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Abstract Compressive sensing (CS) is an emerging methodology in computational
signal processing that has recently attracted intensive research activities. At present,
the basic CS theory includes recoverability and stability: the former quantifies the
central fact that a sparse signal of length n can be exactly recovered from far fewer
than n measurements via �1-minimization or other recovery techniques, while the
latter specifies the stability of a recovery technique in the presence of measurement
errors and inexact sparsity. So far, most analyses in CS rely heavily on the Restricted
Isometry Property (RIP) for matrices.

In this paper, we present an alternative, non-RIP analysis for CS via �1-mini-
mization. Our purpose is three-fold: (a) to introduce an elementary and RIP-free treat-
ment of the basic CS theory; (b) to extend the current recoverability and stability re-
sults so that prior knowledge can be utilized to enhance recovery via �1-minimization;
and (c) to substantiate a property called uniform recoverability of �1-minimization;
that is, for almost all random measurement matrices recoverability is asymptotically
identical. With the aid of two classic results, the non-RIP approach enables us to
quickly derive from scratch all basic results for the extended theory.
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1 Introduction

1.1 What is Compressive Sensing?

The flows of data (e.g., signals and images) around us are enormous today and rapidly
growing. However, the number of salient features hidden in massive data are usually
much smaller than the number of coefficients in a standard representation of the data.
Hence data are compressible. In data processing, the traditional practice is to mea-
sure (sense) data in full length and then compress the resulting measurements before
storage or transmission. In such a scheme, recovery of data is generally straightfor-
ward. This traditional data-acquisition process can be described as “full sensing plus
compressing”. Compressive sensing (CS), also known as compressed sensing or com-
pressive sampling, represents a paradigm shift in which the number of measurements
is reduced during acquisition so that no additional compression is necessary. The
price to pay is that more sophisticated recovery procedures become necessary.

In this paper, we will use the term “signal” to represent generic data (so an im-
age is a signal). Let x̄ ∈ R

n represent a discrete signal and b ∈ R
m a vector of linear

measurements formed by taking inner products of x̄ with a set of linearly indepen-
dent vectors ai ∈ R

n, i = 1,2, · · · ,m. In matrix format, the measurement vector is
b = Ax̄, where A ∈ R

m×n has rows aT
i , i = 1,2, · · · ,m. This process of obtaining b

from an unknown signal x̄ is often called encoding, while the process of recovering
x̄ from the measurement vector b is called decoding.

When the number of measurements m is equal to n, decoding simply entails solv-
ing a linear system of equations, i.e., x̄ = A−1b. However, in many applications, it is
much more desirable to take fewer measurements provided one can still recover the
signal. When m < n, the linear system Ax = b is typically under-determined, per-
mitting infinitely many solutions. In this case, is it still possible to recover x̄ from b

through a computationally tractable procedure?
If we know that the measurement b is from a highly sparse signal (i.e., it has

very few nonzero components), then a reasonable decoding model is to look for the
sparsest signal among all those that produce the measurement b; that is,

min
{‖x‖0 : Ax = b

}
, (1.1)

where the quantity ‖x‖0 denotes the number of non-zeros in x. Model (1.1) is a
combinatorial optimization problem with a prohibitive complexity if solved by enu-
meration, and thus does not appear tractable. An alternative model is to replace the
“�0-norm” by the �1-norm and solve a computationally tractable linear program:

min
{‖x‖1 : Ax = b

}
. (1.2)

This approach, often called basis pursuit, was popularized by Chen, Donoho and
Sauders [9] in signal processing, though similar ideas existed earlier in other areas
such as geo-sciences (see Santosa and Symes [27], for example).

In most applications, sparsity is hidden in a signal x̄ so that it becomes sparse
only under a “sparsifying” basis Φ; that is, Φx̄ is sparse instead of x̄ itself. In this
case, one can do a change of variables z = Φx and replace the equation Ax = b by
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(AΦ−1)z = b. For an orthonormal basis Φ , the null space of AΦ−1 is a rotation of
that of A, and such a rotation does not alter the success rate of CS recovery (as we
will see later that the probability measure for success or failure is rotation-invariant).
For simplicity and without loss of generality, we will assume Φ = I throughout this
paper.

Fortunately, under favorable conditions the combinatorial problem (1.1) and the
linear program (1.2) can share common solutions. Specifically, if the signal x̄ is suf-
ficiently sparse and the measurement matrix A possesses certain nice attributes (to
be specified later), then x̄ will solve both (1.1) and (1.2) for b = Ax̄. This property is
called recoverability, which, along with the fact that (1.2) can be solved efficiently in
theory, establishes the theoretical soundness of the decoding model (1.2).

Generally speaking, compressive sensing refers to the following two-step ap-
proach: choosing a measurement matrix A ∈ R

m×n with m < n and taking measure-
ment b = Ax̄ on a sparse signal x̄, and then reconstructing x̄ ∈ R

n from b ∈ R
m by

some means. Since m < n, the measurement b is already compressed during sensing,
hence the name “compressive sensing” or CS. Using the basis pursuit model (1.2)
to recover x̄ from b represents a fundamental instance of CS, but certainly not the
only one. Other recovery techniques include greedy-type algorithms (see [28], for
example).

In this paper, we will exclusively focus on �1-minimization decoding models, in-
cluding (1.2) as a special case, because �1-minimization has the following two ad-
vantages: (a) the flexibility to incorporate prior information into decoding models,
and (b) uniform recoverability. These two advantages will be introduced and studied
in this paper.

1.2 Current Theory for CS via �1-Minimization

Basic theory of CS presently consists of two components: recoverability and stability.
Recoverability addresses the central questions: what types of measurement matrices
and recovery procedures ensure exact recovery of all k-sparse signals (those having
exactly k-nonzeros) and how many measurements are sufficient to guarantee such
a recovery? On the other hand, stability addresses the robustness issues in recovery
when measurements are noisy and/or sparsity is inexact.

There are a number of earlier works that have laid the groundwork for the ex-
isting CS theory, especially pioneering works by Dohono and his co-workers (see
the survey paper [4] for a list of references on these early works). From these early
works, it is known that certain matrices can guarantee recovery for sparsity k up to
the order of

√
m (for example, see Donoho and Elad [12]). In recent seminal works

by Candés and Tao [5, 6], it is shown that for a standard normal random matrix
A ∈ R

m×n, recoverability is ensured with high probability for sparsity k up to the or-
der of m/ log(n/m), which is the best recoverability order available. Later the same
order has been extended by Baraniuk et al. [1] to a few other random matrices such
as Bernoulli matrices with ±1 entries.

In practice, it is almost always the case that either measurements are noisy or sig-
nal sparsity is inexact, or both. Here inexact sparsity refers to the situation where a
signal contains a small number of significant components in magnitude, while the
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magnitudes of the rest are small but not necessarily zero. Such approximately sparse
signals are compressible too. The subject of CS stability studies the issues concern-
ing how accurately a CS approach can recover signals under these circumstances.
Stability results have been established for the �1-minimization model (1.2) and its
extension

min
{‖x‖1 : ‖Ax − b‖2 � γ

}
. (1.3)

Consider model (1.2) for b = Ax̂ where x̂ is approximately k-sparse so that it has
only k significant components. Let x̂(k) be a so-called (best) k-term approximation
of x̂ obtained by setting the n − k insignificant components of x̂ to zero, and let x∗
be the optimal solution of (1.2). Existing stability results for model (1.2) include the
following two types of error bounds,

∥∥x∗ − x̂
∥∥

2 � Ck−1/2
∥∥x̂ − x̂(k)

∥∥
1, (1.4)

∥∥x∗ − x̂
∥∥

1 � C
∥∥x̂ − x̂(k)

∥∥
1, (1.5)

where the sparsity level k can be up to the order of m/ log(n/m) depending on what
type of measurement matrices are in use, and C denotes a generic constant indepen-
dent of dimensions whose value may vary from one place to another. These results
are established by Candés and Tao [5] and Candés, Romberg and Tao [7] (see also
Donoho [11], and Cohen, Dahmen and DeVore [10]). For the extension model (1.3),
the following stability result is obtained by Candés, Romberg and Tao [7]:

∥∥x∗ − x̂
∥∥

2 � C
(
γ + k−1/2

∥∥x̂ − x̂(k)
∥∥

1

)
. (1.6)

In the case where x̂ is exactly k-sparse so that x̂ = x̂(k), the above stability results
reduce to the exact recoverability: x∗ = x̂ (also γ = 0 is required in (1.6)). Therefore,
when combined with relevant random matrix properties, the stability results imply
recoverability in the case of solving model (1.2). More recently, stability results have
also been established for some greedy algorithms by Needell and Vershynin [25] and
Needell and Tropp [24]. Yet, there still exist CS recovery methods that have been
shown to possess recoverability but with stability unknown.

