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Abstract Interior-Point Methods (IPMs) not only are the most effective methods in
practice but also have polynomial-time complexity. Many researchers have proposed
IPMs for Linear Optimization (LO) and achieved plentiful results. In many cases
these methods were extendable for LO to Linear Complementarity Problems (LCPs)
successfully. In this paper, motivated by the complexity results for linear optimiza-
tion based on the study of H. Mansouri et al. (Mansouri and Zangiabadi in J. Optim.
62(2):285–297, 2013), we extend their idea for LO to LCP. The proposed algorithm
requires two types of full-Newton steps are called, feasibility steps and (ordinary)
centering steps, respectively. At each iteration both feasibility and optimality are re-
duced exactly at the same rate. In each iteration of the algorithm we use the largest
possible barrier parameter value θ which lies between the two values 1

17n
and 1

13n
, this

makes the algorithm faster convergent for problems having a strictly complementarity
solution.

Keywords Linear complementarity problem · Infeasible-interior-point-method ·
Central path · Polynomial complexity

Mathematics Subject Classification (2010) 90C33 · 90C51

H. Mansouri (B) · M. Pirhaji
Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University,
P.O. Box 115, Shahrekord, Iran
e-mail: Mansouri@sci.sku.ac.ir

M. Pirhaji
e-mail: Mojtabapirhaji@yahoo.com

mailto:Mansouri@sci.sku.ac.ir
mailto:Mojtabapirhaji@yahoo.com


524 H. Mansouri, M. Pirhaji

1 Introduction

Given M∈R
n×n be the positive semidefinite matrix and q ∈R

n, the monotone Linear
Complementarity Problem (LCP) is to find a pair (x, s) ∈ R

2n such that

s = Mx + q, (x, s) � 0, xT s = 0. (P )

It is known that this problem trivially includes the two important domains in opti-
mization: the linear optimization (LO) and the convex quadratic programming (QP)
in their usual formulations, then this problem became the subject of many research
interest. It is worth noting that there is a variety of solution approaches for LCP which
have studied intensively. A close look at the IPM literature tells us that the first IPM
for LCPs was due to Kojima, Mizuno and Yoshise [3] and their algorithm originated
from the primal–dual IPMs for LO. Later Kojima et al. [4] set up a framework of
IPMs for tracing the central path of a class of LCPs. It should be noted that all most
known polynomial various of IPMs used the so-called central path as a guideline to
optimal set, and some various of the Newton method to follow the central path ap-
proximately. Peng et al. [13, 14] who designed primal–dual feasible IPMs by using
self-regular functions for LP and also extend the approach to LCP.

In very recently Mansouri et al. [8] introduced a new method for finding a class
of search directions for feasible IPMs for LCPs. The complexity bound obtained by
these authors is O(

√
n log n

ε
), for small-update methods which coincides with the

well-known best iteration bound for the feasible IPMs in LCPs.
All the above mentioned methods require a strictly feasible starting point. The as-

sumption of the existence of a strictly feasible point, which implies the boundedness
of the solution set. Finding an initial feasible interior point is the main difficulty for
feasible IPMs. To overcome this difficulty we suggest algorithm that uses starting
points that lie in the interior of the region defined by the inequality constraints, but do
not satisfy the equality constraints. The points generated by the algorithm will remain
in the interior of the region defined by the inequality constraints but will never satisfy
exactly the equality constraints. This property is reflected in the name “Infeasible-
Interior-Point Methods (IIPM)”, which has been suggested for such methods.

Lustig [6] and Tanabe [20, 21] were the first to present IIPMs for LP. Zhang
[24] for the first time designed a primal–dual IIPM with polynomial complexity
O(n2 log 1

ε
) for LP. Kojima, Mizuno and Todd [5], mention that the O(nL) infea-

sible interior-point algorithms for linear programming and then can be generalized
for LCPs.

