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Abstract Due to its simplicity and efficiency, the Barzilai and Borwein (BB) gradi-
ent method has received various attentions in different fields. This paper presents a
new analysis of the BB method for two-dimensional strictly convex quadratic func-
tions. The analysis begins with the assumption that the gradient norms at the first
two iterations are fixed. We show that there is a superlinear convergence step in at
most three consecutive steps. Meanwhile, we provide a better convergence relation
for the BB method. The influence of the starting point and the condition number to
the convergence rate is comprehensively addressed.

Keywords Unconstrained optimization · Barzilai and Borwein gradient method ·
Quadratic function · R-superlinear convergence · Condition number

1 Introduction

Consider the problem of minimizing a strictly convex quadratic,

minf (x) = 1

2
xT Ax − bT x, (1.1)

where A ∈ Rn×n is a real symmetric positive definite matrix and b ∈ Rn. The Barzilai
and Borwein (BB) method for solving (1.1) takes the negative gradient as its search
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direction and updates the solution approximation iteratively by

xk+1 = xk − αk gk, (1.2)

where gk = ∇f (xk) and αk is determined by the information achieved at the points
xk−1 and xk . Specifically, denote sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Since the
matrix Dk = α−1

k I , where I is the identity matrix, can be regarded as an approxima-
tion to the Hessian of f at xk , Barzilai and Borwein [2] chose the stepsize αk such
that Dk has certain quasi-Newton property:

Dk = arg min
D=α−1I

‖Dsk−1 − yk−1‖, (1.3)

where and below ‖ · ‖ means the two norm, yielding

αk = sT
k−1sk−1

sT
k−1yk−1

. (1.4)

Comparing with the classical steepest descent (SD) method by Cauchy [4], which
takes the stepsize as the exact one-dimensional minimizer along xk − α gk ,

αSD
k = arg min

α>0
f (xk − αgk), (1.5)

the BB method often requires less computational work and speeds up the convergence
greatly. Consequently, due to its simplicity and efficiency, the BB method has been
extended or utilized in many occasions or applications. To mention just a few of
them, Raydan [11] proposed an efficient global Barzilai and Borwein algorithm for
unconstrained optimization by combining the traditional nonmonotone line search by
Grippo et al. [8]. The algorithm of Raydan was further generalized by Birgin et al. [3]
for the minimization of differentiable functions on closed convex sets, yielding an
efficient projected gradient methods. Efficient projected algorithm based on BB-like
methods have also been designed (see [6, 12]) for special quadratic programs arising
from training support vector machine, that has a singly linear constraint in addition to
box constraints. The BB method has also received much attentions in finding sparse
approximation solutions to large underdetermined linear systems of equations from
signal/image processing and statics (for example, see [13]).

Several attentions have also been paid to theoretical properties of the BB method
in spite of the potential difficulties due to its heavy nonmonotone behaviors. These
analysis proceed in the unconstrained quadratic case (this is also the case in this
paper). Specifically, Barzilai and Borwein [2] presents an interesting R-superlinear
convergence result for their method when the dimension is only two. For the general
n-dimensional strong convex quadratic function, the BB method is also convergent
(see [10]) and the convergence rate is R-linear (see [7]). A further analysis on the
asymptotic behaviors of BB-like methods can be found in [5].

In this paper, we focus on the analysis of the BB method for two-dimensional
quadratic functions. Though simple, the dimension of two has a special meaning to
the BB method. As was just mentioned, the BB method is significantly faster than the
SD method in practical computations, but there is still lack of theoretical evidences
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showing that the BB method is better than the SD method in the any-dimensional
case. Nevertheless, the notorious zigzagging phenomenon of the SD method is well
known to us (see Akaike [1]); namely, the search directions in the SD method usually
tend to two orthogonal directions when applied to any-dimensional quadratic func-
tions. Unlike the SD method, however, the BB method will not produce zigzags due
to its R-superlinear convergence in the two-dimensional case. This explains to some
extent the efficiency of the BB method over the SD method.