Existing results in CS recoverability and stability are mostly based on analyzing
properties of the measurement matrix A. The most widely used analytic tool is the so-
called Restricted Isometry Property (RIP) of A, first introduced in [6] for the analysis
of CS recoverability (but an earlier usage can be found in [21]). Given A ∈ R

m×n,
the k-th RIP parameter of A, δk(A), is defined as the smallest quantity δ ∈ (0,1) that
satisfies for some R > 0

(1 − δ)R � xT AT Ax

xT x
� (1 + δ)R, ∀x,‖x‖0 = k. (1.7)

The smaller δk(A) is, the better RIP is for that k value. Roughly speaking, RIP mea-
sures the “overall conditioning” of the set of m × k submatrices of A (see more
discussion below).

All the above stability results (including those in [24, 25]) have been obtained un-
der various assumptions on the RIP parameters of A. For example, the error bounds
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(1.4) and (1.6) were first obtained under the assumption δ3k(A)+3δ4k(A) < 2 (which
has recently been weakened to δ2k(A) <

√
2 − 1 in [3]). Consequently, stability con-

stants, represented by C above, obtained by existing RIP-based analyses all depend
on the RIP parameters of A. We will see, however, that as far as the results within the
scope of this paper are concerned, the dependency on RIP can be removed.

Donoho established stable recovery results in [11] under three conditions on mea-
surement matrix A (conditions CS1-CS3). Although these conditions do not directly
use RIP properties, they are still matrix-based. For example, condition CS1 requires
that the minimum singular values of all m × k sub-matrices, with k < ρm/ log(n) for
some ρ > 0, of A ∈ R

m×n be uniformly bounded below from zero. Consequently, the
stability results in [11] are all dependent on matrix A.

Another analytic tool, mostly used by Donoho and his co-authors (for example, see
[13]) is to study the combinatorial and geometric properties of the polytope formed
by the columns of A. While the RIP approach uses sufficient conditions for recover-
ability, the “polytope approach” uses a necessary and sufficient condition. Although
the latter approach can lead to tighter recoverability constants, the former has so far
produced stability results such as (1.4)–(1.6).

1.3 Drawbacks of RIP-based Analyses

In any recovery model using the equation Ax = b, the pair (A,b) carries all the in-
formation about the unknown signal. Obviously, Ax = b is equivalent to GAx = Gb

for any nonsingular matrix G ∈ R
m×m. Numerical considerations aside, (GA,Gb)

ought to carry exactly the same amount of information as (A,b) does. However, the
RIP properties of A and GA can be vastly different. In fact, one can easily choose G

to make the RIP of GA arbitrarily bad no matter how good the RIP of A is.
To see this, let us define

Γk(A) = λk
max

λk
min

, λk
max � max‖x‖0=k

xT AT Ax

xT x
, λk

min � min‖x‖0=k

xT AT Ax

xT x
.

By equating (1+δ)R to λk
max and (1−δ)R to λk

min in (1.7), eliminating R and solving
for δ, we obtain an explicit expression for the k-th RIP parameter of A,

δk(A) = Γk(A) − 1

Γk(A) + 1
. (1.8)

Without loss of generality, let A = [A1 A2] where A1 ∈ R
m×m is nonsingular. Set

G = BA−1
1 for some nonsingular B ∈ R

m×m. Then GA = [GA1 GA2] = [B GA2].
Let B1 ∈ R

m×k consist of the first k columns of B and κ(BT
1 B1) be the condition

number of BT
1 B1 in �2-norm; i.e., κ(BT

1 B1) � λ1/λk where λ1 and λk are, respec-
tively, the maximum and minimum eigenvalues of BT

1 B1. Then κ(BT
1 B1) � Γk(GA)

and

δk(GA) �
κ(BT

1 B1) − 1

κ(BT
1 B1) + 1

. (1.9)
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Clearly, we can choose B1 so that κ(BT
1 B1) is arbitrarily large and δk(GA) is arbi-

trarily close to one.
Suppose that we try to recover a signal x̄, which is either exactly or approximately

sparse, from measurements GAx̄ via solving

min
{‖x‖1 : GAx = GAx̄

}
(1.10)

where A ∈ R
m×n is fixed while the row transformation G ∈ R

m×m can be chosen dif-
ferently (for example, G makes the rows of GA orthonormal). Under the assumption
of exact arithmetics, it is obvious that both recoverability and stability should remain
exactly the same as long as the row transformation G stays nonsingular. However,
since the RIP parameters of GA vary with G, RIP-based results would suggest, mis-
leadingly, that the recoverability and stability of the decoding model (1.10) could vary
with G. For example, for any k � m/2, if we choose κ(BT

1 B1) � 3 for B1 ∈ R
m×2k ,

then it follows from (1.9) that

δ2k(GA) � 0.5 >
√

2 − 1.

Consequently, when applied to (1.10) the RIP-based recoverability and stability re-
sults in [3] would fail on any k-sparse signal because the required RIP condition,
δ2k(GA) <

√
2 − 1, is violated.

Besides the theoretical drawback discussed above, results from RIP-based analy-
ses are known to be overly conservative in practice. To see this, we present a set of
numerical simulations for the cases A = [A1 A2] ∈ R

m×n with A1 ∈ R
m×2k . A lower

bound for δ2k(A) is

δ̂2k(A1) �
κ(AT

1 A1) − 1

κ(AT
1 A1) + 1

� δ2k(A), (1.11)

where κ(AT
1 A1) is the condition number (in �2-norm) of AT

1 A1. Instead of gen-
erating A ∈ R

m×n, we randomly sample 500 A1 ∈ R
m×2k for each values of

m = 400,600,800 and k = p
100m with p = 1,2, · · · ,10, from either the standard

Gaussian or the ±1 Bernoulli distribution. For each random A1, we calculate δ̂2k(A1)

defined in (1.11) as a lower bound for δ2k(A) (even though A itself is not generated).
The simulation results are presented in Fig. 1. The two pictures show that the behav-
ior of such lower bounds for both Gaussian and Bernoulli distributions is essentially
the same. As can be seen from the simulation results, the condition δ2k(A) <

√
2 − 1

required in [3] could possibly hold in reasonable probability only when k/m is below
3 %, which is far below what has generally been observed in practical computations.

1.4 Contributions of this Paper

One contribution of this paper is to develop a non-RIP analysis for the basic theory of
CS via �1-minimization. We derive RIP-free recoverability and stability results that
only depend on properties of the null space of A (or GA for that matter) while invari-
ant of matrix representations of the null space. Incidentally, our non-RIP analysis also
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Fig. 1 Lower bounds for δ2k(A). The 3 curves depict the mean values of δ̂2k(A1), as defined in (1.11),
from 500 random trials for A1 ∈ R

m×2k corresponding to m = 400,600,800, respectively, while the error
bars indicate their standard deviations. The dotted line corresponds to the value

√
2 − 1 ≈ 0.414

gives stronger results than those by previous RIP analyses in two aspects described
below.