Potra [17] analyzed a generation to LCP of the Mizuno–Todd–Ye predictor cor-
rector method [11] for infeasible starting points with O(nL) complexity. See also
[15, 16]. Andersen et al. [1] presented a generalization of the homogeneous model
for LP to solve the monotone complementarity problem for infeasible starting points
with O(

√
nL) complexity. Recently Bai et al. [2] and Wang et al. [22] presented two

IPMs for P∗(k)-LCPs and P∗(k)-HLCPs and they proved that the complexity of their
algorithms coincide with the best known iteration bound for these kind of problems.
In very recently, Mansouri et al. [10] presented the first full-Newton step IIPM for
monotone LCP which is an extension of the work for LO by Roos [18].
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In this paper, motivated by the complexity results for LO based on the study of
Mansouri et al. [9] we extend their idea of LCP and show that the algorithm is faster
convergent for problems having a strictly complementarity solution. To conclude this
section we briefly describe how this article is organized. In Sect. 2, we study some
basic concepts for feasible IPMs for solving LCPs, such as central path, full-Newton
step, etc. In Sect. 3 we present the analysis of the feasibility step, which is the main
part of this article. The analysis presented in this section differs from the analysis in
[7, 9, 10, 23]. Some concluding remarks can be found in Sect. 4.

1.1 Notations

We use the following notations throughout the paper. Scalars and indices are denoted
by lowercase Latin letters, vectors by lowercase boldface Latin letters, matrices by
capital Latin letters, and finally sets by capital calligraphic letters. Rn+ (Rn++) is the
nonnegative (positive) orthant of Rn. Further, X is the diagonal matrix whose diago-
nal elements are the coordinates of the vector x, so X = diag(x), and I denotes the
identity matrix of appropriate dimension. The vector xs = Xs is the componentwise
product (Hadamard product) of the vectors x and s, and for α ∈ R the vector xα

denotes the vector whose ith component is xα
i . We denote the vector of ones by e.

As usual, ‖ · ‖ denotes the 2-norm for vectors and matrices. xmin (or xmax) denotes
the smallest (or largest) value of the components of x. Finally, if g(x) � 0 is a real
valued function of a real nonnegative variable, the notation g(x) = O(x) means that
g(x) � c̄x for some positive constant c̄.

2 Preliminaries

The monotone linear complementarity problem (LCP) is to find vector pair (x, s) ∈
R

2n that satisfies the following conditions:

s = Mx + q, (x, s) � 0, xT s = 0, (P )

where q ∈ R
n and M is an n × n matrix supposed positive semidefinite. We denote

the feasible set of the problem (P ) by

F := {
(x, s) ∈R

2n+ : s = Mx + q
}
,

and its solution set by

F∗ := {(
x∗, s∗) ∈ F : (x∗)T

s∗ = 0
}
.

To describe the motivation of this paper we need to recall the main ideas underlying
the algorithm in [10]. Let (x0, s0) > 0 be a solution of LCP. We say that (x, s) is an
ε-solution of LCP if the ‖Mx + q − s‖ � ε and also xT s � ε.

In the case of an infeasible method we start with choosing arbitrarily (x0, s0) > 0
such that x0s0 = μ0e for some (positive) number μ0. We denote the initial value of
the residual as r0, as

r0 = s0 − Mx0 − q. (2.1)
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For any ν with 0 < ν � 1 we consider the perturbed problem (Pν ), defined by

s − Mx − q = νr0, (x, s) � 0. (Pν)

Note that if ν = 1 then (x, s) = (x0, s0) yields a strictly feasible solution of (Pν ). We
conclude that if ν = 1 then (Pν ) satisfies the IPC.

Lemma 2.1 (Lemma 4.1 in [10]) If the original problem (P ) is feasible then the
perturbed problem (Pν ) satisfies the IPC.

We conclude that if (P ) be feasible then (Pν ) satisfies the IPC, and hence its central
path exists. This means that the system

s − Mx − q = νr0, x � 0,

xs = μe, s � 0,
(2.2)

has a unique solution, for every μ > 0. We denote this unique solution as
(x(μ, ν), s(μ, ν)). It is the μ-center of the perturbed problem (Pν ). In the sequel
the parameters μ and ν always satisfy the relation μ = νμ0. We measure proximity
to the μ-center of the perturbed problems by the quantity δ(x, s;μ) which is defined
as follows:

δ(x, s;μ) := δ(v) := 1√
2

∥∥v − v−1
∥∥ where v :=

√
xs

μ
. (2.3)

At starting of algorithm (in initial iterate) we have (x, s) = (x0, s0) and μ = μ0.
We show that if ν = 1 and μ = μ0, then (x, s) = (x0, s0) is the μ-center of the
perturbed (Pν ). Initially we have δ(x, s;μ) = 0. In the sequel we assume that at the
start of each iteration, just before the μ-update, δ(x, s;μ) is smaller than or equal to a
(small) threshold value τ > 0. So this is certainly true at the start of the first iteration.

