
JORC (2013) 1:405–413
DOI 10.1007/s40305-013-0025-8

Computational Complexity of a Solution for Directed
Graph Cooperative Games

Ayumi Igarashi · Yoshitsugu Yamamoto

Received: 24 January 2013 / Revised: 23 August 2013 / Accepted: 24 August 2013 /
Published online: 13 September 2013
© Operations Research Society of China, Periodicals Agency of Shanghai University, and
Springer-Verlag Berlin Heidelberg 2013

Abstract Khmelnitskaya et al. have recently proposed the average covering tree
value as a new solution concept for cooperative transferable utility games with di-
rected graph structure. The average covering tree value is defined as the average of
marginal contribution vectors corresponding to the specific set of rooted trees, and co-
incides with the Shapley value when the game has complete communication structure.
In this paper, we discuss the computational complexity of the average covering tree
value. We show that computation of the average covering tree value is #P -complete
even if the characteristic function of the game is {0,1}-valued. We prove this by a
reduction from counting the number of all linear extensions of a partial order, which
has been shown by Brightwell et al. to be a #P -complete counting problem. The im-
plication of this result is that an efficient algorithm to calculate the average covering
tree value is unlikely to exist.

Keywords #P -complete · Digraph game · Average covering tree value · Coalition ·
Communication structure · Linear extension

Mathematics Subject Classification (2010) 05C57 · 91A43 · 03D15 · 68Q17

This work was partially supported by the Okawa Foundation for Information and
Telecommunication.

A. Igarashi (B)
Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba,
Ibaraki 305-8573, Japan
e-mail: igarashi80@sk.tsukuba.ac.jp

Y. Yamamoto
Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba,
Ibaraki 305-8573, Japan
e-mail: yamamoto@sk.tsukuba.ac.jp

mailto:igarashi80@sk.tsukuba.ac.jp
mailto:yamamoto@sk.tsukuba.ac.jp

406 A. Igarashi, Y. Yamamoto

1 Introduction

The central question of cooperative game theory is how to distribute the total benefit
gained from cooperative behavior of players, and many solution concepts have been
proposed to date. Computational complexity is one of the most important criteria to
judge whether a given solution concept is appropriate. A solution concept is not ap-
plicable in real settings if it requires computation time proportional to an exponential
of the problem size; see, for example, [3].

This paper studies cooperative games with directed graph structure from the view-
point of computational complexity. Khmelnitskaya et al. [5] introduced a cooperative
game on a directed graph that furnishes the game with a communication structure.
They proposed a single-valued solution concept, and named it the average covering
tree value. To construct the average covering tree value, they introduced a so-called
covering tree of a directed graph. The average covering tree value is defined as the av-
erage of marginal contribution vectors, each of which corresponds to a covering tree.
The solution coincides with the Shapley value [7] when the game has a complete
communication structure. We can apply the average covering tree value to games on
undirected graphs by replacing every undirected link with two oppositely-directed
links. The average covering tree value for this class of game is equal to the GC solu-
tion proposed by Koshevoy and Talman [6].

Concerning the computational complexity issue, we show in this paper that the
problem of calculating the average covering tree value is #P -complete. The proof
uses a reduction from counting the number of all linear extensions of an arbitrary
partial order, which has been shown by Brightwell et al. to be a #P -complete count-
ing problem. This result implies that an efficient algorithm to calculate the average
covering tree value is unlikely to exist.

2 Preliminaries

2.1 TU-Games with Directed Graph Structure

We consider a cooperative transferable utility game with restricted communication
structure, called digraph games. A digraph game is represented by a triple (N,v,Γ),
where N is a finite set of n players, v : 2N → R is a characteristic function, and Γ is
a subset of the set of all ordered pair of nodes, which represents directed communica-
tion links between players. A subset S ∈ 2N is called a coalition and v(S) stands for
the worth of a coalition S. A payoff vector x ∈ R

n is an n-dimensional vector giving
payoff xi to player i ∈ N .