Our analysis begins with the assumption that the gradient norms at the first two
iterations are fixed (see Sect. 2). We show that there is a superlinear convergence step
in at most three consecutive steps. This sharpens the previous analysis by Barzilai
and Borwein [2] and Yuan [14], which only indicates that in at most four consecutive
steps, there is a superlinear convergence step. Meanwhile, we provide a better con-
vergence relation, namely, (2.13), for the BB method. The influence of the condition
number to the convergence rate is presented in Sect. 3. We find that the convergence
rate of the BB method is related to both the starting point and the problem condition.
Some remarks are also made at the end of Sect. 3.

2 A New Analysis on the BB Method

We focus on the BB method for the quadratic function (1.1) with n = 2. In this case,
since the method is invariant under translations and rotations, we assume that

A =
[

1
λ

]
, b = 0, (2.1)

where λ ≥ 1, as in Barzilai and Borwein [2]. Assume that x1 and x2 are given with

g
(i)
1 �= 0, g

(i)
2 �= 0, for i = 1 and 2. (2.2)

To analyze ‖gk‖ for all k ≥ 3, we denote gk = (g
(1)
k , g

(2)
k )T and define

qk = (g
(1)
k )2

(g
(2)
k )2

. (2.3)

Then it follows that

‖gk‖2 = (
g

(2)
k

)2
(1 + qk),

αk = sT
k−1sk−1

sT
k−1yk−1

= gT
k−1gk−1

gT
k−1Agk−1

= 1 + qk−1

λ + qk−1
.

Noticing that xk+1 = xk − αk gk and gk = Axk , we have that

gk+1 = (I − αkA)gk.
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Writing the above relation in componentwise form,

(
g

(1)
k+1

g
(2)
k+1

)
=

([
1

1

]
− 1 + qk−1

λ + qk−1

[
1

λ

])(
g

(1)
k

g
(2)
k

)

=
⎡
⎣

(λ−1)
λ+qk−1

(1−λ)qk−1
λ+qk−1

⎤
⎦

(
g

(1)
k

g
(2)
k

)
.

Therefore we get for all k ≥ 2,
⎧⎪⎨
⎪⎩

(g
(1)
k+1)

2 = (λ−1)2

(λ+qk−1)
2 (g

(1)
k )2,

(g
(2)
k+1)

2 = (λ−1)2 q2
k−1

(λ+qk−1)
2 (g

(2)
k )2.

(2.4)

In the case that λ = 1, which means that the object function has sphere contours,
the method will take a unit stepsize α2 = 1 and give the exact solution at the third
iteration. If g

(1)
2 = 0 but g

(2)
2 �= 0, we have that q2 = 0 and hence by (2.4) that g

(1)
k = 0

for k ≥ 3 and g
(2)
4 = 0, which means that the method gives the exact solution in at

most four iterations. This is also true if g
(2)
2 = 0 but g

(1)
2 �= 0 due to symmetry of

the first and second components. If g
(1)
1 = 0 but g

(2)
1 �= 0, we have that q1 = 0 and

g
(2)
3 = 0. Then by considering x2 and x3 as two starting points, we must have gk = 0

for some k ≤ 5. The symmetry works for the case that g
(2)
1 = 0 but g

(1)
1 �= 0. Thus we

may assume that λ > 1 and the assumption (2.2) holds, for otherwise the method has
the finite termination property.

Now, substituting (2.4) into the definition of qk+1, we can obtain the following
recurrence relation

qk+1 = qk

q2
k−1

. (2.5)

In other words, the positive sequence {qk} only depends upon the initial values q1
and q2. If the starting points x1 and x2 are given, then g1 and g2 are fixed and so are
q1 and q2. However, as λ increases, λ−1

λ+qk−1
is closer to 1 from the left side and hence

(g
(1)
k )2 and (g

(2)
k )2 become bigger. If q1 and q2 were unchangeable, we would be able

to draw from the relation (2.4) the conclusion that the convergence of the BB method
becomes slow as the problem becomes more ill-conditioning. As analyzed in Sect. 3,
however, this is not the case since q1 and q2 are closely related to the starting point
and the condition number λ.

