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Abstract
Let A be a finite-dimensional local algebra over an algebraically closed field, let J
be the radical of A. The modules we are interested in are the finitely generated left
A-modules. Projective modules are always reflexive, and an algebra is self-injective iff
all modules are reflexive.We discuss the existence of non-projective reflexivemodules
in case A is not self-injective. We assume that A is short (this means that J 3 = 0). In a
joint paper with Zhang Pu, it has been shown that 6 is the smallest possible dimension
of A that can occur and that in this case the following conditions have to be satisfied:
J 2 is both the left socle and the right socle of A and there is no uniform ideal of length
3. The present paper is devoted to showing the converse.

Keywords Short local algebra · Reflexive module · Gorenstein-projective module ·
Bristle · Atom · Bar · Bristle-bar layout

Mathematics Subject Classification 16G10 · 13D07 · 16E65 · 16G50 · 16L30

1 Introduction

Let k be an algebraically closed field. Let A be a finite-dimensional local k-algebra
with radical J . The algebra A is said to be short, provided J 3 = 0. Let e = dim J/J 2

and s = dim J 2. If A is short, then the pair (e, s) is called the Hilbert type of A. The
modules to be considered in this paper are usually left A-modules, and always finitely
generated. In case A is a short local algebra of Hilbert type (e, s), the local modules of
length e and Loewy length at most 2 are of interest; we call them the atoms of the short
local algebra A. Several relevant, but standard definitions will be recalled in Sect. 1.4.
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196 C. M. Ringel

Our aim is to discuss the existence of non-projective reflexive modules over a short
local algebra A. Already in 1971, Ramras [2] asked for a characterization of the rings
with the property that all reflexive modules are projective.

Of course, if A is self-injective, then all modules are reflexive. Thus, wewill assume
that A is not self-injective. In cooperation with Zhang Pu, it has been shown that the
existence of a non-projective reflexive module implies that 2 ≤ s ≤ e − 1, see [8]:
thus the dimension of A has to be at least 6, and if A is 6-dimensional, the Hilbert type
of A has to be (3, 2). Therefore, as a first test case, it seems reasonable to consider in
detail the short local algebras of Hilbert-type (3, 2). This is done in the present note.
From now on, A will be a short local algebra of Hilbert type (3, 2). Let us stress that
in our case the atoms are the local modules of length 3 and Loewy length 2.

Theorem 1.1 Let k be an algebraically closed field. Let A be a short local k-algebra
of Hilbert type (3, 2) with radical J . The following conditions are equivalent:

(i) J 2 = soc A A = soc AA and there is no uniform left ideal with length 3.
(ii) There is a reflexive atom.
(iii) There is a non-projective reflexive module.

The implication (iii) �⇒ (i) has essentially been shown in [8] (but phrased
differently), see 7.3 below. Since the implication (ii) �⇒ (iii) is trivial, it remains
to show the implication (i) �⇒ (ii); this is the target of the present paper. The proof
of this implication will be based on a study of the submodules of A J of length 2, 3
and 4. The proof will be given in 9.6 by showing that there are elements a ∈ J \ J 2

such that A/Aa is an atom which is both torsionless and extensionless; therefore
Aa = �(A/Aa) is a reflexive atom (for any module M , we denote by �M the first
syzygy module of M , the kernel of a projective cover of M). For the purpose of this
paper, an algebra A will be said to be special provided A is a short local algebra
of Hilbert type (3, 2) satisfying the condition (i). Thus our aim is to show that any
special algebra has reflexive atoms. It seems that similar considerations may show
that any special algebra has even Gorenstein-projective atoms, at least if k is large,
say uncountable.

1.1 The Use of 3 -Kronecker Modules

The modules of Loewy length at most 2 are just the modules annihilated by J 2, thus
the L(3)-modules, where L(3) = A/J 2. The L(3)-modules correspond nicely to
the K (3)-modules, where K (3) is the path algebra of the 3-Kronecker quiver. We
will recall the definition of the 3-Kronecker quiver at the beginning of Sect. 2. The
relationship between K (3)-modules and L(3)-modules is furnished by the push-down
functor π : mod K (3) → mod L(3), see the beginning of Sect. 6. We say that a K (3)-
moduleW with dimW = (3, 2) is special provided thatW is faithful and EndW = k,
or, equivalently, provided that W is faithful and has no submodule which is simple
injective or which is uniform with length 3, see Proposition 2.1. Note that a short local
algebra A is special iff A J = πW for a special K (3)-module W , see 6.5 and 7.3.
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1.2 Bristles and Bars

A bristle (in any length category) is an indecomposable object of length 2. If the
submodule B of the module M is a bristle, we call B a subbristle of M . If W is a
special K (3)-module, the number of subbristles of W will be called the bristle type
of W , it turns out that the bristle type of any special K (3)-module is equal to 1, 2, 3
or ∞, see 4.2. A 4-dimensional submodule V of a special K (3)-module W will be
called a bar provided V is not faithful. Given a special K (3)-module, the subbristles
and the bars in W are the obstacles for atoms to be extensionless or torsionless, see
Propositions 9.3 and 9.4. Therefore, we introduce the bristle-bar layout of W in Sect.
4.1. As we will see, the shape of the bristle-bar layout only depends on the bristle type
of W . For each bristle type, we will present a coefficient quiver for W , as well as the
corresponding bristle-bar layout in 4.2.