2.2 Definitions for Digraph

The pair G = (N,Γ) is called a digraph where N is a finite set of nodes and
Γ is a collection of directed links between nodes. In this paper, we only con-
sider digraphs without self-loops. For a digraph G = (N,Γ), a sequence of differ-
ent nodes (i1, i2, · · · , ik), k � 2, is a path in Γ if {(ih, ih+1), (ih+1, ih)} ∩ Γ �= ∅

Computational Complexity of a Solution for Directed Graph 407

for h = 1,2, · · · , k − 1. A path is said to be a directed path if (ih, ih+1) ∈ Γ for
h = 1,2, · · · , k − 1. A path is said to be a cycle in Γ if {(ik, i1), (i1, ik)} ∩ Γ �= ∅,
and a directed path is said to be a directed cycle in Γ if (ik, i1) ∈ Γ . A digraph
G = (N,Γ) is said to be acyclic if it has no directed cycles, and to be transitive if for
all i, j, k ∈ N , (i, j) ∈ Γ and (j, k) ∈ Γ imply (i, k) ∈ Γ . For a digraph G = (N,Γ),
the subset of Γ induced by S ∈ 2N is defined as

Γ |S := {
(i, j) ∈ Γ | i, j ∈ S

}
.

A subset S ∈ 2N is connected if for any two distinct nodes i, j ∈ S there is a path in
Γ |S between i and j . For S ∈ 2N , a subset K of S is called a connected component
of S if K is maximally connected, i.e., K is connected but the set K ∪ {j} is not
connected for any j ∈ S \ K . In this paper, we assume that N is always connected in
the digraph (N,Γ).

For each node i ∈ N of a digraph G = (N,Γ) we define the set of children
ch(Γ, i) and the set of successors scc(Γ, i) as

ch(Γ, i) = {
j ∈ N | (i, j) ∈ Γ

}

and

scc(Γ, i) = {j ∈ N | there exists a directed path from i to j in Γ }.
We also write

scc(Γ, i) = {i} ∪ scc(Γ, i).

A node i ∈ N is said to be a predecessor of j ∈ N in Γ if j ∈ scc(Γ, i). We denote
the set of predecessors of j by prd(Γ, j), i.e.,

prd(Γ, j) = {
i ∈ N | j ∈ scc(Γ, i)

}
.

An acyclic connected digraph (N,T) is said to be a tree if it has a unique node with-
out predecessors, the root, and for every other node in N there is a unique directed
path in T from the root to that node. A node i ∈ S is an undominated node of S

if prd(Γ |S, i) ⊆ scc(Γ |S, i), and the set of undominated nodes of S is denoted by
U(Γ,S), i.e.,

U(Γ,S) = {
i ∈ S | prd(Γ |S, i) ⊆ scc(Γ |S, i)

}
.

A node i ∈ S is a nondominant node of S if scc(Γ |S, i) ⊆ prd(Γ |S, i), and the set of
non dominant nodes of S is denoted by D(Γ,S), i.e.,

D(Γ,S) = {
i ∈ S | scc(Γ |S, i) ⊆ prd(Γ |S, i)

}
.

A node i ∈ N is called a minimum node of (N,Γ) if i ∈ scc(Γ, j) for every j ∈
N \ {i}. If an acyclic digraph has a minimum node, it is uniquely determined.

408 A. Igarashi, Y. Yamamoto

2.3 Definitions for Poset

A partially ordered set, or poset for short, is a pair (N,Γ) where N is a finite set and
Γ is a partial order on N , that is, an irreflexive, antisymmetric, and transitive binary
relation. Two elements i and j are comparable in Γ if either (i, j) ∈ Γ or (j, i) ∈ Γ .
A linear order on N is a partial order Γ in which every pair of elements of N is
comparable. A linear extension of a partial order Γ on N is a linear order Γ on N

such that (i, j) ∈ Γ whenever (i, j) ∈ Γ . Equivalently, a linear extension of a partial
order Γ on N is a bijection π from N to {1,2, · · · , |N |} such that for all i, j ∈ N ,
(i, j) ∈ Γ implies π(i) < π(j).