To proceed with our analysis, we denote Mk = lnqk . It follows from the recurrence
relation (2.5) that

Mk+1 = Mk − 2Mk−1, (2.6)

which implies the analytical expression of Mk ,

Mk = √
2
k
τ cos

(
φ + k arctan(

√
7)

)
, (2.7)
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where τ is some constant only related to q1 and q2. If it happens that

(
g

(1)
i

)2 = (
g

(2)
i

)2
for i = 1 and 2, (2.8)

we know from (2.4) and (2.5) that qk ≡ 1 and (g
(1)
k )2 = (g

(2)
k )2 for all k ≥ 1, which

indicates that the method is identical to the SD method and the generated gradient
norm sequence {‖gk‖} is only linearly convergent with factor (λ− 1)/(λ+ 1). In this
case, the value of τ in (2.7) is zero. In the following, we assume that (2.8) does not
hold and hence τ �= 0. Further, without loss of generality, we assume that τ > 0.

To improve the result of Barzilai and Borwein [2], we analyze the whole gradient
norm ‖gk‖ from the beginning (previously, the second component of gk , that is g

(2)
k ,

was analyzed at the first stage). As a matter of fact, we have from (2.4) that

‖gk+1‖2 = 1 + qk+1

1 + qk

(λ − 1)2 q2
k−1

(λ + qk−1)2
‖gk‖2

= (λ − 1)2 (qk + q2
k−1)

(1 + qk)(λ + qk−1)2
‖gk‖2


= (λ − 1)2 rk ‖gk‖2, (2.9)

where

rk = qk + q2
k−1

(1 + qk)(λ + qk−1)2
.

Notice that the quantity rk has the following properties:

(i) rk ≤ 1 for all k ≥ 1;
(ii) If qk < 1 and qk−1 < 1,

rk ≤ qk + q2
k−1

λ2
≤ 2 max

{
qk, q2

k−1

};
(iii) If qk > 1 and qk−1 > 1,

rk = q−1
k + q−2

k−1

(1 + q−1
k )(1 + λq−1

k−1)
2

≤ 2 max
{
q−1
k , q−2

k−1

}
.

Using the above properties of rk , we have from (2.9) that

‖gk+1‖2 ≤ 2(λ − 1)2 uk ‖gk‖2,

where

uk =

⎧⎪⎨
⎪⎩

max{qk, q
2
k−1}, if qk < 1 and qk−1 < 1;

max{q−1
k , q−2

k−1}, if qk > 1 and qk−1 > 1;
1
2 , otherwise.
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Consequently,

‖gk+3‖2 ≤ 8(λ − 1)6

(
2∏

j=0

uk+j

)
‖gk‖2. (2.10)

Denoting

hk+j = cos
(
φ + (k + j) arctan(

√
7)

)
,

we can obtain from (2.10) and (2.7) that

‖gk+3‖2 ≤ 8(λ − 1)6 exp

(
τ

√
2
k

2∑
j=0

vk+j

)
‖gk‖2,

where for j = 0,1,2,

vk+j =

⎧⎪⎪⎨
⎪⎪⎩

max{√2
j
hk+j ,

√
2
j+1

hk+j−1}, if hk+j < 0 and hk+j−1 < 0;
max{−√

2
j
hk+j , −√

2
j+1

hk+j−1}, if hk+j > 0 and hk+j−1 > 0;
0, otherwise.

Noticing that
∑2

j=0 vk+j is a univariant function with φ, we can verify that

max
φ∈[0,2π]

2∑
j=0

vk+j = cos

(
π

2
+ arctan(

√
7)

)
= −

√
14

4
(2.11)

(a strict proof can be found in the Appendix). Thus we can obtain

‖gk+3‖2 ≤ 8(λ − 1)6 exp

(
−

√
14

4
τ

√
2
k
)

‖gk‖2,

or, equivalently,

‖gk+3‖ ≤ 2
√

2(λ − 1)3 exp

(
−

√
14

8
τ

√
2
k
)

‖gk‖. (2.12)

A corollary of (2.12) is that ‖gk+3‖
‖gk‖ = ∏2

i=0
‖gk+i+1‖
‖gk+i‖ tends to zero as k → ∞ and

hence

lim
k→∞ min

{‖gk+1‖
‖gk‖ ,

‖gk+2‖
‖gk+1‖ ,

‖gk+3‖
‖gk+2‖

}
= 0.