In practice, a priori knowledge often exists about the signal to be recovered. Be-
side sparsity, existing CS theory does not incorporate such prior-information in de-
coding models, with the exception of when the signs of a signal are known (see
[14, 31], for example). Can we extend the existing theory to explicitly include prior-
information into our decoding models? In particular, it is desirable to analyze the
following general model:

min
{‖x‖1 : ‖Ax − b‖ � γ, x ∈ Ω

}
, (1.12)

where ‖ · ‖ is a generic norm, γ � 0 and the set Ω ⊂ R
n represents prior information

about the signal under construction.
So far, different types of measurement matrices have required different analyses,

and only a few random matrix types, such as Gaussian and Bernoulli distributions
with rather restrictive conditions such as zero mean, have been studied in details.
Hence a framework that covers a wide range of measurement matrices becomes
highly desirable. Moreover, an intriguing challenge is to show that a large collec-
tion of random matrices shares an asymptotic and identical recovery behavior, which
appears to be true from empirical observations by different groups (see [15, 16], for
example). We will examine this phenomenon that we call uniform recoverability,
meaning that recoverability is essentially invariant with respect to different types of
random matrices.

In summary, this paper consists of three contributions to the theory of CS via
�1-minimization: (i) an elementary, non-RIP treatment; (ii) a flexible theory that al-
lows any form of prior information to be explicitly included; and (iii) a theoretical
explanation of the uniform recoverability phenomenon.

This paper is self-contained, in that it includes derivations for all results, with the
exception of invoking two classic results without proofs. To make the paper more
accessible to a broad audience while limiting its length, we keep discussions at a
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minimal level on issues not of immediate relevance, such as historical connections
and technical details on some deep mathematical notions.

This paper is not a comprehensive survey on the subject of CS (see [4] for a recent
survey on RIP-based CS theory), and does not cover every aspect of CS. In particular,
this paper does not discuss in any detail CS applications and algorithms. We refer the
reader to the CS resource website at Rice University [32] for more complete and
up-to-date information on CS research and practice.

1.5 Notation and Organization

The �1-norm and the �2-norm in R
n are denoted by ‖ · ‖1 and ‖ · ‖2, respectively.

For any vector v ∈ R
n and α ⊂ {1, · · · , n}, vα is the sub-vector of v whose elements

are indexed by those in α. Scalar operations, such as absolute value, are applied to
vectors component-wise. The support of a vector x is denoted as

supp(x) � {i : xi 	= 0},
and ‖x‖0 � | supp(x)| is the number of non-zeros in x where | · | denotes cardinality of
a set. For F ⊂ R

n and x̄ ∈ R
n, define F − x̄ � {x − x̄ : x ∈ F }. For random variables,

we use the symbol i.i.d. for the phrase “independently identically distributed”.
This paper is organized as follows. In Sect. 2, we introduce some basic conditions

for CS recovery via �1-minimization. An extended recoverability result is presented
in Sect. 3 for standard normal random matrices. Section 4 contains two stability re-
sults. We explain the uniform recoverability phenomenon in Sect. 5. Section 6 con-
tains concluding remarks.

2 Sparsest Point and �1-Minimization

In this section we introduce general conditions that relate finding the sparsest point
to �1-minimization. Given a set F ⊂ R

n, we consider the following equivalence rela-
tionship:

arg min
x∈F

‖x‖0 = {x̄} = arg min
x∈F

‖x‖1. (2.1)

The problem on the left is a combinatorial problem of finding the sparsest point in F ,
while the one on the right is a continuous, �1-minimization problem. The singleton
set in the middle indicates that there is a common and unique minimizer x̄ for both
problems.

2.1 Preliminaries

For A ∈ R
m×n, b ∈ R

m and Ω ⊂ R
n, we will study equivalence (2.1) on sets of the

form:

F = {x : Ax = b} ∩ Ω. (2.2)
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For any x̄ ∈ F , the following identity will be useful:

F − x̄ ≡ N (A) ∩ (Ω − x̄), (2.3)

where N (A) denotes the null space of the matrix A, which can be easily verified as
follows:

F = x̄ + {v : Av = 0, v ∈ Ω − x̄} = x̄ + N (A) ∩ (Ω − x̄).

We start from the following simple but important observation.

Lemma 2.1 Let x, y ∈ R
n and α = supp(x). A sufficient condition for ‖x‖1 < ‖y‖1

is

‖y − x‖1 > 2
∥
∥(y − x)α

∥
∥

1. (2.4)

Moreover, a sufficient condition for ‖x‖p < ‖y‖p , p = 0 and 1, is

√‖x‖0 <
1

2

‖y − x‖1

‖y − x‖2
. (2.5)

Proof Since α = supp(x), we have ‖x‖1 =‖xα‖1 and xβ =0 where β ={1, · · · , n} \α.
Let y = x + v. We calculate

‖y‖1 = ‖x + v‖1 = ‖xα + vα‖1 + ‖0 + vβ‖1

= ‖x‖1 + (‖vβ‖1 − ‖vα‖1
) + (‖xα + vα‖1 − ‖xα‖1 + ‖vα‖1

)
, (2.6)

where in the right-hand side we have added and subtracted the terms ‖x‖1 and ‖vα‖1.
In the above identity, the last term in parentheses is nonnegative due to the triangle
inequality:

‖xα + vα‖1 � ‖xα‖1 − ‖vα‖1. (2.7)

Hence, ‖x‖1 < ‖y‖1 if ‖vβ‖1 > ‖vα‖1 which is equivalent to ‖v‖1 > 2‖vα‖1. This
proves the first part of the lemma. In view of the relationship between the 1-norm and
2-norm,

‖vα‖1 �
√|α|‖vα‖2 �

√|α|‖v‖2 = √‖x‖0‖v‖2.

Hence, ‖v‖1 > 2‖vα‖1 if ‖v‖1 > 2
√‖x‖0‖v‖2, which proves that (2.5) implies (2.4),

hence, ‖x‖1 < ‖y‖1. Finally, if (2.5) holds, then necessarily

√‖y‖0 � 1

2

‖y − x‖1

‖y − x‖2
. (2.8)

Otherwise, due to the symmetry in the right-hand side of (2.5) or (2.8) with respect
to x and y, a contradiction would arise in that ‖x‖1 < ‖y‖1 and ‖y‖1 < ‖x‖1. Hence,
it follows from (2.5) and (2.8) that ‖x‖0 < ‖y‖0. This completes the proof. �

Condition (2.5) serves as a nice sufficient condition for an “equivalence” between
the two “norms” ‖ · ‖0 and ‖ · ‖1, even though ‖ · ‖0 is not really a norm.
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2.2 Sufficient Conditions

We now introduce a sufficient condition, (2.9), for recoverability.

Proposition 2.2 For any A ∈ R
m×n, b ∈ R

m, and Ω ⊂ R
n, equivalence (2.1) holds

uniquely at x̄ ∈ F , where F is defined as in (2.2), if the sparsity of x̄ satisfies

√‖x̄‖0 < min

{
1

2

‖v‖1

‖v‖2
: v ∈ N (A) ∩ (Ω − x̄) \ {0}

}
. (2.9)

Proof Since F ≡ {x̄ + v : v ∈ F − x̄} for any x̄, equivalence (2.1) holds uniquely at
x̄ ∈ F if and only if

‖x̄ + v‖p > ‖x̄‖p, ∀v ∈ (F − x̄) \ {0}, p = 0,1. (2.10)

In view of the identity (2.3) and condition (2.5) in Lemma 2.1, (2.9) is clearly a
sufficient condition for (2.10) to hold for both p = 0 and p = 1. �

Remark 1 For Ω = R
n, (2.9) reduces to the well-known condition

√‖x̄‖0 < min

{
1

2

‖v‖1

‖v‖2
: v ∈ N (A) \ {0}

}
. (2.11)

It is worth noting that for some prior-information set Ω , the right-hand side of (2.9)
could be significantly larger than that of (2.11), suggesting that adding prior informa-
tion can never hurt but potentially help raise the lower bound on recoverable sparsity.
Since 0 ∈ N (A) ∩ (Ω − x̄) and ‖v‖1/‖v‖2 is scale-invariant, a necessary condition
for the right-hand side of (2.9) to be larger than that of (2.11) is that the origin is on
the boundary of Ω − x̄ (which holds true for the nonnegative orthant, for example).

2.3 A Necessary and Sufficient Condition

For the case Ω = R
n, we consider the situation of using a fixed measurement ma-

trix A for the recovery of signals of a fixed sparsity level but all possible values and
sparsity patterns.

