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Abstract This paper gives new bounds for restricted isometry constant (RIC) in com-
pressed sensing. Let Φ be an m×n real matrix and k be a positive integer with k � n.
The main results of this paper show that if the restricted isometry constant of Φ sat-
isfies δ8ak < 1 and

δk+ak <
3

2
− 1 + √

(4a + 3)2 − 8

8a

for a > 3
8 , then k-sparse solution can be recovered exactly via l1 minimization in

the noiseless case. In particular, when a = 1,1.5,2 and 3, we have δ2k < 0.5746 and
δ8k < 1, or δ2.5k < 0.7046 and δ12k < 1, or δ3k < 0.7731 and δ16k < 1 or δ4k < 0.8445
and δ24k < 1.

Keywords Compressed sensing · Restricted isometry constant · Bound · l1
minimization · Exact recovery

1 Introduction

The concept of compressed sensing (CS) was first introduced by Donoho [12], Can-
dès, Romberg and Tao [8] and Candès and Tao [9] with the involved essential idea–
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recovering some original n-dimensional but sparse signal\image from linear mea-
surement with dimension far fewer than n. Recently, large numbers of researchers,
including applied mathematicians, computer scientists and engineers, have begun to
pay their attention to this area owing to its wide applications in signal processing,
communications, astronomy, biology, medicine, seismology and so on, see, e.g., sur-
vey papers [1, 2, 19] and a monograph [14].

The fundamental problem in compressed sensing is reconstructing a high-
dimensional sparse signal from remarkably small number of measurements. We as-
sume to recover a sparse solution x ∈ R

n of the underdetermined system of the form
Φx = y, where y ∈ R

m is the available measurement and Φ ∈ R
m×n is a known

measurement matrix (with m � n). The mathematical model would be to minimize
the number of the non-zero components of x, i.e., to solve the following l0-norm
optimization problem:

min‖x‖0, s.t. Φx = y, (1)

where ‖x‖0 is l0-norm of the vector x ∈ R
n, i.e., the number of nonzero entries in x

(this is not a true norm, as ‖ · ‖0 is not positive homogeneous). A vector x with at
most k nonzero entries, ‖x‖0 � k, is called k-sparse. However, (1) is combinatorial
and computationally intractable and one popular and powerful approach is to solve it
via �1 minimization (its convex relaxation)

min‖x‖1, s.t. Φx = y. (2)

One of the most commonly used frameworks for sparse recovery via l1 minimization
is the Restricted Isometry Property (RIP) introduced by Candès and Tao [9]. For some
integer k ∈ {1,2, · · · , n}, the k-restricted isometry constant (RIC) δk of a matrix Φ is
the smallest number in (0,1) such that

(1 − δk)‖x‖2
2 � ‖Φx‖2

2 � (1 + δk)‖x‖2
2 (3)

holds for all k-sparse vectors. We say that Φ has k-RIP if there is a k-RIC δk ∈ (0,1)

such that the above inequalities hold. Furthermore, if for integers k1, k2, · · · , ks there
exist δk1, δk2 , · · · , δks ∈ (0,1) such that the corresponding inequalities hold, we say
that Φ has {k1, k2, · · · , ks}-RIP. Here, δk ∈ (0,1) is often used in literature, see, e.g.,
[13, 14], and δk has the monotone property for k (see, e.g., [3, 4]), i.e.,

δk1 � δk2, if k1 � k2 � n. (4)

Thus, Φ has {k1, k2, · · · , ks}-RIP is the same as that Φ has max{k1, k2, · · · , ks}-RIP.
In addition, if k + k′ � n, the k, k′-restricted orthogonality constant (ROC) θk,k′ is
the smallest number that satisfies

∣∣〈Φx,Φx′〉∣∣ � θk,k′‖x‖2
∥∥x′∥∥

2 (5)

for all k-sparse x and k′-sparse x′ with disjoint supports. Candès and Tao [9] showed
the link between RIC and ROC