This means that the BB method has a Q-superlinear convergence step in at most three
consecutive steps. This sharpens the analysis in Barzilai and Borwein [2] and Yuan
[14], which only indicates that there is a superlinear convergence step in at most four
consecutive steps.
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For any positive integer k ≥ 2, we can write k = 3l + i0 for some integers l ≥ 0
and i0 ∈ [2, 4]. Notice by (2.9) and rk ≤ 1 that ‖gk‖ ≤ (λ − 1)k−2‖g2‖ for any k ≥ 2.
By this and (2.12), we can obtain

‖gk‖ ≤ (
√

2)3l (λ − 1)3l exp

(
−

√
14

8
τ

l−1∑
i=0

√
2

3i+i0

)
‖gi0‖

≤ √
2

3l
(λ − 1)3l+i0−2 exp

(
−

√
14

8
τ

l−1∑
i=0

√
2

3i+i0

)
‖g2‖

≤ (
√

2)3l (λ − 1)3l+i0−2 exp
(−c1τ

(√
2

3l+i0 − √
2
i0))‖g2‖

≤ (
√

2)k−1(λ − 1)k−2 exp
(−c1τ

(√
2
k − 4

))‖g2‖, (2.13)

where

c1 =
√

14 + 4
√

7

56
≈ 0.2558.

The relation (2.13) indicates that the gradient norm sequence {‖gk‖} is R-superlinear
convergent with order

√
2, which is the same as before. As shown in Sect. 3, how-

ever, the convergence relation (2.13) improves the previous one in Yuan [14]. This is
because our analysis provides a R-superlinear factor of exp(−c1τ), which is better
than the previous one.

We sum up the above analysis into the following theorem.

Theorem 2.1 Consider the BB method for solving the quadratic function (1.1) with
n = 2 and (2.1). Suppose that g1 and g2 satisfy (2.2) but not (2.8). Then the method
is R-superlinearly convergent and gives the convergence relation (2.13).

Two assumptions have been used in the above theorem for the two starting points
x1 and x2. If the relation (2.2) does not hold, namely, if at least one component of
g1 and g2 is zero, there must be gk = 0 for some k ≤ 5 and the method terminates
finitely. In exact arithmetics, if (2.8) holds, we will have that (g

(1)
k )2 = (g

(2)
k )2 for all

k ≥ 1 and the method is only linearly convergent, giving ‖gk+1‖ = λ−1
λ+1‖gk‖ for all

k ≥ 1. In practical computations, this equality will usually be destroyed due to the
existence of the numerical errors. Therefore we can always observe the superlinear
convergence behavior of the BB method numerically for the two-dimensional case.

3 Influence of x1 and λ to the Convergence Rate

To begin with, we notice by (2.6) that the sequence {Mk} is of the same recurrence
relation as the sequence {mk} in Yuan [14] (see the relation (3.1.44) there; a simi-
lar sequence is also defined in Barzilai and Borwein [2]). Specifically, by using the
analytical expression of mk ,

mk = √
2
k
θ cos

(
φ + k arctan(

√
7)

)
, (3.1)
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where θ is also assumed to be positive, the following convergence relation has been
established in Yuan [14],

‖gk‖ ≤ √
2|t2|(λ − 1)k−2λ(2 cos( 3

2 arctan(
√

7)) θ (
√

2)k−8), (3.2)

where |t2| = |g(2)
2 |. Further, the relation (3.1.41) in Yuan [14] indicates that λ2mk =

(g
(1)
k )2/(g

(2)
k )2 = qk . It follows from this and the definition Mk = lnqk that mk =

Mk/(2 lnλ). Then by comparing the expressions (2.6) and (3.1), we get the following
relation between the values of τ and θ ,

θ = τ

2 lnλ
. (3.3)

Submitting this into the convergence relation (3.2), we obtain

‖gk‖ ≤ √
2 |t2| (λ − 1)k−2 exp

(−c2 τ
√

2
k)

(3.4)

where

c2 = − cos( 3
2 arctan(

√
7))

16
=

√
8 − 5

√
2

64
≈ 0.0151.