Proposition 2.3 Given A ∈ R
m×n and any integer k � 1, the equivalence

{x̄} = arg min
{‖x‖1 : Ax = Ax̄

}
(2.12)

holds for all x̄ ∈ R
n such that ‖x̄‖0 � k if and only if

‖v‖1 > 2‖vα‖1, ∀v ∈ N (A) \ {0}, (2.13)

holds for all index sets α ⊂ {1, · · · , n} such that |α| = k.

Proof In view of the fact {x : Ax = Ax̄} ≡ {x̄ + v : v ∈ N (A)}, (2.12) holds at x̄

if and only if ‖x̄ + v‖1 > ‖x̄‖1,∀v ∈ N (A) \ {0}. As is proved in the first part of
Lemma 2.1, (2.13) is a sufficient condition for (2.12) with α = supp(x̄).
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Now we show necessity. Let v ∈ N (A) \ {0} such that ‖v‖1 � 2‖vα‖1 for some
|α| = k. Choose x̄ such that x̄α = −vα and x̄β = 0 where β complements α in
{1,2, · · · , n}. Then ‖x̄ + v‖1 = ‖vβ‖1 = ‖v‖1 − ‖vα‖1 � ‖vα‖1 = ‖x̄‖1, so x̄ is not
the unique minimizer of ‖ · ‖1. �

We already know from Proposition 2.2 that if k satisfies

1 �
√

k < min

{
1

2

‖v‖1

‖v‖2
: v ∈ N (A) \ {0}

}
,

then x̄ in (2.12) is also the sparsest point in the set {x : Ax = Ax̄}.

3 Recoverability

Let us restate the equivalence (2.1) in a more explicit form:

arg min
x∈Ω

{‖x‖0 : Ax = Ax̄
} = {x̄} = arg min

x∈Ω

{‖x‖1 : Ax = Ax̄
}
, (3.1)

where Ω will be assumed to be any nonempty and closed subset of R
n. When Ω

is a convex set, the problem on the right-hand side is a convex program that can be
efficiently solved at least in theory.

Recoverability addresses conditions under which the equivalence (3.1) holds. The
conditions involved include the properties of the measurement matrix A and the de-
gree of sparsity in signal x̄. Clearly, the prior information set Ω can also affect recov-
erability. However, since we allow Ω to be any subset of R

n, the results we obtain in
this paper are the “worst-case” results in terms of varying Ω .

3.1 Kashin-Garnaev-Gluskin Inequality

We will make use of a classic result established in the late 1970’s and early 1980’s
by Kashin [21], and Garnaev and Gluskin [17] in a particular form, which provides
a lower bound on the ratio of the �1-norm to the �2-norm when it is restricted to
subspaces of a given dimension. We know that in the entire space R

n, the ratio can
vary from 1 to

√
n, namely,

1 � ‖v‖1

‖v‖2
�

√
n, ∀v ∈ R

n \ {0}.

Roughly speaking, this ratio is small for sparse vectors that have many zero (or near-
zero) elements. However, it turns out that in most subspaces this ratio can have much
larger lower bounds than 1. In other words, most subspaces do not contain excessively
sparse vectors.

For p < n, let G(n,p) denote the set of all p-dimensional subspaces of R
n (which

is called a Grassmannian). It is known that there exists a unique rotation-invariant
probability measure, say Prob(·), on G(n,p) (see [23], for example). From our per-
spective, we will bypass the technical details on how such a probability measure is
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defined. Instead, it suffices to just mention that drawing a member from G(n,p) uni-
formly at random amounts to generating an n by p random matrix of i.i.d. entries
from the standard normal distribution N (0,1) whose range space will be a random
member of G(n,p) (see Sect. (3.5) of [2] for a concise introduction).

Theorem 3.1 (Kashin, Garnaev and Gluskin) For any two natural numbers m < n,
there exists a set of (n−m)-dimensional subspaces of R

n, say S ⊂ G(n,n−m), such
that

Prob(S) � 1 − e−c0(n−m), (3.2)

and for any V ∈ S,

‖v‖1

‖v‖2
� c1

√
m

√
1 + log(n/m)

, ∀v ∈ V \ {0}, (3.3)

where the constants ci > 0, i = 0,1, are independent of the dimensions.

This theorem ensures that a subspace V drawn from G(n,n − m) at random will
satisfy inequality (3.3) with high probability when n − m is large. From here on, we
will call (3.3) the KGG inequality.

When m < n, the orthogonal complement of each and every member of G(n,m)

is a member of G(n,n − m), establishing a one-to-one correspondence between
G(n,m) and G(n,n − m). As a result, if A ∈ R

m×n is a random matrix with i.i.d.
standard normal entries, then the range space of AT is a uniformly random member
of G(n,m), while at the same time the null space of A is a uniformly random member
of G(n,n−m) in which the KGG inequality holds with high probability when n−m

is large.

Remark 2 Theorem 3.1 contains only a part of the seminal result on the so-called
Kolmogorov or Gelfand width in approximation theory, first obtained by Kashin [21]
in a weaker form and later improved to the current order by Garnaev and Gluskin [17].
In its original form, the result does not explicitly state the probability estimate, but
gives both lower and upper bounds of the same order for the involved Kolmogorov
width (see [11] for more information on the Kolmogorov and Gelfand widths and
their duality in a case of interest). Theorem 3.1 is formulated after a description given
by Gluskin and Milman in [20] (see the paragraph around inequality (5), i.e., the KGG
inequality (3.3), on p. 133). As will be seen, this particular form of the KGG result
enables a greatly simplified non-RIP CS analysis.

The connections between compressive sensing and the works of Kashin [21] and
Garnaev and Gluskin [17] are well known. Candés and Tao [5] used the KGG result
to establish that the order of stable recovery is optimal in a sense, though they derived
their stable recovery results via an RIP-based analysis. In [11] Donoho pointed out
that the KGG result implies an abstract stable recovery result (Theorem 1 in [11] for
the case of p = 1) in an “indirect manner”. In both cases, the authors used the original
form of the KGG result, but in terms of the Gelfand width.
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The approach taken in this paper is based on examining the ratio ‖v‖1/‖v‖2 (or a
variant of it in the case of uniform recoverability) in the null space of A, while relying
on the KGG result in the form of Theorem 3.1 to supply the order of recoverable
sparsity and the success probability in a direct manner. This approach was used in
[30] to obtain a rather limited recoverability result. In this paper, we also use it to
derive stability and uniform recoverability results.

3.2 An Extended Recoverability Result

The following recoverability result follows directly from the sufficient condition (2.9)
and the KGG inequality (3.3) for V = N (A) (also see the discussions before and after
Theorem 3.1). It extends the result in [6] from Ω = R

n to any Ω ⊂ R
n. We call a

random matrix standard normal if it has i.i.d. entries drawn from the standard normal
distribution N (0,1).

Theorem 3.2 Let m < n, Ω ⊂ R
n, and A ∈ R

m×n be either standard normal or any
rank-m matrix such that BAT = 0 where B ∈ R

(n−m)×n is standard normal. Then
with probability greater than 1 − e−c0(n−m), the equivalence (3.1) holds at x̄ ∈ Ω if
the sparsity of x̄ satisfies

‖x̄‖0 <
c2

1

4

m

1 + log(n/m)
, (3.4)

where c0, c1 > 0 are some absolute constants independent of the dimensions m and n.

An oft-missed subtlety is that recoverability is entirely dependent on the properties
of a subspace but independent of its representations. In Theorem 3.2, we have added
a second case for A, where AT can be any basis matrix for the null space of B , to
bring attention to this subtle point.

Remark 3 For the case Ω = R
n, the sparsity bound given in (3.4) is first established

by Candés and Tao [6] for standard normal random matrices. In Baraniuk et al. [1],
the same order is extended to a few other random matrices such as Bernoulli matrices
whose entries are ±1. Weaker results have been established for partial Fourier and
other partial orthonormal matrices with randomly chosen rows by Candés, Romberg
and Tao [8], and Rudelson and Vershynin [26]. Moreover, an in-depth study on the
asymptotic form for the constant in (3.4) can be found in the work of Donoho and
Tanner [13].