1.3 Outline

Being interested in a special algebra A with radical J , the main object to look at will
be the projective space PE , where E = J/J 2. Note that PE is a natural parameter
space for the set of isomorphism classes of atoms, see 9.1. We will use the fact that
E is the top of the left module A J , as well as the top of the right module JA. As we
have mentioned, the subbristles and the bars in A J and in JA have to be studied, thus
the left and the right bristle-bar layout of the algebra A.

Sections 2–5 will be devoted to the 3-Kronecker quiver K (3). The relationship
between K (3)-modules and L(3)-modules is discussed at the beginning of Sect. 6.
The proof of Theorem 1.1 is given at the end of Sect. 9. We should stress that Sects. 4
and 5 which provide coefficient quivers for the special K (3)-modules are not essential
for the proof of Theorem 1.1.

Section 12 is devoted to commutative algebras where already all four bristle types
do occur. And it turns out that for any special commutative algebra, all reflexive atoms
are Gorenstein-projective.

1.4 Some Relevant Definitions

For the benefit of the reader, the referees have suggested to recall relevant definitions
(further details may be found in [6] as well as in Sect. 2 of [8]). Let M be a module.
The module M is said to be torsionless, provided it can be embedded into a projective
module. The module M is said to be extensionless, provided Ext1(M, A A) = 0. A
left A A-approximation of M is a map f : M → P , where P is projective, such
that any map g : M → P ′ with P ′ projective, can be factorized as g = g′ f with
g′ : P → P ′. Such a left A A-approximation f is said to be minimal provided the
only direct summand of P containing f (M) is P itself. Any module M has a minimal
left A A-approximation fM , and the cokernel of fM is denoted by �M (and called the
agemo of M). Of course, M is torsionless iff fM is a monomorphism, and in this case
the canonical exact sequence
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198 C. M. Ringel

0 → M
fM−−−−→ P → �M → 0

is said to be an �-sequence. The modules of the form �M are extensionless, and any
non-projective indecomposable extensionless module is of this form.

The right A-module M∗ = Hom(M, A) is called the A-dual of M . Let φM : M →
M∗∗ be defined by φM (m)( f ) = f (m) form ∈ M , f ∈ M∗. Clearly, M is torsionless
provided that φM is injective, and M is called reflexive provided that φM is bijective. It
is important to be aware thatM is reflexive iff bothmodulesM and�M are torsionless.

ThemoduleM is said to beGorenstein-projective provided there is an exact complex

· · · −−−−→ P1
f1−−−−→ P0

f0−−−−→ P−1 −−−−→ · · ·

with all modules Pi projective, and which remains exact when we form its A-dual,
such that M is the image of f0. The Gorenstein projective modules are reflexive, but
usually reflexive modules will not be Gorenstein-projective.

Finally, we recall that a module of finite length is said to be uniform provided its
socle is simple.

2 K(3)-Modules

The 3-Kronecker quiver K (3) is given by two vertices which wewill label 0 and 1, and
three arrows 0 → 1. Alternatively, we may start with a 3-dimensional vector space E
over k (considered as the arrow space of the quiver) and select, if necessary, a basis of E
as the arrowsof the quiver.A3-Kroneckermodule (or K (3)-module) is a representation
M of K (3), that means: it is of the formM = (M0, M1;φM : E⊗k M0 → M1), where
M0, M1 are (finite-dimensional) vector spaces and φM is a linear map. In case this
map is a canonical one, we just will write M = (M0, M1). If M, M ′ are 3-Kronecker
modules, a homomorphism f : M → M ′ is a pair f = ( f0, f1) of linear maps
fi : Mi → M ′

i (where i = 0, 1) such that φM ′(1 ⊗ f0) = f1φM . The K (3)-modules
form an abelian category denoted by mod K (3). There are two simple K (3)-modules,
namely S0 = (k, 0) and S1 = (0, k). The module S0 is injective, the module S1 is
projective.