θk,k′ � δk+k′ . (6)
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By the definition (3), one would observe that

δk = max
T ⊂{1,2,··· ,n},|T |�k

∥∥Φ∗
T ΦT − Ik

∥∥, (7)

where ‖ · ‖ denotes the spectral norm of a matrix (see, e.g., [18]). Clearly, it is hard to
compute RICs for a given matrix Φ because it essentially requires that every subset
of columns of Φ with certain cardinality approximately behaves like an orthonormal
system. Moreover, as shown by Zhang [20], for a nonsingular matrix (transformation)
Q ∈ R

n×n, the RIP constants of Φ and QΦ can be very different. However, a widely
used technique for avoiding checking the RIP condition directly is to generate the
matrix randomly and to show that the resulting random matrix satisfies the RIP with
high probability [17].

Although the RIP condition is difficult to check, it is of independent interest to
study the bounds for RIC in CS since l1-norm minimization can recover a sparse
signal under various conditions on δk, δ2k and θk,k′ , such as, the condition δk +θk,k +
θk,2k < 1 in [9], δ2k + θk,2k < 1 in [10], and δ1.25k + θk,1.25k < 1 in [4].

While many previous results in compressed sensing made reference to δ2k , prob-
ably because it implies that k-sparse signals remain well separated in the measure-
ment space. The first major result of this sort was established in Candès [6], namely,
δ2k �

√
2 − 1 is sufficient for k-sparse signal reconstruction. Recently Cai and

Zhang [5] obtained the sufficient condition δ2k � 1/2. To the best of our knowledge,
the bound for δ2k on sparse recovery is gradually improved from

√
2 − 1(≈0.4142)

to 0.5 in recent years. The details are listed in the Table 1 below.
The main contribution of the present paper is to give the new bounds for RIC in

CS in the following theorem. Here, for x ∈ R
n, we define the best k-sparse approx-

imation x(k) ∈ R
n from x with all but the k largest entries (in absolute value) set to

zero.

Theorem 1 Let x be a feasible solution to (1) and x(k) be the best k-sparse approxi-
mation of x. If the following inequalities hold

δ8ak < 1 (8)

and

δk+ak <
3

2
− 1 + √

(4a + 3)2 − 8

8a
(9)

for a > 3/8, then the solution x̂ to the l1 minimization problem (2) satisfies

‖x̂ − x‖1 � 2(1 + C0)

1 − C0

∥∥x − x(k)
∥∥

1, (10)

for some positive constant C0 < 1 given explicitly by (16). In particular, if x is k-
sparse, the recovery is exact.

From Theorem 1, when a = 1,1.5,2 and 3, we get that δ2k < 0.5746, δ2.5k < 0.7046,
δ3k < 0.7731 and δ4k < 0.8445 with the corresponding assumption δ8ak < 1. Observ-
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Table 1 Different bounds for
RIC δ2k δ2.5k δ3k δ4k

Candès [6] 0.4142 – – –

Foucart, Lai [16] 0.4531 – – –

Foucart [15] 0.4652 – – –

Cai, Wang, Xu [4] 0.4721 – 0.535 0.585

Mo and Li [18] 0.4931 – – –

Cai and Zhang [5] 0.5000 – – –

Our Results 0.5746
δ8k < 1

0.7074
δ12k < 1

0.7731
δ16k < 1

0.8445
δ24k < 1

ing Table 1, under the extra assumption δ8ak < 1, our conditions are all weaker than
the ones known in the literature.

Note that the k-RIP condition implies that every subset of columns of Φ with
cardinality less than k approximately behaves like an orthonormal system. In the
context of (large scaled) sparse optimization, it is often said that k � n. Recently,
Candès and Recht [7] showed that a k-sparse vector in R

n can be efficiently recovered
from 2k logn measurements with high probability, i.e., m = O(2k logn). In this case,
8ak should be less than m for smaller a. Thus, 8ak < m and 8ak � n make sense and
our extra assumption is meaningful and valuable in large scale sparse optimization.