We emphasize that in terms of Ω the sparsity order in the right-hand side of (3.4)
is a worst-case lower bound for (2.9) since it actually bounds (2.11) from below.
In principle, larger lower bounds may exist for (2.9) corresponding to certain prior-
information sets Ω 	= R

n, though specific investigations will be necessary to obtain
such better lower bounds. For Ω equal to the nonnegative orthant of R

n, a better
bound has been obtained by Donoho and Tanner [14] (also see [31] for an alternative
proof).
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3.3 Why is the Extension Useful

The extended recoverability result gives a theoretical guarantee that adding prior in-
formation can never hurt but possibly enhance recoverability, which of course is not
a surprise. The extended decoding model (1.3) includes many useful variations for
the prior information set Ω beside the set Ω = {x ∈ R

n : x � 0}.
For example, consider a two-dimensional image x̄ known to contain blocky re-

gions of almost constant values. In this case, the total variation (TV) of x̄ should be
small, which is defined as TV(x̄) �

∑
i ‖Dix̄‖2 where Dix̄ ∈ R

2 is a finite-difference
gradient approximation of x̄ evaluated at the pixel i. This prior information is char-
acterized by the set Ω = {x : TV(x) � γ } for some γ > 0, and leads to the decod-
ing model: min{‖x‖1 : Ax = b,TV(x) � γ }, which, for some appropriate μ > 0, is
equivalent to

min
{‖x‖1 + μTV(x) : Ax = b

}
. (3.5)

Another form of prior information is that oftentimes a signal x̄ under construction
is known to be close to a “prior signal” xp . For example, x̄ is an magnetic resonance
image (MRI) taken from a patient today, while xp is the one taken a week earlier
from the same person. Given the closeness of the two and assuming both are sparse,
we may consider solving the model:

min
{‖x‖1 : Ax = b,‖x − xp‖1 � γ

}
, (3.6)

which has a prior-information set Ω = {x : ‖x − xp‖1 � γ } for some γ > 0. When
γ > ‖x̄ − xp‖1, adding the prior information will not raise the lower bound on recov-
erable sparsity as is given in (2.11), but nevertheless it will still help control errors in
recovery, which may arguably be more important in practice.

We first present a numerical experiment based on model (3.5). The left image
in Fig. 2 is a grayscale image of 1281 × 400 pixels with pixel values ranging from
0 (black) to 255 (white). It is supposed to be from full-body magnetic resonance
imaging. This image is approximately sparse (the background pixel values are 16 in-
stead of 0 even though the background appears black). Clearly, this image has blocky
structures and thus relatively small TV values. This prior information makes model
(3.5) suitable. We used a partial Fourier matrix as the measurement matrix A in (3.5),
formed by one tenth of the rows of the two-dimensional discrete Fourier matrix. As
a result, the measurement vector b consisted of 10 % of the Fourier coefficients of
the left image in Fig. 2. These Fourier coefficients were randomly selected but biased
towards those associated with lower frequency basis vectors. From these 10 % of
the Fourier coefficients, we tried to reconstruct the original image by approximately
solving model (3.5) without and with the prior information. The results are the mid-
dle and the right images in Fig. 2, corresponding to μ = 0 (without the TV term) and
μ = 10, respectively. The signal-to-noise ratio (SNR) for the middle image is 15.28,
while it is 19.89 for the right image. Hence, although the �1-norm term in (3.5) alone
already produced an acceptable recovery quality, the addition of the prior information
(the TV term) helped improve the quality significantly.

Since it is sufficient to use 50 % of the complex-valued Fourier coefficients for
exactly recovering real images, at least in theory, the use of 10 % of the coefficients
represents an 80 % reduction in the amount of data required for recovery. In fact, sim-
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Fig. 2 Simulations of compressive sensing with prior information using model (3.5). The left is the orig-
inal image, the middle and the right were reconstructed from 10 % of the Fourier coefficients by solving
model (3.5) with μ = 0 and μ = 10, respectively. The SNR of the middle and right images are, respectively,
15.28 and 19.89

ulations in this example indicates how CS may be applied to MRI where scanned data
are essentially Fourier coefficients of images under construction. A 80 % reduction
in MRI scanning time would represent a significant improvement in MRI practice.
We refer the reader to the work of Lustig, Donoho, Santos and Pauly [22], and the
references therein, for more information on the applications of CS to MRI.

The above example, however, does not show that prior information can actually
reduce the number of measurements required for recovery of sparse signals. For that
purpose, we present another numerical experiment based on model (3.6) with addi-
tional nonnegativity constraint.

We consider reconstructing a nonnegative, sparse signal x̄ ∈ R
n from the mea-

surement b = Ax̄ with or without the prior information that x̄ is close to a known
prior signal xp . The decoding models without and with this prior information are,
respectively,

min
{‖x‖1 : Ax = b, x � 0

}
, (3.7)

min
{‖x‖1 : Ax = b, x � 0,‖x − xp‖1 � γ

}
. (3.8)

In our experiment, the signal length is fixed at n = 100, and the sparsity of both x̄

and xp is k = 10. More specifically, both x̄ and xp have 10 nonzero elements of the
value 1, but only 8 of the 10 nonzero positions coincide while the other 2 nonzeros
occur at different positions. Roughly speaking, there is a 20 % difference between x̄

and xp . Obviously, ‖x̄ − xp‖1 = 4.
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Fig. 3 Recovery rate (left) and average relative error (right) on 100 random problems with (solid line)
and without (dashed line) prior information. For fixed n = 100 and k = 10, the number of measurements
m ranges from 2 to 40

We ran both (3.7) and (3.8) on 100 random problems with the number of measure-
ments m = 2,4, · · · ,40, where in each problem A ∈ R

m×n is a standard Gaussian
random matrix, and the 10 nonzero positions of x̄ and xp are randomly chosen with 8
positions coinciding. In (3.8), we set γ = 4 which equals ‖x̄ − xp‖1 by construction.
We regard a recovered signal to be “exact” if it has a relative error below 10−4. The
numerical results are presented in Fig. 3 that gives the percentage of exact recovery
and the average relative error in �2-norm on 100 random trials for each m value.

We observe that without the prior information m = 40 was needed for 100-percent
recovery, while with the prior information m = 20 was enough. If we consider ap-
proximate recovery, we see that to achieve an accuracy with relative errors below
10-percent, the required numbers of measurements were m = 30 and m = 14, respec-
tively, for models (3.7) and (3.8).

4 Stability

In practice, a measurement vector b is most likely inaccurate due to various sources of
imprecisions and/or contaminations. A more realistic measurement model should be
b = Ax̄ + r where x̄ is a desirable and sparse signal, and r ∈ R

m can be interpreted
either as noise or as spurious measurements generated by a noise-like signal. Now
given an under-sampled and imprecise measurement vector b = Ax̄ + r , can we still
approximately recover the sparse signal x̄? What kind of errors should we expect?
These are questions our stability analysis should address.

4.1 Preliminaries

Assume that A ∈ R
m×n is of rank m and b = Ax̄ + r , where x̄ ∈ Ω ⊂ R

n. Since the
sparse signal of interest, x̄, does not necessarily satisfy the equation Ax = b, we relax
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our goal to the inequality ‖Ax − b‖ � γ in some norm ‖ · ‖, with γ � ‖r‖ so that x̄

satisfies the inequality. An alternative interpretation for the imprecise measurement
b is that it is generated by a signal x̂ that is approximately sparse so that b = Ax̂ for
x̂ = x̄ + p where p is small and satisfies Ap = r .

Consider the QR-factorization: AT = UR, where U ∈ R
n×m satisfies UT U = I

and R ∈ R
m×m is upper triangular. Obviously, Ax = b is equivalent to UT x = R−T b,

and

‖Ax − b‖M = ∥∥UT x − R−T b
∥∥

2,

where

‖q‖M = (
qT Mq

)1/2 and M = (
RT R

)−1
. (4.1)

We will make use of the following two projection matrices:

Pr = AT
(
AAT

)−1
A ≡ UUT and Pn = I − Pr, (4.2)

where Pr is the projection onto the range space of AT and Pn onto the null space
of A. In addition, we will use the constant

Cν = 1 + ν
√

2 − ν2

1 − ν2
> 1, ν ∈ (0,1). (4.3)

It is easy to see that as ν approaches 1, Cν ≈ 1/(1 − ν). For example, Cν ≈ 2.22 for
ν = 0.5, Cν ≈ 4.34 for ν = 0.75 and Cν ≈ 10.43 for ν = 0.9.