We are now ready to describe one (main) iteration of our algorithm. Suppose we
have (x, s) and μ ∈ (0,μ0] such that satisfying the feasibility condition (2.2) for
ν = μ

μ0 and xT s � (n+δ2)μ and δ(x, s;μ) � τ . We reduce μ to μ+ = (1−θ)μ, with

θ ∈ (0,1) and find new iterates (x+, s+) that satisfy (2.2), with μ replaced by μ+ and

ν by ν+ = μ+
μ0 , and such that (x+)T s+ � (n + δ2)μ+ and δ(x+; s+;μ+) � τ . Note

that ν+ = (1 − θ)ν. To be more precise, each main iteration consists of a feasibility
step and a few centering steps. The feasibility step serves to get iterates (xf , sf )

that are strictly feasible for (Pν+), and close to their μ-center (x(μ, ν), s(μ, ν)) such
that δ(xf , sf ;μ+) � 1√

2
. Since the (xf , sf ) is strictly feasible for (Pν+), we can

perform a few centering steps starting at (xf , sf ), and obtain iterates (x+, s+) that
are feasible for (Pν+) and such that δ(x+, s+;μ+) � τ . This process is repeated until
the duality gap and the norms of the residual vectors are less than some prescribed
accuracy parameter ε.

For the feasibility step in [10] search directions Δf x and Δf s are defined by the
following system:
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MΔf x − Δf s = θνr0, (2.4)

xΔf s + sΔf x = μe − xs. (2.5)

Since matrix M is positive semidefinite, the system (2.4)–(2.5) uniquely defines
(Δf x,Δf s) for any x > 0 and s > 0. After the feasibility step the iterates given
by

xf = x + Δf x,

sf = s + Δf s.

We conclude that after the feasibility step the iterates satisfy the affine equation (2.2)
with ν = ν+. In a centering step the search directions (Δx,Δs) are the usual primal–
dual Newton directions, (uniquely) defined by

MΔx − Δs = 0,

xΔs + sΔx = μe − xs.

Denoting the iterates after a centering step as (x+, s+), we recall from [10] the fol-
lowing results.

Lemma 2.2 (Lemma 3.5 in [10]) If δ < 1 then x+, s+ are positive and

δ
(
x+, s+;μ)

� δ2
√

2(1 − δ2)
.

Corollary 2.1 (Corollary 3.6 in [10]) If δ = δ(x, s;μ)� 1√
2

then

δ
(
x+, s+;μ)

� δ2.

After the feasibility step we perform centering steps in order to get iterates
(x+, s+) that satisfy (x+)T s+ � (n + δ2)μ+ and δ(x+, s+;μ+) � τ , where τ � 0.
Assuming δ(xf , sf ;μ+) � 1√

2
, after k centering steps we will have iterates (x+, s+)

that are still feasible for (Pν+) and that satisfy

δ
(
x+, s+;μ+)

�
(

1√
2

)2k

.

Therefore, δ(x+, s+;μ+)� τ will hold if k satisfies

(
1√
2

)2k

� τ.

From this one easily deduce that δ(x+, s+;μ+) � τ will hold after at most
⌈

log2

(
log2

1

τ 2

)⌉
,

centering steps.
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3 Adaptive Infeasible Interior-Point Algorithm

In this paper, we use another definition for the feasibility step by replacing Eq. (2.5)
by the equation

xΔf s + sΔf x = μ+e − xs. (3.1)

Now let us replace (2.5) by (3.1) which implies the following system:

MΔf x − Δf s = θνr0, (3.2)

xΔf s + sΔf x = μ+e − xs. (3.3)

3.1 Analysis of the Adaptive Feasibility Step

The important and hard part of the analysis is to prove quadratic convergence prop-
erty of feasibility step. In other words we should guarantee that (xf , sf ) is strictly
feasible and moreover belong to the region of quadratic convergence of their μ+-
center (x(μ+, ν+), s(μ+, ν+)). However, we must show δ(xf , sf ;μ+) � 1√