The organization of this paper is as follows. In the next section, we establish some
key inequalities. In Sect. 3, we prove our main result. In Sect. 4, we conclude this
paper with some remarks.

2 Key Inequalities

In this section, we will give some inequalities, which play an important role in im-
proving the RIC bound for sparse recovery in this paper.

We begin with the following interesting and important inequality, which states the
connection between several norms of l0, l1, l2, l∞ and l−∞. Here, we define ‖x‖−∞
norm as ‖x‖−∞ := mini{|xi |}. (In fact, l−∞ is not a norm since the triangle inequality
does not hold). For convenience, we call (11) the Norm Inequality, which is essen-
tially from (6) in [3].

Proposition 1 (Norm Inequality) For any x ∈ R
n and x �= 0,

‖x‖1√‖x‖0
� ‖x‖2 � ‖x‖1√‖x‖0

+
√‖x‖0

4

(‖x‖∞ − ‖x‖−∞
)
. (11)

Furthermore, we obtain the following general inequality,

‖x‖1√‖x‖0
� ‖x‖2 � ‖x‖1√‖x‖0

+
√‖x‖0

4
‖x‖∞.
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Throughout the paper, let x̂ be a solution to the minimization problem (2), and
x ∈ R

n be a feasible one, i.e., Φx = y. Clearly, ‖x̂‖1 � ‖x‖1. We let x(k) ∈ R
n be

defined as above again. Without loss of generality we assume that the support of x(k)

is T0.
Denote that h = x̂ − x and hT is the vector equal to h on an index set T and

zero elsewhere. We decompose h into a sum of vectors hT0 , hT1 , hT2 , · · · , where T1
corresponds to the locations of the ak largest coefficients of hT C

0
(T C

0 = T1 ∪T2 ∪· · · );
T2 to the locations of the 4ak largest coefficients of h(T0∪T1)

C , T3 to the locations of
the next 4ak largest coefficients of h(T0∪T1)

C , and so on. That is

h = hT0 + hT1 + hT2 + · · · . (12)

Here, the sparsity of hT0 is at most k; the sparsity of hT1 is at most ak; the sparsity of
hTj

(j � 2) are at most 4ak.
In order to get a new bound on RIC, for the above decomposition (12), we define

ρ := ‖hT1‖1∑
j�1 ‖hTj

‖1
. (13)

Obviously, ρ ∈ [0,1] and
∑

j�2

‖hTj
‖1 = (1 − ρ)

∑

j�1

‖hTj
‖1.

Applying the Norm Inequality, we can give some inequalities of h, which are very
useful in the proof of our main results.

Lemma 1 Let hT0 , hT1 , hT2 , · · · , and ρ be given by (12) and (13), respectively. Then

∑

j�2

‖hTj
‖2

2 � ρ(1 − ρ)

ak

(∑

j�1

‖hTj
‖1

)2

(14)

and

∑

j�2

‖hTj
‖2 � 1√

4ak

∑

j�1

‖hTj
‖1. (15)

Proof By the definitions of hTj
(j = 1,2, · · · ) and ρ, direct calculation yields

∑

j�2

‖hTj
‖2

2 �
∑

j�2

‖hTj
‖1‖hT2‖∞

� 1

ak

∑

j�2

‖hTj
‖1‖hT1‖1

= ρ(1 − ρ)

ak

(∑

j�1

‖hTj
‖1

)2

.
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Thus, (14) holds. We remain to show (15). Applying the Norm Inequality (11), we
obtain that

‖hTj
‖2 �

‖hTj
‖1√

4ak
+

√
4ak

4

(‖hTj
‖∞ − ‖hTj

‖−∞
)

�
‖hTj

‖1√
4ak

+
√

4ak

4

(‖hTj
‖∞ − ‖hTj+1‖∞

)
,

for j = 2,3, · · · , where for the last hTj
, we set ‖hTj+1‖∞ := 0. Adding up all the

inequalities for j = 2,3, · · · , we get that

∑

j�2

‖hTj
‖2 �

∑
j�2 ‖hTj

‖1√
4ak

+
√

4ak

4
‖hT2‖∞

�
∑

j�2 ‖hTj
‖1√

4ak
+

√
4ak

4ak
‖hT1‖1

=
(

1 − ρ√
4ak

+ ρ√
4ak

) ∑

j�1

‖hTj
‖1

= 1√
4ak

∑

j�1

‖hTj
‖1.