4.2 Two Stability Results

Given the imprecise measurement b = Ax̄ + r , consider the decoding model

x∗
γ ∈ arg min

x∈Ω

{‖x‖1 : ‖Ax − b‖M � γ
} = arg min

x∈F (γ )

‖x‖1, (4.4)

where Ω ⊂ R
n is a closed, prior-information set, γ � ‖r‖2, the weighted norm is

defined in (4.1), and

F (γ ) = {
x : ‖Ax − b‖M � γ, x ∈ Ω

}
. (4.5)

In general, x∗
γ 	= x̄ and is not strictly sparse. We will show that x∗

γ is close to x̄ under
suitable conditions. To our knowledge, stability of this model has not been previously
investigated. Our result below says that if F (γ ) contains a sufficiently sparse point x̄,
then the distance between x∗

γ and x̄ is of order γ . Consequently, If x̄ ∈ F (0), then
x∗

0 = x̄.
The use of the weighted norm ‖ · ‖M in (4.4) is purely for convenience because it

simplifies constants involved in derived results. Had another norm been used, extra
constants would appear in some derived inequalities. Nevertheless, due to the equiv-
alence of norms in R

m, the essence of those stability results remains unchanged.
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In our stability analysis below, we will make use of the following sparsity condi-
tion:

k = ν2

4

(‖u‖1

‖u‖2

)2

, for some ν ∈ (0,1). (4.6)

Theorem 4.1 Let γ � ‖Ax̄ − b‖M for some x̄ ∈ Ω . Assume that k = ‖x̄‖0 satisfies
(4.6) for u = Pn(x

∗
γ − x̄) whenever Pn(x

∗
γ − x̄) 	= 0. Then for p = 1 or 2

∥∥x∗
γ − x̄

∥∥
p

� γp(Cν + 1)
(‖Ax̄ − b‖M + γ

)
, (4.7)

where γ1 = √
n, γ2 = 1 and Cν is defined in (4.3).

Remark 4 We quickly add that if A is a standard normal random matrix, then the
KGG inequality (3.3) implies that with high probability the right-hand side of (4.6)
for u = Pn(x

∗
γ − x̄) is at least of the order m/ log(n/m). This same comment also

applies to the next theorem.

The proof of this theorem, as well as that of Theorem 4.2 below, will be given in
Sect. 4.4. Next we consider the special case γ = 0, namely,

x∗
0 ∈ arg min

x∈Ω

{‖x‖1 : Ax = b
}
.

A k-term approximation of x ∈ R
n, denoted by x(k), is obtained from x by setting

its n − k smallest elements in magnitude to zero. Obviously, ‖x‖1 ≡ ‖x(k)‖1 + ‖x −
x(k)‖1. Due to measurement errors, there may be no sparse signal that satisfies the
equation Ax = b. In this case, we show that if the observation b is generated by a
signal x̂ that has a good, k-term approximation x̂(k), then the distance between x∗

0
and x̂ is bounded by the error in the k-term approximation. Consequently, if x̂ is itself
k-sparse so that x̂ = x̂(k), then x∗

0 = x̂.

Theorem 4.2 Let x̂ ∈ Ω satisfy Ax = b and x̂(k) be a k-term approximation of x̂.
Assume that k satisfies

∥∥x̂ − x̂(k)
∥∥

1 � ‖x̂‖1 − ∥∥x∗
0

∥∥
1 (4.8)

and (4.6) for u = Pn(x
∗
0 − x̂(k)) whenever Pn(x

∗
0 − x̂(k)) 	= 0. Then for p = 1 or 2

∥∥x∗
0 − x̂(k)

∥∥
p

� (Cν + 1)
∥∥Pr

(
x̂ − x̂(k)

)∥∥
p
, (4.9)

where Cν is defined in (4.3).

It follows from (4.9) and the triangle inequality that for p = 1 or 2
∥∥x∗

0 − x̂
∥∥

p
� (Cν + 1)

∥∥Pr

(
x̂ − x̂(k)

)∥∥
p

+ ∥∥x̂ − x̂(k)
∥∥

p
, (4.10)

which has the same type of left-hand side as those in (1.4) and (1.5).
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Condition (4.8) can always be met for k sufficiently large, while condition (4.6)
demands that k be sufficiently small. Together, the two require that the measurement
b be observed from a signal x̂ that has a sufficiently good k-term approximation for
a sufficiently small k. This requirement seems very reasonable.

4.3 Comparison to RIP-based Stability Results

In the special case of Ω = R
n, the error bounds in Theorems 4.1 and 4.2 bear similar-

ities with existing stability results by Candés, Romberg and Tao [7] (see (1.4)–(1.6)
in Sect. 1 and also results in [10]), but substantial differences exist in the constants
involved and the conditions required. Overall, Theorems 4.1 and 4.2 do not contain,
nor are contained in, the existing results, though they all state the same fact that CS
recovery based on �1-minimization is stable to some extent.

The main differences between the RIP-based stability results and ours are reflected
in the constants involved. In our error bound (4.9) the constant is given by a formula
depending only on the number ν ∈ (0,1) representing the sparsity level of the signal
under construction relative to a maximal recoverable sparsity level. The sparser the
signal is, the smaller the constant is, and the more stable the recovery is supposed to
be. However, the maximal recoverable sparsity level does depend on the null space
of a measurement matrix even though it is independent of matrix representations of
that space (hence independent of nonsingular row transformations).

This is not the case, however, with the RIP-based stability results where the in-
volved constants depend on RIP parameters of matrix representations. The smaller
the RIP parameters, the smaller those constants. As has been discussed in Sect. 1.3,
any RIP-based result, be it recoverability or stability, will unfortunately break down
under nonsingular row transformation, even though the decoding model (1.10) itself
is mathematically invariant of such a transformation.

Given the monotonicity of the involved stability constants, the key difference be-
tween RIP-free and RIP-based stability results can be summarized as follows. For
a fixed row space, the former suggests that the sparser is the signal, the more sta-
ble; while the latter suggests that the better conditioned is a matrix representation
for the row subspace, the more stable. Mathematically, the latter characterization is
obviously misleading.

Theorem 4.2 requires a side condition (4.8), which is not required by RIP-based
results. We can argue that this side condition is not restrictive because stability results
such as (4.9) are only meaningful when the bound on the right-hand side is small; oth-
erwise, the solution errors in the left-hand side would be out of control. Nevertheless,
the RIP-free stability result in (4.9) has recently been strengthened by Vavasis [29]
who shows that the side condition (4.8) can be removed in the �1-norm case.

4.4 Proofs of Our Stability Results

Our stability results follow directly from the following simple lemma.

Lemma 4.3 Let x, y ∈ R
n such that ‖y‖1 � ‖x‖1, and let y − x = u + w where

uT w = 0. Whenever u 	= 0, assume that k = ‖x‖0 satisfies (4.6). Then for either
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p = 1 or p = 2, there hold

‖u‖p � Cν‖w‖p, (4.11)

and

‖y − x‖p � (Cν + 1)‖w‖p. (4.12)

Proof If u = 0, both (4.11) and (4.12) are trivially true. If u 	= 0, condition (4.6)
and the assumption ‖y‖1 � ‖x‖1 imply that w 	= 0; otherwise, by Lemma 2.1, (4.6)
would imply ‖y‖1 > ‖x‖1. For u 	= 0 and w 	= 0,

‖u + w‖1

‖u + w‖2
�

(
1 − ‖w‖1/‖u‖1√
1 + (‖w‖2/‖u‖2)2

)‖u‖1

‖u‖2
,

which follows from the triangle inequality ‖u + w‖1 � ‖u‖1 − ‖w‖1. Furthermore,

‖u + w‖1

‖u + w‖2
�

(
1 − η(u,w)

√
1 + η(u,w)2

)‖u‖1

‖u‖2
� φ

(
η(u,w)