2.4 Digraphs and Posets

Every poset (N,Γ) corresponds to a digraph by considering N as the set of nodes
and Γ as the set of directed links. This digraph is acyclic and transitive. Conversely,
for every acyclic transitive digraph G = (N,Γ), Γ is a partial order on N .

Lemma 2.1 (Bondy [1]) A digraph G is a poset if and only if G is acyclic and
transitive.

3 The Average Covering Tree Value

3.1 Covering Trees

In this section, we provide the definition of the average covering tree value intro-
duced by Khmelnitskaya et al. [5]. The average covering tree value is the average of
marginal contribution vectors with respect to specific trees, called covering trees of
G = (N,Γ). They propose to construct a covering tree of G by Algorithm 3.1 given
below.

After initialization in Step 1, a node i ∈ U(Γ,N) is taken as the root of a covering
tree in Step 2. In the next iteration step after node i is deleted from N , the algo-
rithm selects an undominated node of each connected component, and expands the
tree T towards the selected undominated nodes from node i. Setting Q(i) be empty,
the algorithm proceeds to Step 4. As long as there remains a nonempty Q(j), this
procedure is repeated, and ends up having explored all the nodes.

It is clear that the output T is a rooted tree that spans N . More importantly, since
this algorithm grows the tree by adding undominated nodes of remaining connected

Algorithm 3.1 Construction of a covering tree T of G

1: Set T = ∅ and Q(j) = ∅ for all j ∈ N .
2: Choose any i ∈ U(Γ,N) and set Q(i) = N \ {i}.
3: Let {K1,K2, · · · ,Km} be the set of connected components of Q(i). For every

k = 1,2, · · · ,m, choose jk ∈ U(Γ,Kk) and set Q(jk) = Kk \ {jk}. Set T = T ∪
{(i, j1), (i, j2), · · · , (i, jm)} and Q(i) = ∅.

4: If Q(j) = ∅ for all j ∈ N , then stop. Otherwise, choose i ∈ N such that Q(i) �= ∅
and return to Step 3.

Computational Complexity of a Solution for Directed Graph 409

Fig. 1 G1: Acyclic transitive
digraph with a minimum node
and its covering trees

Fig. 2 G2: Acyclic transitive
digraph without a minimum
node and its covering trees

Fig. 3 G3: Not acyclic digraph with a minimum node and its covering trees

components, the covering tree T preserves the subordination among nodes. This
property is stated as the following lemma in [5].

Lemma 3.1 (Khmelnitskaya et al. [5]) Let T be a covering tree of a digraph (N,Γ).
If (i, j) ∈ Γ and i /∈ scc(Γ, j), then scc(Γ, j) ⊆ scc(T , i).

Example 3.1 Three digraphs and their covering trees are given in Figs. 1, 2 and 3.
The digraph G1 is acyclic and transitive, and has a minimum node 3. Observe that
every covering tree forms a directed path. G2 is acyclic and transitive, but has no
minimum node. The last digraph G3 has a minimum node 4 but is neither acyclic nor
transitive.

As seen in the above examples, covering trees may have different structures ac-
cording to digraphs considered and the root chosen. We will discuss in more detail
in the next section. We denote by T (Γ) the set of all covering trees of a digraph
G = (N,Γ) constructed by Algorithm 3.1.

Definition 3.1 (Marginal Contribution Vector) For a digraph game (N,v,Γ), the
marginal contribution vector mT corresponding to a covering tree T ∈ T (Γ) is the
vector of payoffs given by

mT
i = v

(
scc(T , i)

) −
∑

j∈ch(T ,i)

v
(
scc(T , j)

)
(3.1)

for all i ∈ N .

410 A. Igarashi, Y. Yamamoto

Definition 3.2 (Average Covering Tree Value) For a digraph game (N,v,Γ), the
average covering tree value is the average of the marginal contribution vectors mT

with respect to all covering trees of the digraph (N,Γ), i.e.,

ACT(N,v,Γ) = 1

|T (Γ)|
∑

T ∈T (Γ)

mT . (3.2)

3.2 Properties of Covering Trees

We give some properties of covering trees provided that a digraph is acyclic.