The desired conclusion holds immediately. �

In the end of this section, we give two lemmas which give us the connection about
the norms of ΦhTj

and hTj
.

Lemma 2 Let hT0 and hT1 be given by (12). Then

∥∥Φ(hT0 + hT1)
∥∥2

2 � 1 − δk+ak

k

(
‖hT0‖2

1 + 1

a
‖hT1‖2

1

)
.

Proof From (3), we obtain
∥∥Φ(hT0 + hT1)

∥∥2
2 � (1 − δk+ak)‖hT0 + hT1‖2

2.

Because the supports T0 and T1 are disjoint, the following equality holds

‖hT0 + hT1‖2
2 = ‖hT0‖2

2 + ‖hT1‖2
2.

Therefore
∥∥Φ(hT0 + hT1)

∥∥2
2 � (1 − δk+ak)

(‖hT0‖2
2 + ‖hT1‖2

2

)

� 1 − δk+ak

k

(
‖hT0‖2

1 + 1

a
‖hT1‖2

1

)
,

where the second inequality is derived from (11). �
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Lemma 3 Let hT0 , hT1 , hT2 , · · · , and ρ be given by (12) and (13), respectively. Then

∥∥∥∥
∑

j�2

ΦhTj

∥∥∥∥

2

2
� 4ρ(1 − ρ) + δ8ak

4ak

(∑

j�1

‖hTj
‖1

)2

.

Proof By direct calculations, we obtain that

∥∥∥∥
∑

j�2

ΦhTj

∥∥∥∥

2

2
�

∑

j�2

∣∣〈ΦhTj
,ΦhTj

〉∣∣ + 2
∑

j>i�2

∣∣〈ΦhTj
,ΦhTi

〉∣∣

� (1 + δ8ak)
∑

j�2

‖hTj
‖2

2 + 2δ8ak

∑

j>i�2

‖hTj
‖2‖hTi

‖2

=
∑

j�2

‖hTj
‖2

2 + δ8ak

(∑

j�2

‖hTj
‖2

)2

�
[
ρ(1 − ρ)

ak
+ δ8ak

4ak

](∑

j�1

‖hTj
‖1

)2

= 4ρ(1 − ρ) + δ8ak

4ak

(∑

j�1

‖hTj
‖1

)2

,

where the first inequality holds by the triangle inequality, the second holds due to (3)
and (6), the third is from (14) and (15); and the first equality holds from

∑

j�2

‖hTj
‖2

2 + 2
∑

j>i�2

‖hTj
‖2‖hTi

‖2 =
(∑

j�2

‖hTj
‖2

)2

.

Hence, the desired result follows. �

3 Proof of the Main Result

In this section, we will prove our main result. For simplicity, we first define a
quadratic function of variable ρ,

f (ρ) := −4(2 − δk+ak)ρ
2 + 4ρ + δ8ak,

Clearly, it is a strictly concave function. We can easily obtain the optimal maximum
value of f (ρ) through demanding its derivative, that is

f
(
ρ∗) = max

0�ρ�1
f (ρ) = 1 + (2 − δk+ak)δ8ak

2 − δk+ak

> 0,

where

ρ∗ := 1

2(2 − δk+ak)
∈ [0,1].
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Moreover, we denote that

C0 :=
√

f (ρ∗)
√

4a(1 − δk+ak)
=

√
1 + (2 − δk+ak)δ8ak

4a(2 − δk+ak)(1 − δk+ak)
. (16)

Before proving our main results, we show that the RIP bound in (9) is a sufficient
condition for C0 < 1.