)‖u‖1

‖u‖2
, (4.13)

where φ(t) = (1 − t)/
√

1 + t2 and

η(u,w) � max

{‖w‖1

‖u‖1
,
‖w‖2

‖u‖2

}
. (4.14)

If 1−η(u,w) � 0, then (4.11) trivially holds. Therefore, we assume that η(u,w) < 1.
If φ(η(u,w)) > ν, then it follows from (4.6) and (4.13) that

√‖x‖0 � ν

2

‖u‖1

‖u‖2
� ν/φ(η(u,w))

2

‖u + w‖1

‖u + w‖2
<

1

2

‖u + w‖1

‖u + w‖2
,

which would imply ‖x‖1 < ‖y‖1 by Lemma 2.1, contradicting the assumption of the
lemma. Therefore, φ(η(u,w)) � ν must hold. It is easy to verify that

φ(t) = 1 − t√
1 + t2

� ν and t < 1 ⇐⇒ 1

Cν

� t < 1,

where 1/Cν is the root of the quadratic q(t) � (1 − t)2 − ν2(1 + t2) that is smaller
than 1 (noting that φ(t) � ν is equivalent to q(t) � 0 for t < 1). We conclude that
there must hold η(u,w) � 1/Cν , which implies (4.11) in view of the definition of
η(u,w) in (4.14). Finally, (4.12) follows directly from the relationship y −x = u+w,
the triangle inequality, and (4.11). �

Clearly, whether the estimates of the lemma hold for p = 1 or p = 2 depends
on which ratio is larger in (4.14); or equivalently, which ratio is larger between
‖u‖1/‖u‖2 and ‖w‖1/‖w‖2. If u is from a random, (n − m)-dimensional sub-
space of R

n, then w is from its orthogonal complement—a random, m-dimensional
subspace. When n − m � m, the KGG result indicates that it is more likely that
‖u‖1/‖u‖2 < ‖w‖1/‖w‖2; or equivalently, ‖w‖2/‖u‖2 < ‖w‖1/‖u‖1. In this case,
the lemma holds more likely for p = 1 than for p = 2.
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Corollary 4.4 Let U ∈R
n×m with m<n have orthonormal columns so that UT U = I .

Let x, y ∈ R
n satisfy ‖y‖1 � ‖x‖1 and ‖UT y − d‖2 � γ for some d ∈ R

m. Define
u � (I − UUT )(y − x) and w � UUT (y − x). In addition, let k = ‖x‖0 satisfy (4.6)
whenever u 	= 0. Then

‖y − x‖p � γp(Cν + 1)
(‖UT x − d‖2 + γ

)
, p = 1 or 2, (4.15)

where γ1 = √
n and γ2 = 1.

Proof Noting that y = x + u + w and UT u = 0, we calculate

γ �
∥∥UT (x + u + w) − d

∥∥
2 = ∥∥UT w − (

d − UT x
)∥∥

2 �
∥∥UT w

∥∥
2 − ∥∥UT x − d

∥∥
2,

which implies

‖w‖2 = ∥∥UT w
∥∥

2 � γ + ∥∥UT x − d
∥∥

2. (4.16)

Combining (4.16) with (4.12), we arrive at (4.15) for either p = 1 or 2, where in the
case of p = 1 we use the inequality ‖w‖1 � √

n‖w‖2. �

Proof of Theorem 4.1 Since x̄ ∈ F (γ ) and x∗
γ minimizes the 1-norm in F (γ ), we

have ‖x∗
γ ‖1 � ‖x̄‖1. The proof then follows from applying Corollary 4.4 to y = x∗

γ

and x = x̄, and the fact that the weighted norm defined in (4.1) satisfies ‖Ax −b‖M =
‖UT x − R−T b‖2. �

Proof of Theorem 4.2 We note that condition (4.8) is equivalent to ‖x∗
0‖1 � ‖x̂(k)‖1

since ‖x̂‖1 = ‖x̂ − x̂(k)‖1 + ‖x̂(k)‖1. Upon applying Lemma 4.3 to y = x∗
0 and x =

x̂(k) with u = Pn(y − x) and w = Pr(y − x), and also noting Prx
∗
0 = Pr x̂, we have

∥∥x∗
0 − x̂(k)

∥∥
p

� (Cν + 1)
∥∥Pr

(
x̂(k) − x̂

)∥∥
p
,

which completes the proof. �

5 Uniform Recoverability

The recoverability result, Theorem 3.2, is derived essentially only for standard normal
random matrices. It has been empirically observed (see [15, 16], for example) that
recovery behavior of many different random matrices seems to be identical. We call
this phenomenon uniform recoverability. In this section, we provide a theoretical
explanation to this property.

5.1 Preliminaries

We will consider the simple case where Ω = R
n and γ = 0 so that we can make

use of the necessary and sufficient condition in Proposition 2.3. We first translate this
necessary and sufficient condition into a form more conducive to our analysis.
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For 0 < k < n, we define the following function that maps a vector in R
n to a

scalar:

λk(v) � ‖v‖1 − 2‖v(k)‖1

‖v‖2
, v 	= 0, (5.1)

where v(k) is a k-term approximation of v whose nonzero elements are the k largest
elements of v in magnitude. It is important to note that λk(v) is invariant with respect
to multiplications by scalars (or scale-invariant) and permutations of v. Moreover,
λk(v) is continuous, and achieves its minimum and maximum (since its domain can
be restricted to the unit sphere).

Proposition 5.1 Given A ∈ R
m×n with m < n, the equivalence (2.12), i.e.,

{x̄} = arg min
{‖x‖1 : Ax = Ax̄

}
,

holds for all x̄ with ‖x̄‖0 � k if and only if

0 < Λk(A) � min
{
λk(v) : v ∈ N (A) \ {0}}. (5.2)

Proof For any fixed v 	= 0, the condition ‖v‖1 > 2‖vα‖1 in (2.13) for all index sets
α with |α| � k is clearly equivalent to λk(v) > 0. After taking the minimum over all
v 	= 0 in N (A), we see that Λk(A) > 0 is equivalent to the necessary and sufficient
condition in Proposition 2.3. �

For notational convenience, given any A ∈ R
m×n with m < n, let us define the set

sub(A) = {
B ∈ R

m×(m+1) : B is a submatrix of A
}
.

In other words, each member of sub(A) is formed by m + 1 columns of A in their
original order. Clearly, the cardinality of sub(A) is n choose m + 1. We say that the
set sub(A) has full rank if every member of sub(A) has rank m. It is well known that
for most distributions, sub(A) will have full rank with high probability.

5.2 Results for Uniform Recoverability

When A ∈ R
m×n is randomly chosen from a probability space, Λk(A) is a random

variable whose sign, according to Proposition 5.1, determines the success or failure
of recovery for all x̄ with ‖x̄‖0 � k. In this setting, the following theorem indicates
that Λk(A) is a sample minimum of another random variable λk(d(B)) where B ∈
R

m×(m+1) is from the same probability distribution as A, and d(B) ∈ R
m+1 is defined

by
[
d(B)

]
i
�

∣∣det(Bi)
∣∣, i = 1, · · · ,m + 1, (5.3)

where Bi ∈ R
m×m is the submatrix of B obtained by deleting the i-th column of B .

Theorem 5.2 Let A ∈ R
m×n (m < n) with sub(A) of full rank (i.e., every member of

sub(A) has rank m). Then for k � m

Λk(A) = min
{
λk

(
d(B)

) : B ∈ sub(A)
}
, (5.4)

where d(B) ∈ R
m+1 is defined in (5.3).
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The proof of this theorem is left to Sect. 5.4.

Remark 5 Theorem 5.2, together with Proposition 5.1, establishes that recoverability
is determined by the properties of d(B), not directly those of A. If distributions of
d(B) for different types of random matrices converge to the same limit as m → ∞,
then asymptotically there should be an identical recovery behavior for different types
of random matrices.

For any random matrix B , by definition the components of d(B) are random de-
terminants (in absolute value). It has been established by Girko [18] that a wide class
of random determinants (in absolute value) does share a limit distribution (see the
book by Girko [19] for earlier results).