Lemma 3.2 Suppose G = (N,Γ) is an acyclic digraph. Then, i ∈ U(Γ,S) if and
only if there is no node j ∈ S such that (j, i) ∈ Γ |S.

Proof (If): It holds from the definition of undominated node.
(Only-if): Let i ∈ U(Γ,S). Assume that there exists a node j ∈ S such that

(j, i) ∈ Γ |S. Then j ∈ prd(Γ |S, i), which implies j ∈ scc(Γ |S, i) by the definition
of undominated node. Thus a directed path from i to j in Γ |S and the directed link
(j, i) form a directed cycle in G, contradicting the fact that G is acyclic. �

Lemma 3.3 Suppose G = (N,Γ) is an acyclic digraph. Then, node i ∈ D(Γ,S) if
and only if there is no node j ∈ S such that (i, j) ∈ Γ |S.

Proof (If): It holds from the definition of nondominant node.
(Only-if): Let i ∈ D(Γ,S) and assume that there exists a node j ∈ S such that

(i, j) ∈ Γ |S. Then j ∈ scc(Γ |S, i), hence we see j ∈ prd(Γ |S, i) since i ∈ D(Γ,S).
Thus a directed path from j to i in Γ |S and the directed link (i, j) form a directed
cycle in G, contradicting the fact that G is acyclic. �

Lemma 3.4 Suppose G = (N,Γ) is an acyclic and transitive digraph with a mini-
mum node. Then the covering tree provided by Algorithm 3.1 is a directed path, which
yields a linear extension of Γ .

Proof First, note that G is a poset by Lemma 2.1. Let i∗ be a minimum node of G.
Node i∗ will not be selected as jk at Step 3 of Algorithm 3.1 unless all other nodes
have been chosen. Thus Q(i) is kept connected via i∗, and Algorithm 3.1 grows the
tree by adding a single node at every iteration. Therefore, the final output T forms a
directed path. Denote T as {(ik, ik+1) | k = 1,2, · · · , n − 1}, where in = i∗. To show
that the sequence (i1, i2, · · · , in) is a linear extension of Γ , we assume (ik, il) ∈ Γ for
some k and l such that k > l. Let S = N \ {i1, · · · , il−1} = {il , · · · , in}. Then ik ∈ S

and by construction il ∈ U(Γ,S). This contradicts Lemma 3.2. �

Lemma 3.5 Suppose G = (N,Γ) is an acyclic and transitive digraph with a mini-
mum node. Then, by making all possible choices of undominated nodes in Step 2 and
Step 3, Algorithm 3.1 yields all linear extensions of Γ .

Computational Complexity of a Solution for Directed Graph 411

Proof We have seen in Lemma 3.4 that Algorithm 3.1 yields a linear extension of Γ .
We will show that any linear extension of Γ can be produced by Algorithm 3.1.
Let (i1, i2, · · · , in) be any linear extension of Γ . Then (ik, i1) /∈ Γ for any k > 1,
meaning i1 ∈ U(Γ,N). Hence Algorithm 3.1 can choose i1 at Step 2. We suppose
that Algorithm 3.1 has grown the tree T in the order of i1, i2, · · · , ih−1, and show
that ih can be one of the candidate nodes to be chosen at the next iteration. After
ih−1 is selected as jk , Q(ih−1) is set to N \ {i1, i2, · · · , ih−1} = {ih, ih+1, · · · , in} and
Q(j) = ∅ for all other node j . Hence Algorithm 3.1 chooses Q(ih−1) as Q(i) at
Step 4 and returns to Step 3. Since Q(ih−1) is connected through a minimum node
of G, Q(ih−1) itself forms a connected component of itself. Since (i1, i2, · · · , in) is a
linear extension of Γ , (j, ih) /∈ Γ for any node j ∈ {ih, ih+1, · · · , in}. By Lemma 3.2,
ih is an undominated node of {ih, ih+1, · · · , in}. Thus, Algorithm 3.1 can choose ih
and set T = T ∪ {(ih−1, ih)} at the next iteration. �

4 #P-Completeness of the Average Covering Tree Value

Given a partial order on the set of players, Faigle and Kern [4] generalized the Shapley
value to games where a coalition is formed if and only if it is an ideal of the partial or-
der. The generalized Shapley value is defined as the average of marginal contribution
vectors over the set of all linear extensions of the given partial order. We have seen in
Lemma 3.5 that the average covering tree value coincides with the generalized Shap-
ley value when a digraph corresponds to a poset and contains a minimum node. Faigle
and Kern considered games with {0,1}-valued characteristic functions, and showed
in Proposition 3 of [4] that computing the generalized Shapley value is #P -complete.
Their proof is based on a polynomial-time reduction from counting the number of
linear extensions of a given partial order. We will prove the #P -completeness of the
average covering tree value in a similar way to their proof.

We start with giving another representation of the average covering tree value. For
a poset (N,Γ), let L(Γ) denote the set of all linear extensions of Γ . We denote the
cardinality of L(Γ) by �(Γ) with the convention that �(∅) = 1.

Lemma 4.1 Let G = (N,Γ) be an acyclic and transitive digraph with a minimum
node, and (N,v,Γ) be a digraph game on G. Then the average covering tree value
of player i ∈ N is rewritten as

ACT i (N, v,Γ)

= 1

�(Γ)

∑

S⊆N;
i∈U(Γ,S),

i∈D(Γ,(N\S)∪{i})

�
(
Γ |(S \ {i})) · �(Γ |(N \ S)

) · (v(S) − v
(
S \ {i})).

(4.1)

Proof Take an arbitrary player i and fix it. Since G has a minimum node, Algo-
rithm 3.1 produces all linear extensions of Γ . Hence, the average covering tree value

412 A. Igarashi, Y. Yamamoto

of player i is given by

ACT i (N, v,Γ)

= 1

�(Γ)

∑

π∈L(Γ)

(
v
({

j ∈ N |π(i) � π(j)
}) − v

({
j ∈ N |π(i) � π(j)

} \ {i})).

For each S ⊆ N such that i ∈ U(Γ,S) and i ∈ D(Γ, (N \S)∪{i}), there is the number

�
(
Γ

∣∣(S \ {i})) · �(Γ |(N \ S)
)

of linear extensions π ∈ L(Γ) such that {j ∈ N | π(i) � π(j)} = S. Substituting this
for (3.2) yields (4.1). �

Let (N,Γ) be an arbitrary poset. Adding a new element i∗ /∈ N we extend it as

N∗ = N ∪ {
i∗

}
and Γ ∗ = Γ ∪ {(

j, i∗
) ∣∣ j ∈ N

}
,

and make a digraph G∗ = (N∗,Γ ∗). Then G∗ is acyclic and transitive, and has a
minimum node. Let (i1, i2, · · · , in+1) be an arbitrary linear extension of Γ ∗, where
in+1 = i∗. Then let

N∗
k = {ik, ik+1, · · · , in+1},

Γ ∗
k = Γ ∗|N∗

k ,

δ∗
k (S) =

{
1 if S = N∗

k ,

0 otherwise

for k = 1,2, · · · , n + 1. Note that N∗
k is connected, (N∗

k ,Γ ∗
k) is a poset with a

minimum node, and the leading node ik is an undominated node of N∗
k , i.e., ik ∈

U(Γ ∗
k ,N∗

k).

Proposition 4.1 (#P -Completeness of the Average Covering Tree Value) Assume
that for k = 1,2, · · · , n there exists a polynomial-time algorithm to compute the av-
erage covering tree value for digraph games (N∗

k , δ∗
k ,Γ ∗

k) constructed from a given
poset (N,Γ). Then there exists a polynomial-time algorithm to compute the number
�(Γ) of linear extensions of Γ .