Lemma 4 If (8) and (9) hold, then C0 < 1.

Proof From (9), it is easy to verify that

−4aδ2
k+ak + (12a − 1)δk+ak + 3 − 8a < 0,

which is equivalent to

3 − δk+ak

4a(2 − δk+ak)(1 − δk+ak)
< 1.

Since 0 � δ8ak � 1, and by (16), we have

C2
0 = 1 + (2 − δk+ak)δ8ak

4a(2 − δk+ak)(1 − δk+ak)
<

3 − δk+ak

4a(2 − δk+ak)(1 − δk+ak)
< 1.

Thus, if (9) holds, we ensure C0 < 1. �

Now we begin to prove our main result.

Proof of Theorem 1 The proof proceeds in two steps, which is a common approach
in literature [4, 6].

The first step is to prove that

‖hT0‖1 � C0

∑

j�1

‖hTj
‖1. (17)

The second step shows that ‖x̂ − x‖1 is appropriately small.
For the first step, we note that Φh = 0, which implies that

∥∥Φ(hT0 + hT1)
∥∥2

2 =
∥∥∥∥
∑

j�2

ΦhTj

∥∥∥∥

2

2
.

From Lemmas 2 and 3, the following inequality holds

1 − δk+ak

k

(
‖hT0‖2

1 + 1

a
‖hT1‖2

1

)
� 4ρ(1 − ρ) + δ8ak

4ak

(∑

j�1

‖hTj
‖1

)2

.
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Then we get

‖hT0‖2
1 �

(
4ρ(1 − ρ) + δ8ak

4a(1 − δk+ak)
− ρ2

a

)(∑

j�1

‖hTj
‖1

)2

= f (ρ)

4a(1 − δk+ak)

(∑

j�1

‖hTj
‖1

)2

� f (ρ∗)
4a(1 − δk+ak)

(∑

j�1

‖hTj
‖1

)2

,

where the first inequality is derived from (13). Combining with (16), we get (17).
For the second step, we have

∑

j�1

‖hTj
‖1 = ‖h − hT0‖1

� ‖hT0‖1 + 2
∥∥x − x(k)

∥∥
1

� C0

∑

j�1

‖hTj
‖1 + 2

∥∥x − x(k)
∥∥

1,

where the first inequality holds from (12) in [6]. Then

∑

j�1

‖hTj
‖1 � 2

1 − C0

∥∥x − x(k)
∥∥

1.

This together with (17) yields

‖x̂ − x‖1 = ‖h‖1 = ‖hT0‖1 +
∑

j�1

‖hTj
‖1 � 2(1 + C0)

1 − C0

∥∥x − x(k)
∥∥

1.

We complete to prove (10).
In particular, if x is k-sparse, then x − x(k) = 0, and hence x = x̂ from (10). �

4 Conclusion

In this paper, we have gotten that, when a > 3/8, the conditions (8) and (9) enable us
to obtain several interesting RIC bounds for measurement matrices, such as δ2k , δ2.5k ,
δ3k , and δ4k so on. For intuitionistic analysis, we draw the curve about the connection
between t (:= a + 1) and the bound for δtk .

From Fig. 1, it is easy to see that the bounds for δtk increase fast between 1.75 �
t � 3 and the bounds for δtk are larger than 0.9 when t � 6. In addition, Davies and
Gribonval [11] have given detailed counter-examples to show that the bound of δ2k

cannot exceed 1/
√

2 ≈ 0.7071. Based on 0.5746 < 0.7071, we wonder whether there
is a better way to improve the bound 0.5746 for δ2k without the extra assumption



236 S. Zhou et al.

Fig. 1 The curve of bounds
for δtk

δ8k < 1. So the further research topics we can do are to omit the extra assumption
δ8ak < 1 and further to reduce the gap between 0.5746 and 0.7071.
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