It is obvious that our new estimate (2.13) is an improvement over (3.4).
We now analyze how the starting point x1 and the problem condition λ influences

the convergence rate of the BB method. To this aim, we assume that the starting point
x1 = (x

(1)
1 , x

(2)
1 )T is given and an SD step is taken during the first iteration. Denoting

C = (x
(1)
1 )2

(x
(2)
1 )2

, (3.5)

it is easy to see from gk = Axk and the definition of qk in (2.3) that

q1 = C

λ2
. (3.6)

As the SD step provides the orthogonal condition gT
2 g1 = 0 and the dimension n is

two, we can see that

q2 = 1

q1
. (3.7)

Recall that Mk = lnqk . By (2.7), we can obtain the following nonlinear system of τ

and φ, {√
2 τ cos(φ + arctan(

√
7)) = lnq1,

2 τ cos(φ + 2 arctan(
√

7)) = lnq2.
(3.8)

Summing the two relations in this system and using (3.7), we can solve

φ = − arctan

√
7

7
.
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Then by the first relation in (3.8) and (3.6), we can obtain

τ = 2
√

14

7
ln

C

λ2
. (3.9)

In this special case, we give the following theorem by replacing this value to (2.13)
and using ‖g2‖ ≤ (λ − 1)‖g1‖ in Theorem 2.1. Since τ is assumed to be positive in
Sect. 2 without loss of generality, we need to change it to |τ | here to deal with the
case that the value of τ in (3.9) is likely to be negative. If C is fixed, it is interesting

to notice that the absolute value of θ in (3.3) tends to the constant 2
√

14
7 when λ goes

to infinity; namely, limλ→∞ |θ | = 2
√

14
7 .

Theorem 3.1 Consider the BB method for solving the quadratic function (1.1) with
n = 2 and (2.1). Suppose that the starting point x1 = (x

(1)
1 , x

(2)
1 )T is given and an

SD step is taken at the first iteration. If x
(1)
1 x

(2)
1 �= 0 and C �= λ2, then the method is

R-superlinearly convergent and gives the convergence relation

‖gk‖ ≤ [√
2(λ − 1)

]k−1 exp

(
−1 + 2

√
2

14

∣∣∣∣ln C

λ2

∣∣∣∣(
√

2
k − 4

))‖g1‖. (3.10)

If the starting point x1 is such that x
(1)
1 x

(2)
1 = 0, it is easy to see that the BB method

will give the solution in at most four iterations. If C = λ2, we will have that qk = 1
and ‖gk+1‖ = λ−1

λ+1‖gk‖ for all k ≥ 1, which implies that the method is only linearly
convergent.

If C �= λ2, the exponential term in (3.10) dominates the convergence rate of the
gradient norm. Consider the term | ln C

λ2 | as a function of λ, when C is held fixed. This

function is monotonically decreasing for λ2 ∈ (1,C) and monotonically increasing in
(C,∞) (here note that the first case may not happen if C ≤ 1). Therefore we have the
following statements:

(i) the convergence rate of ‖gk‖ is decreasing for λ2 ∈ (1, C);
(ii) the convergence rate of ‖gk‖ is increasing for λ2 ∈ (C, ∞).

Let us now consider the region of x1 such that the convergence rate of ‖gk‖ is
decreasing and increasing, respectively. At first, we see that for a fixed value of λ,
the value of | ln C

λ2 | is larger if C < λ2 becomes smaller or if C > λ2 becomes bigger.
This indicates that the convergence is faster when the starting point is close to any of
the two eigenvectors of the Hessian. Further, for a fixed value of λ, we see that

(iii) when x1 ∈ Ω1(λ) = {x : |x(1)| > λ|x(2)| > 0}, the convergence rate of ‖gk‖ has
a tendency to decrease with λ;

(iv) when x1 ∈ Ω2(λ) = {x : 0 < |x(1)| < λ|x(2)|}, the convergence rate of ‖gk‖ has
a tendency to increase with λ.