Proof Since each N∗
k contains a minimum node in+1, the formula (4.1) yields

ACT ik

(
N∗

k , δ∗
k ,Γ ∗

k

)

= 1

�(Γ ∗
k)

∑

S⊆N∗
k ;

ik∈U(Γ ∗
k ,S),

ik∈D(Γ ∗
k ,(N∗

k \S)∪{ik})

�
(
Γ ∗∣∣(S \ {ik}

)) · �(Γ ∗∣∣(N∗
k \ S

))

· (δ∗
k (S) − δ∗

k

(
S \ {ik}

))

= 1

�(Γ ∗
k)

�
(
Γ ∗∣∣(N∗

k \ {ik}
)) · �(∅) = �(Γ ∗

k+1)

�(Γ ∗
k)

(4.2)

Computational Complexity of a Solution for Directed Graph 413

for k = 1,2, · · · , n + 1. It follows that

ACTi1ACTi2 · · ·ACTin = �
(
Γ ∗)−1

.

Since i∗ is a minimum node of (N∗,Γ ∗), we have

�
(
Γ ∗) = �

(
Γ ∗∣∣N

) = �(Γ).

Consequently, we obtain

ACTi1ACTi2 · · ·ACTin = �(Γ)−1.

This proves the proposition. �

Proposition 4.1 states that we are able to compute �(Γ) in polynomial-time if
there exists a polynomial-time algorithm to compute ACTik (N

∗
k , δ∗

k ,Γ |N∗
k
) for k =

1,2, · · · , n. Brightwell and Winkler [2] proved that the problem of counting the num-
ber of linear extensions of an arbitrary partial order is #P -complete. Therefore, com-
puting the average covering tree value for this class of games is also #P -complete,
implying that an efficient algorithm is unlikely to exist.

Note that our main result is not a direct consequence of Proposition 3 in [4]. This
is because the average covering tree value coincides with the generalized Shapley
value only when the digraph has a minimum node. Adding a minimum node i∗ to a
given poset plays a crucial role in obtaining (4.2) in the proof of Proposition 4.1.

5 Conclusion

In this paper, we showed that computing the average covering tree value is
#P -complete even if the characteristic function of the game is {0,1}-valued. Charac-
terization of games whose average covering tree value can be calculated efficiently
might be an interesting future research theme. It seems reasonable to conjecture that
the average covering tree value can be computationally more tractable when the di-
graph has tree-like structure. Development of an efficient algorithm is also desirable.

Acknowledgements We wish to thank the two anonymous reviewers for their constructive suggestions
and comments. The comments have helped us significantly improve the paper.

References

[1] Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, Berlin (2008)
[2] Brightwell, G., Winkler, P.: Counting linear extensions is #P -complete. Order 8(3), 175–181 (1991)
[3] Deng, X., Papadimitriou, Ch.H.: On the complexity of cooperative solution concepts. Math. Oper.

Res. 19, 257–266 (1994)
[4] Faigle, U., Kern, W.: The Shapley value for cooperative games under precedence constraints. Int. J.

Game Theory 21, 249–266 (1992)
[5] Khmelnitskaya, A.B., Selcuk, Ö., Talman, A.J.J.: The average covering tree value for directed graph

games. CentER Discussion Paper 2012-037, CentER, Tilburg University, pp. 203–212 (2011)
[6] Koshevoy, G.A., Talman, A.J.J.: Solution concepts for games with general coalitional structure. Cen-

tER Discussion Paper 2011-119, CentER, Tilburg University (2011)
[7] Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the

Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)

	Computational Complexity of a Solution for Directed Graph Cooperative Games
	Abstract
	Introduction
	Preliminaries
	TU-Games with Directed Graph Structure
	Deﬁnitions for Digraph
	Deﬁnitions for Poset
	Digraphs and Posets

	The Average Covering Tree Value
	Covering Trees
	Properties of Covering Trees

	#P-Completeness of the Average Covering Tree Value
	Conclusion
	Acknowledgements
	References