Theorem 5.3 (Girko) For any m, let the random elements t
(m)
ij , 1 � i, j � m, of the

matrix Tm = [t (m)
ij ] be independent,

E(t
(m)
ij ) = μ, Var(t(m)

ij ) = 1 and sup
i,j,m

E|t (m)
ij |4+δ < ∞

for some δ > 0. Then

lim
m→∞ Prob

{
log(det(Tm)2/[(m − 1)!(1 + mμ2)])√

2 logm
< t

}
= 1√

2π

∫ t

−∞
e− x2

2 dx.

(5.5)

Theorem 5.3 says that for a wide class of random determinants squared, their
logarithms, with proper scalings, converge in distribution to the standard normal law;
or the limit distribution of the random determinants squared is log-normal.

Remark 6 Since the elements of d(B) are random determinants in absolute value,
they all have the same limit distribution as long as B satisfies the conditions of The-
orem 5.3.

The elements of d(B) are not independent in limit, because any two of them are
determinants of m × m matrices that share m − 1 common columns. However, the
cause of such dependency among elements of d(B) is purely algebraic, and hence
does not vary with the type of random matrices. To stress this point, we mention that
for a wide range of random matrices B , the ratios det(Bi)/det(Bj ), i 	= j , converge
to Cauchy distribution with the cumulative distribution function 1/2 + arctan(t)/π .
This result can be found, in a slightly different form, in Theorem 15.1.1 of the book
by Girko [19].

Remark 7 We observe from (5.5) that the mean values μ only affect the scaling fac-
tor of the determinant, but not the asymptotic recoverability behavior since λk(·) is
scale-invariant, implying that measurement matrices need not have zero mean, as is
usually required in earlier theoretical results of this sort. In addition, the unit variance
assumption in Theorem 5.3 is not restrictive because it can always be achieved by
scaling.
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Fig. 4 Empirical density functions of λk(d(B)) for 2 random distributions

5.3 Numerical Illustration

To illustrate the uniformity of CS recovery, we sample the random variable λk(d(B))

for B ∈ R
m×(m+1) whose entries are i.i.d. and randomly drawn from one of the two

probability distributions: the standard normal distribution N (0,1) or the uniform dis-
tribution on the interval [0,1]. While the former has zero mean, the latter has mean
1/2. In Fig. 4, we plot the empirical density functions (namely, scaled histograms) of
λk(d(B)) for the two random distributions with different values of m, k and sample
size. Recall that successful recovery of all k-sparse signals is guaranteed for matrix
A if and only if the sample minimum of λk(d(B)) over sub(A) is positive.

As can be seen from Fig. 4, even at m = 50, the two empirical density functions
for λ10(d(B)), corresponding to the standard normal (solid line) and the uniform
distributions (small circles) respectively, are already fairly close. At m = 200, the
two empirical density functions for λ40(d(B)) become largely indistinguishable in
most places.

5.4 Proof of Theorem 5.2

The following result, established by Eydelzon [16] in a slightly different form, will
play a key role in the proof. For completeness, we include a proof for it.

Lemma 5.4 Let V be an (n − m)-dimensional subspace of R
n and k � m < n. If

v̂ ∈ V minimizes λk(v) in V , then v̂ has at least n − m − 1 zeros, or equivalently at
most m + 1 nonzeros.

Proof Let V be spanned by the orthonormal columns of Q ∈ R
n×(n−m) (so

QT Q = I ) and v̂ = Qŝ minimizes λk(v) in V for some ŝ ∈ R
n−m. Assume, with-

out loss of generality, that ‖v̂‖2 = ‖Qŝ‖2 = ‖ŝ‖2 = 1. We now prove the result by
contradiction.

Suppose that v̂ has at most n−m−2 zeros, say, v̂i = qT
i ŝ = 0 for i = 1,2, · · · , n−

m − 2 where qT
i is the i-th row of Q. Then there must exist a unit (in the 2-norm)
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vector h ∈ R
n−m that is perpendicular to ŝ and qi for i = 1,2, · · · , n − m − 2. By

construction,

(v̂ + τQh)i = 0, i = 1,2, · · · , n − m − 2,

for any scalar value τ . By setting τ sufficiently small in absolute value, say |τ | � ε,
we can ensure for i > n − m − 2 that sign((v̂ + τQh)i) = sign(v̂i) so that
∣∣(v̂ + τQh)i

∣∣ = sign(v̂i)(v̂ + τQh)i = |v̂i | + τ sign(v̂i)(Qh)i, ∀i > n − m − 2.

Now we evaluate λk(·) at v = v̂ + τQh for 0 < |τ | � ε (with a yet undecided sign
for τ ),

λk(v) = (‖v‖1 − 2
∥∥v(k)

∥∥
1

)
/
√

1 + τ 2

= (‖v̂‖1 − 2
∥∥v̂(k)

∥∥
1 + τω

)
/
√

1 + τ 2

= (
λk(v̂) + τω

)
/
√

1 + τ 2 (5.6)

where
√

1 + τ 2 = ‖v‖2 = ‖ŝ + τh‖2 and for some index set J with |J | = k,

ω =
n∑

i=n−m−1

sign(v̂i)(Qh)i − 2
∑

i∈J

sign(v̂i)(Qh)i .

If ω 	= 0, we set sign(τ ) = − sign(ω) so that τω < 0. Now a contradiction, λk(v) <

λk(v̂), arises from (5.6). So v̂ must have at least n − m − 1 zeros or at most m + 1
nonzeros. �

Proof of Theorem 5.2 In view of Lemma 5.4 with V = N (A), to find Λk(A) it suf-
fices to evaluate the minimum of λk(·) over all those vectors in N (A) \ {0} that have
at most m + 1 nonzeros.

Without loss of generality, let v ∈ N (A) \ {0} so that vi = 0 for all i > m + 1,
and let B = [b1 b2 · · · bm+1] ∈ sub(A) consist of the first m+ 1 columns of A. Then
Av = Bu = 0, where u consists of the first m + 1 elements of v. Hence, u ∈ R

m+1

spans the null space of B which is one-dimensional (recall that sub(A) has full rank).
Let Bi be the submatrix of B with its i-th column removed. Without loss of gen-

erality, we assume that det(B1) 	= 0. Clearly, the null space of B is spanned by the
vector

u =
( −1

B−1
1 b1

)

∈ R
m+1,

where, by Crammer’s rule, (B−1
1 b1)i = det(Bi+1)/det(B1), i = 1,2, · · · ,m. Since

the function λk(·) is scale-invariant, to evaluate λk(·) at v ∈ N (A) \ {0} with vi = 0
for i > m + 1, it suffices to evaluate it at d(B) � |det(B1)u|, which coincides with
the definition in (5.3).

Obviously, the exactly same argument can be equally applied to all other nonzero
vectors in N (A) which have at most m + 1 nonzeros in different locations, corre-
sponding to different members of sub(A). This completes the proof. �
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6 Conclusions

CS is an emerging methodology with a solid theoretical foundation that is still evolv-
ing. Most previous analyses in the CS theory relied on the RIP of the measurement
matrix A. These analyses can be called matrix-based. The non-RIP analysis presented
in this paper, however, is subspace-based, and utilizes the classic KGG inequality to
supply the order of recoverable sparsity. It should be clear from this non-RIP analy-
sis that CS recoverability and stability, when using the equation Ax = b, are solely
determined by the properties of the subspaces associated with A regardless of matrix
representations.

The non-RIP approach used in this paper has enabled us to derive the extended
recoverability and stability results immediately from a couple of remarkably sim-
ple observations (Lemmas 2.1 and 4.3) on the 2-norm versus 1-norm ratio in the null
space of A. The obtained extensions include: (a) allowing the use of prior information
in recovery, (b) establishing RIP-free formulas for stability constants, and (c) explain-
ing the uniform recoverability phenomenon. In our view, these new results reinforce
the theoretical advantages of �1-minimization-based CS decoding models.

As has been alluded to at the beginning, there are topics in the CS theory that are
not covered in this work, one of which is that the recoverable sparsity order given in
Theorem 3.2 can be shown to be optimal in a sense (see [4] for an argument). Nev-
ertheless, it is hoped that this work will help enhance and enrich the theory of CS,
make the theory more accessible, and stimulate more activities in utilizing prior in-
formation and different measurement matrices in CS research and practice.
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