ)(1 + √
1 − σ 2)

.

This completes the proof. �
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5.5 The Choice of τ and θ

We intend to determine values of a threshold τ and an update parameter θ , so that at
the start of the iteration, we have σ(v, v̄) � τ . After the full NT-step and a step along
the weighted path, the property σ(v+, v̄+) � τ should be maintained. In this case, by
Theorem 5.1, it suffices to have

θ
√

r

1 − θ

λmax(v̄)

λmin(v̄)
+ σ 2

(1 − θ)(1 + √
1 − σ 2)

� τ.

The left-hand side of the above inequality is monotonically increasing with respect
to σ , which implies that

θ
√

r

1 − θ

λmax(v̄)

λmin(v̄)
+ σ 2

(1 − θ)(1 + √
1 − σ 2)

� θ
√

r

1 − θ

λmax(v̄)

λmin(v̄)
+ τ 2

(1 − θ)(1 + √
1 − τ 2)

.

Thus, σ(v+, v̄+) � τ is satisfied if

θ
√

r

1 − θ

λmax(v̄)

λmin(v̄)
+ τ 2

(1 − θ)(1 + √
1 − τ 2)

� τ. (5.5)

At this stage, if we set τ = 1
2 and θ = λmin(v̄)

4
√

rλmax(v̄)
, the inequality (5.5) for r � 2 cer-

tainly holds. This means that (x, s) is strictly feasible and σ(v, v̄)� τ are maintained
during the algorithm. Thus, the algorithm is well-defined.

Observe that λmax(v̄)
λmin(v̄)

= λmax(v̄
0)

λmin(v̄
0)

for all iterates produced by the algorithm. Thus,

an immediate result of discuss above is that for θ = λmin(v̄
0)

4
√

rλmax(v̄0)
the conditions x, s ∈

intK and σ(v, v̄) � 1
2 are maintained throughout the algorithm. Hence, the algorithm

is well-defined.

5.6 Complexity Bound

We proceed by considering the reduction of the duality gap in the algorithm. Recall
from Lemma 5.4 that after a full NT-step the duality gap included in its target value.
So we only need to consider successive target values ‖v̄‖2

F . Using this, we prove the
following theorem.

Theorem 5.2 Assume that the step size θ has its default value λmin(v̄
0)

4
√

rλmax(v̄0)
. Let

‖v̄0‖F := √
Tr(x0 ◦ s0).Then, after at most

O
(√

r
λmax(v̄

0)

λmin(v̄0)
log

Tr(x0 ◦ s0)

ε

)

iterations the algorithm stops, and we obtain a primal-dual interior feasible pair
(x, s) that satisfies Tr(x ◦ s) � ε.
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Proof At the start of the algorithm the duality gap is given by

∥∥v̄0
∥∥2

F
= Tr

(
x0 ◦ s0).

After k iterations we get v̄ = (1 − θ)kv̄0. Using Lemma 5.4 we obtain

Tr
(
xk ◦ sk

)
� ‖v̄‖2

F = (1 − θ)2k
∥∥v̄0

∥∥2
F

= (1 − θ)2kTr
(
x0 ◦ s0).

Then, the inequality Tr(xk ◦ sk) � ε holds if

(1 − θ)2kTr
(
x0 ◦ s0)� ε.

Taking the logarithm and using log(1 − θ) � −θ,0 < θ < 1, we observe that the
above inequality holds if

k � 1

2θ
log

Tr(x0 ◦ s0)

ε
.

Substitution of the default value for θ , we find that

k � 2
√

r
λmax(v̄

0)

λmin(v̄0)
log

Tr(x0 ◦ s0)

ε
.

This gives the result. �

Remark 5.1 If (v̄)2 = μe, then λmax(v̄
0)

λmin(v̄
0)

= 1, and we get the iteration bound

O
(√

r log
Tr(x0 ◦ s0)

ε

)
.

This is matched with the iteration bound obtained in [25].

6 Numerical Results

In this section we solve the following LO problem using our algorithm with ε = 10−4.

A =
⎛

⎝
1 2 3 −1 0 0
3 1 2 0 −1 0
2 3 1 0 0 −1

⎞

⎠ , b =
⎛

⎝
2

23/6
19/6

⎞

⎠ , c = (
1 4 5 0 0 0

)
.

The initial primal-dual point is

x0 = (1, 1/2, 1/3, 1, 1/3, 2/3)T, y0 = 0, s0 = (1,4,5)T.

For our algorithm, we need 367 iterations to reach our accuracy.
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7 Conclusion

In this paper, we have developed a new weighted-path-following algorithm for solv-
ing (CP) and (CD) problems based on Darvay’s technique. We have defined a new
class of search directions. By employing Euclidean Jordan Algebras, we derived the
complexity bound.

Some interesting topics for further research remain. The search direction used
in this paper is based on the NT-scaling scheme. It may be possible to design similar
algorithm using other scaling scheme and to obtain polynomial-time iteration bounds.
Another topic for further research may be the development of full NT-step infeasible
interior-point algorithm.
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