2
and

proving this, is the crucial part in the analysis of the algorithm. The main goal of this
paper is to investigate how large θ can be so that it guarantees that after the feasibil-
ity step the iterates xf and sf are nonnegative and moreover δ(xf , sf ;μ+) � 1√

2
,

where μ+ = (1 − θ)μ. The same as proposed algorithm in [10] after the feasibil-
ity step we perform centering steps in order to get iterates (x+, s+) that satisfy
(x+)T s+ � (n + δ2)μ+ and δ(x+, s+;μ+) � τ , where τ � 0. A more formal de-
scription of the algorithm is given in Fig. 1. Note that after each iteration the residual
and the value of nμ are reduced by a factor 1 − θ . The algorithm stops if the norm of
the residual and the value of nμ are less than the accuracy parameter ε.

In sequel we present some definitions and Lemmas to show that (xf , sf ) is strictly
feasible.

Defining

v =
√

xs

μ
, d =

√
x

s
, d

f
x = d−1Δf x

√
μ+ , d

f
s = dΔf s

√
μ+ . (3.4)

Now by using (3.1) and the notations (3.4) we may write

xf sf = xs + (
xΔf s + sΔf x

) + Δf xΔf s = μ+e + Δf xΔf s

= μ+(
e + d

f
x d

f
s

)
. (3.5)

Lemma 3.1 (Lemma 5.1 in [10]) The new iterates are certainly strictly feasible if

e + d
f
x d

f
s > 0.

Corollary 3.1 (Corollary 5.2 in [10]) The iterates (xf , sf ) are certainly strictly fea-
sible if

∥∥d
f
x d

f
s

∥∥∞ < 1.
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Primal-Dual Adaptive Infeasible IPM

Input:
Accuracy parameter ε > 0;
barrier update parameter θ,0 < θ < 1;
threshold parameter τ > 0;
x0, s0 > 0 and μ0 > 0 such that x0s0 = μ0e.

begin:
x := x0, s := s0 > 0,μ := μ0;
while max(nμ,‖r0‖)� ε do
begin

feasibility step:

(x, s) := (x, s) + (Δf x,Δf s);
μ-update:
Determine the largest value θ such that

(√
2δ + θq(δ)

)2 + 2
(
3nθq(δ)

(
q(δ)2 + 2

) + √
2δ + θq(δ)

)
3nθq(δ)

(
q(δ)2 + 2

)

� 1.236(1 − θ),

where q(δ) is defined as in (3.16)
μ := (1 − θ)μ;
centering steps:

while δ(x, s;μ)� τ do
begin

(x, s) := (x, s) + (Δx,Δs);
end

end
end

Fig. 1 Adaptive infeasible full-Newton-step algorithm

By using the definition of norms one has the following inequalities:

∥∥d
f
x d

f
s

∥∥2 �
(∥∥d

f
x

∥∥∥∥d
f
s

∥∥)2 � 1

4

(∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2)2
, (3.6)

∥∥d
f
x d

f
s

∥∥∞ �
∥∥d

f
x

∥∥∥∥d
f
s

∥∥� 1

2

(∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2)
. (3.7)

To simply the presentation we will denote δ(x, s;μ) below simply as δ. Recall that
we already assumed that in feasibility step one has δ � τ .

Recall from definition (2.3) that

δ
(
xf , sf ;μ+) = 1√

2

∥∥vf − (
vf

)−1∥∥,
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where vf =
√

xf sf

μ+ . Furthermore, from (3.5) we have

(
vf

)2 = xf sf

μ+ = μ+(e + d
f
x d

f
s )

μ+ = e + d
f
x d

f
s .

Therefore

vf =
√

e + d
f
x d

f
s ,

which implies that

2δ
(
vf

)2 = ∥∥(
vf

)−1 − vf
∥∥2 = ∥∥(

vf
)−1(

e − (
vf

)2)∥∥2

=
∥∥∥∥

d
f
x d

f
s√

e + d
f
x d

f
s

∥∥∥∥

2

� ‖df
x d

f
s ‖2

1 − ‖df
x d

f
s ‖∞

.