Then for any positive number l > 0, denoting the unit ball B(l) = {x : ‖x‖ ≤ l}, we
can obtain

r(λ) := Measure of Ω1(λ) ∩ B(l)

Measure of Ω2(λ) ∩ B(l)
= arctan 1

λ
π
2 − arctan 1

λ

. (3.11)
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Since λ > 1, we have arctan 1
λ

< π
4 and hence r(λ) < 1. In addition,

lim
λ→∞ r(λ) = 0. (3.12)

Therefore we can conclude that the BB method has a greater possibility such that it
converges faster as the problem condition increases and this possibility tends to one
when λ goes to infinity.

To some extent, the analysis in the previous paragraph is similar to the one in
Nocedal et al. [9] for the SD method in the two-dimensional case, although the latter
is only linearly convergent. As was shown from Fig. 12 in Nocedal et al. [9] and the
related discussions, for a fixed starting point, the convergence rate of the SD method
improves when the condition number tends to infinity. The analysis for either the
BB method or the SD method in the two-dimensional case is not typical. It remains
under investigation how the problem condition influences the convergence of the BB
method for higher-dimensional problems.
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Appendix

The function
∑2

j=0 vk+j is a periodic function with φ and the period is just π . To
establish the relation (2.11), we prove the following equivalent lemma.

Lemma 4.1 Denote c = arctan(
√

7), h̄j = cos(ψ + j c) and

v̄j =

⎧⎪⎨
⎪⎩

max{√2
j
h̄j ,

√
2
j+1

h̄j−1}, if h̄j < 0 and h̄j−1 < 0;
max{−√

2
j
h̄j , −√

2
j+1

h̄j−1}, if h̄j > 0 and h̄j−1 > 0;
0, otherwise.

Define w(ψ) = ∑2
j=0 v̄j . Then we have that

max
ψ∈[0,π]

w(ψ) = cos

(
π

2
+ c

)
= −

√
14

4
.

Proof Denote

I1 =
[

0,
π

2
− c

]
, I2 =

[
π

2
− c,

3

2
π − 3c

]
,

I3 =
[

3

2
π − 3c,

π

2

]
, I4 =

[
π

2
,

3

2
π − 2c

]
,
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I5 =
[

3

2
π − 2c,

π

2
+ c

]
, I6 =

[
π

2
+ c, π

]
.

Then we have

v̄0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−√
2 cos(ψ − c), for ψ ∈ I1;

− cosψ, for ψ ∈ I2 ∪ I3;
0, for ψ ∈ I4 ∪ I5;√

2 cos(ψ − c), for ψ ∈ I6,

v̄1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−√
2 cos(ψ + c), for ψ ∈ I1;

0, for ψ ∈ I2 ∪ I3;
2 cosψ, for ψ ∈ I4;√

2 cos(ψ + c), for ψ ∈ I5 ∪ I6

and

v̄2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for ψ ∈ I1;
2
√

2 cos(ψ + c), for ψ ∈ I2;
2 cos(ψ + 2c), for ψ ∈ I3 ∪ I4;
0, for ψ ∈ I5 ∪ I6.

Therefore

w(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−√
2(cos(ψ − c) + cos(ψ + c)), for ψ ∈ I1;

− cosψ + 2
√

2 cos(ψ + c), for ψ ∈ I2;
− cosψ + 2 cos(ψ + 2c), for ψ ∈ I3;
2(cosψ + cos(ψ + 2c)), for ψ ∈ I4;√

2 cos(ψ + c), for ψ ∈ I5;√
2(cos(ψ − c) + cos(ψ + c)), for ψ ∈ I6.

We plot the function w(ψ) over [0,π] as in Fig. 1. By some one-dimensional
calculus, it is easy to verify that w(ψ) has the properties:

(i) it is monotonically increasing on intervals I1, I3 and I5;
(ii) it is monotonically decreasing on intervals I2 and I6;

(iii) it is convex on the interval I4.

Consequently, we have that

max
ψ∈[0,π]

w(ψ) = max

{
w

(
π

2
− c

)
, w

(
π

2

)
, w

(
π

2
+ c

)}
= −

√
14

4
,

which completes the proof. �
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Fig. 1 Function w(ψ) over
[0,π ]
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