This implies that we have δ(vf ) � 1√
2

if and only if

2δ
(
vf

)2 � ‖df
x d

f
s ‖2

1 − ‖df
x d

f
s ‖∞

� 1. (3.8)

Substituting (3.6) and (3.7) in (3.8) we obtain the condition

1
4 (‖df

x ‖2 + ‖df
s ‖2)2

1 − 1
2 (‖df

x ‖2 + ‖df
s ‖2)

� 1.

By some elementary calculations, we find that (3.8) holds if
∥∥d

f
x

∥∥2 + ∥∥d
f
s

∥∥2 �
√

5 − 1 ≈ 1.236. (3.9)

By using (3.7), (3.9), and Corollary 3.1 we conclude that the iterates after the feasi-
bility step are feasible. In other words, the inequality (3.9) implies that after the fea-
sibility step (xf , sf ) is strictly feasible and lies in the quadratic convergence neigh-
borhood with respect to the μ+-center of (Pv+).

In the following we proceed by calculating an upper bound for ‖df
x ‖2 + ‖df

s ‖2.

3.2 An Upper Bound for ‖df
x ‖2 + ‖df

s ‖2

One may easily check that the system (3.2)–(3.3), which defines the search direction
Δf x and Δf s, can be expressed in terms of the scaled search direction d

f
x and d

f
s as

follows:

MS−1Xd
f
x − d

f
s = θ√

1 − θ
νvs−1r0, (3.10)

d
f
x + d

f
s = √

1 − θv−1 − v√
1 − θ

, (3.11)

where X = diag(x), S = diag(s).
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Lemma 3.2 (Lemma 5.5 in [10]) Let x > 0 and s > 0 be two n-dimensional vectors,
and let M ∈ R

n×n be a positive semidefinite matrix. Then the solution (u, z) of the
linear system

MS−1Xu − z = ã

u + z = b̃

satisfies the following relations:

Du = (I + DMD)−1(a + b), Dz = b − Du, (3.12)

‖Du‖� ‖a + b‖, (3.13)

‖Du‖2 + ‖Dz‖2 � ‖b‖2 + 2‖a + b‖‖a‖, (3.14)

where D = (S−1X)
1
2 , b = Db̃ and a = Dã.

Lemma 3.3 (Lemma 5.6 in [10]) Let δ = δ(ν) be given by (2.3). Then

1

q(δ)
� vi � q(δ), (3.15)

where

q(δ) =
√

2

2
δ +

√
1

2
δ2 + 1. (3.16)

We are now ready to find an upper bound for ‖df
x ‖2 + ‖df

s ‖2. To this end
we first apply Lemma 3.2 with u = d

f
x ,z = d

f
s , a = θ√

1−θ
νDvs−1r0 and b =

D(
√

1 − θv−1 − v√
1−θ

), which implies that

∥∥Dd
f
x

∥∥2 + ∥∥Dd
f
s

∥∥2

�
∥∥∥∥D

(√
1 − θv−1 − v√

1 − θ

)∥∥∥∥

2

+ 2

∥∥∥∥
θ√

1 − θ
νDvs−1r0 + D

(√
1 − θv−1 − v√

1 − θ

)∥∥∥∥

∥∥∥∥
θ√

1 − θ
νDvs−1r0

∥∥∥∥.

(3.17)

By elementary properties of norms we have

∥∥Dd
f
x

∥∥� ‖D‖∥∥d
f
x

∥∥,
∥∥Dd

f
s

∥∥� ‖D‖∥∥d
f
s

∥∥,

and
∥∥∥∥

θ√
1 − θ

νDvs−1r0
∥∥∥∥ � ‖D‖

∥∥∥∥
θ√

1 − θ
νvs−1r0

∥∥∥∥,
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∥∥
∥∥D

(√
1 − θv−1 − v√

1 − θ

)∥∥
∥∥ � ‖D‖

∥∥
∥∥
√

1 − θv−1 − v√
1 − θ

∥∥
∥∥.

Substituting these bounds in (3.17) we obtain the following weaker condition:

∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2

�
∥∥∥∥
√

1 − θv−1 − v√
1 − θ

∥∥∥∥

2

+ 2

(∥∥
∥∥

θ√
1 − θ

νvs−1r0
∥∥
∥∥ +

∥∥
∥∥
√

1 − θv−1 − v√
1 − θ

∥∥
∥∥

)∥∥
∥∥

θ√
1 − θ

νvs−1r0
∥∥
∥∥.

(3.18)

Since the term
√

1 − θv−1 − v√
1−θ

equals with 1√
1−θ

(v−1 − v − θv−1) and by using
(2.3), Lemma 3.3 and by elementary properties of norms we have

∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2

� 1

1 − θ

((√
2δ + θq(δ)

)2 + 2
(∥∥θνvs−1r0

∥∥ + √
2δ + θq(δ)

)∥∥θνvs−1r0
∥∥)

.

(3.19)

In order to obtain a bound for ‖θνvs−1r0‖ we write, using v = μ

μ0 and v =
√

xs
μ

,

∥∥θνvs−1r0
∥∥ = θν

∥∥vs−1r0
∥∥ = θ

√
μ

μ0

∥∥∥
∥

√
x

s
r0

∥∥∥
∥� θ

√
μ

μ0

∥∥∥
∥

√
x

s
r0

∥∥∥
∥

1

= θ

μ0

∥∥∥∥

√
μ

xs
xr0

∥∥∥∥
1
� θ

μ0vmin

∥∥xr0
∥∥

1

� θ

μ0vmin

∥∥(
S0)−1

r0
∥∥∞

∥∥s0
∥∥∞‖x‖1. (3.20)

To proceed we have to specify our initial iterates (x0, s0). We assume that ρp and ρd

are such that

∥∥x∗∥∥∞ � ρp, max
{∥∥s∗∥∥∞, ρp‖Me‖∞,‖q‖∞

}
� ρd, (3.21)

for some (x∗, s∗) ∈ F∗, and as usual we start the algorithm with

x0 = ρpe, s0 = ρde, μ0 = ρpρd. (3.22)

For such starting points we have clearly

∥∥(
S0)−1

r0
∥∥∞ � 1 + ρp

ρd

‖Me‖∞ + 1

ρd

‖q‖∞ � 3. (3.23)
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By using (3.15) and substituting (3.22) and (3.23) into (3.20) we obtain

∥∥θνvs−1r0
∥∥� 3θq(δ)

ρp

‖x‖1. (3.24)

Using (3.24) in (3.19) we get

∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2

� 1

1 − θ

((√
2δ + θq(δ)

)2 + 2

(
3θq(δ)

ρp

‖x‖1 + √
2δ + θq(δ)

)
3θq(δ)

ρp

‖x‖1

)
.

(3.25)

Recall that (x, s) is feasible for (Pν ) and δ(x, s;μ) � τ ; i.e., this iterate is close to
the μ-center of (Pν ). Based on this information, we present the following lemmas to
estimate an upper bound for ‖x‖1.

Lemma 3.4 (Lemma 5.7 in [10]) Let (x, s) be feasible for the perturbed problem
(Pν ) and (x0, s0) as defined in (3.22). Then for any (x∗, s∗) ∈ F ∗, we have

ν
((

s0)T
x + (

x0)T
s
)
� ν2(x0)T

s0 + xT s + ν(1 − ν)
((

s0)T
x∗ + (

x0)T
s∗)

− (1 − ν)
(
sT x∗ + xT s∗).

Lemma 3.5 (Lemma 5.8 in [10]) Let (x, s) be feasible for the perturbed problem
(Pν ) and δ(v) is defined in (2.3) and (x0, s0) as defined in (3.22). Then we have

‖x‖1 �
(
2 + q(δ)2)nρp, (3.26)

‖s‖1 �
(
2 + q(δ)2)nρd. (3.27)

By substituting (3.26) into (3.25) we obtain

∥∥d
f
x

∥∥2 + ∥∥d
f
s

∥∥2

� 1

1 − θ

((√
2δ + θq(δ)

)2

+ 2
(
3nθq(δ)

(
q(δ)2 + 2

) + √
2δ + θq(δ)

)
3nθq(δ)

(
q(δ)2 + 2

))
. (3.28)

3.3 Value for θ

We have found that δ(vf ) � 1√
2

holds if the inequality (3.9) is satisfied. Then by
(3.28), inequality (3.9) holds if

(√
2δ + θq(δ)

)2 + 2
(
3nθq(δ)

(
q(δ)2 + 2

) + √
2δ + θq(δ)

)
3nθq(δ)

(
q(δ)2 + 2

)

� 1.236(1 − θ). (3.29)



534 H. Mansouri, M. Pirhaji

With a value of θ that satisfies (3.29), we are sure that when starting with δ(x, s;μ) =
δ � τ , after the feasibility step with parameter value μ+ = (1 − θ)μ we have
δ(xf , sf ;μ+) � 1√

2
. Also we set τ = 1

8 .
If δ = 0, the above expression in (3.29) reduces to

(
162n2 + 18n + 1

)
θ2 + 1.236θ − 1.236 � 0.

One may easily verify that the above inequality is satisfied to θ = 1
13n

.
If δ = 1

8 we have

(
217.56n2 + 22.74n + 1.19

)
θ2 + (3.76n + 1.62)θ − 1.206 � 0.

One may easily verify that the above inequality is satisfied to θ = 1
17n

.
Hence, when using adaptive updates the value of θ varies from iteration to it-

eration but it always lies between the above two values. It is clear that under
the assumption that there exists an optimal solution with (x∗, s∗) ∈ F∗ such that
‖x∗‖∞ � ρp,‖x∗‖∞ � ρd and θ ∈ ( 1

17n
, 1

13n
), the algorithm convergent to the ε-

solution. One might ask what happens if the assumption is not satisfied. In that case,
during the course of the algorithm it may happen that after some main steps the prox-
imity measure δ (after the feasibility step) exceeds 1√

2
, because otherwise there is no

reason why the algorithm would not generate an ε-solution. So if this happens it tell
us that either (P ) does not have an optimal solution in F∗ or the values of ρp and ρd

have been too small. In the latter case one might run the algorithm once more with
some larger ρp and ρd [7, 10, 18].

4 Numerical Results

In this section, we present numerical results under the MATLAB environment. We
consider the following examples in [12, 19].

Example 4.1

M =
⎡

⎣
1 0 0
2 1 0
2 2 1

⎤

⎦ , q =
⎡

⎣
−1
−1
−1

⎤

⎦ .

Example 4.2

M =

⎡

⎢⎢
⎣

2 1 1 1
1 2 0 1
1 0 1 2

−1 −1 −2 0

⎤

⎥⎥
⎦ , q =

⎡

⎢⎢
⎣

−8
−6
−4
3

⎤

⎥⎥
⎦ .



An Adaptive IIPM for LCPs 535

Example 4.3

M =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

0.0368 0.0188 0.0920 0.0211 0.0332 0.0162
0.0188 0.3930 0.0634 0.0176 0.3000 0.0248
0.0920 0.0634 0.4293 0.0617 0.1355 0.1124
0.0211 0.0176 0.0617 0.0203 0.0239 0.0107
0.0332 0.0300 0.1355 0.0239 0.0513 0.0480
0.0162 0.0248 0.1124 0.0107 0.0480 0.0824

⎤

⎥⎥⎥⎥
⎥⎥
⎦

,

q =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−0.1630
0.2820

−0.4500
0.3560

−0.2420
0.2489

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

Table 1 The number of
iterations for Examples 4.1, 4.2
and 4.3

Iteration Classical algorithm Adaptive algorithm

outer inner outer inner

Example 4.1 958 957 487 486

Example 4.2 940 939 638 637

Example 4.3 1851 1850 942 941

We solve the above examples using the classical interior-point algorithm presented
in [10] and the algorithm in Fig. 1. We have to note that the starting point for these
problems has been chosen based on (3.29), and the accuracy parameter ε is set to
10−3. In the classical algorithm we suppose the value of barrier parameter is constant.
However, in the adaptive algorithm presented in Fig. 1 not only the value of barrier
parameter is not constant but also in each iteration of the algorithm we use the largest
possible barrier parameter value θ which lies between the two values 1

17n
and 1

13n
, this

makes the algorithm faster convergent for problems having a strictly complementarity
solution. Table 1 shows the number of iterations to obtain ε-solutions of the three
above examples.

5 Concluding Remarks

In this paper we extended adaptive infeasible proposed algorithm in [9] for LO to
LCP. To this end we improved analysis of suggested algorithm in [10]. In each itera-
tion of the algorithm we use the largest possible barrier parameter value θ instead a
constant value. The feasibility step differs slightly in this algorithm, where different
right-hand sides were used in Eq. (3.3). The proposed algorithm has better results and
converges faster.
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