IfM is a K (3)-module, the pairdimM = (dim M0, dim M1) is called the dimension
vector of M (it is an element of the Grothendieck group Z

2 of mod K (3)). We use
the bilinear form [−,−] on Z

2 defined by [(z0, z1), (z′0, z′1)] = z0z′o + z1z′1 − 3z0z′1,
for z0, z1, z′0, z′1 ∈ Z. Note that we have [dimM,dimM ′] = dimHom(M, M ′) −
dim Ext1(M, M ′), for any pair M, M ′ of K (3)-modules, see [3]. We are going to
define some important K (3)-modules. If x1, . . . , xn are elements in a vector space F ,
we denote by 〈x1, . . . , xn〉 the subspace of F generated by x1, . . . , xn .

(a) Atoms. For 0 = a ∈ E , let ˜C(a) = ˜C(〈a〉) = (k, E/〈a〉). This is an atom,
any atom is obtained in this way, and ˜C(a), ˜C(a′) are isomorphic iff 〈a〉 = 〈a′〉. The
function a �→ ˜C(a) provides a bijection between PE and the set of isomorphism
classes of atoms.
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The Short Local Algebras of Dimension... 199

(b)Bristles. Ifa1, a2 are linearly independent in E , then ˜B(a1, a2) = ˜B(〈a1, a2〉) =
(k, E/〈a1, a2〉). This is a bristle, any bristle is obtained in this way, and ˜B(a1, a2),
˜B(a′

1, a
′
2) are isomorphic iff 〈a1, a2〉 = 〈a′

1, a
′
2〉. The function 〈a1, a2〉 �→ ˜B(a1, a2)

provides a bijection between the set of lines in PE and the set of isomorphism classes
of bristles.

(c) Atoms and bristles. If 0 = a ∈ E and l is a line in PE , then 〈a〉 ∈ l iff ˜C(a)

maps onto ˜B(l).

2.1 K(3)-ModulesWhich are Not Faithful

If z is a non-zero element of E , let mod K (3)/〈z〉 be the category of all K (3)-modules
annihilated by z. Then, of course, mod K (3)/〈z〉 is equivalent to the category of
2-Kronecker modules. We will use the well-known structure of the category of 2-
Kronecker modules. In particular, we need the following facts:

The 2-Kroneckermoduleswith dimension vector (2, 2)without a simple direct sum-
mand are either decomposable, then a direct sum of 2 bristles, or else indecomposable,
then an extension of a bristle by itself. An indecomposable 2-Kronecker-module has
a unique factor module which is a bristle, and this bristle is also the unique subbristle.

There is only one isomorphism class of indecomposable 2 -Kronecker modules
with dimension vector (3, 2). IfW is such a module, any bristle 2-Kronecker module
occurs as a submodule of W .

LetW be a K (3) -module. There is an atomwhich generatesW iffW is not faithful.
And if W is a faithful K (3)/〈a〉-module, then ˜C(a) is the only atom which generates
W .

Proposition 2.1 Let W be a K (3)-module W with dimW = (3, 2). The following
conditions are equivalent:

(i) EndW = k.
(ii) W is indecomposable and has no uzniform submodule of length 3.
(iii) W has no submodule which is simple injective or which is uniform and has length

3.

Proof (i) �⇒ (ii). We assume that EndW = k. ThenW is indecomposable. Assume
that U is a uniform submodule of W of length 3. We have dimU = (2, 1) and
therefore dimW/U = (1, 1). We use the homological bilinear form [−,−]. We
have [dimW/U ,dimU ] = [(1, 1), (2, 1)] = 0. Since W is indecomposable, W is
a non-trivial extension of U by W/U , therefore Ext1(W/U ,U ) = 0. It follows that
Hom(W/U ,U ) = 0, therefore EndW = k.

(ii) �⇒ (iii) is trivial, since a simple injective submodule would be a direct
summand.

(iii) �⇒ (i). We assume that W has no submodule which is simple and injective
or which is uniform and has length 3. Since W has no direct summand S0, any proper
direct decomposition has to be of the form W = W ′ ⊕ W ′′ with dimW ′ = (1, 1) and
dimW ′′ = (2, 1). However, in this case, W ′′ is uniform of length 3. Thus, we see that
W is indecomposable. Assume that EndW = k. Since W is indecomposable, EndW
is a local ring. Since it operates on the vector spaces W0 (of dimension 3) and W1 (of
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200 C. M. Ringel

dimension 2), we see that EndW cannot be a division ring. It follows that there is a
non-zero endomorphism φ ofW withφ2 = 0.Let I be the image of φ and K the kernel
of φ, thus we deal with submodules I ⊆ K of W . Since I is isomorphic to W/K ,
we must have dimI = (1, 1) and therefore dimK = (2, 1). If K is decomposable,
then K has a direct summand of the form S0, but S0 is injective and thus also W has a
simple injective direct summand. If K is indecomposable, then K is a uniformmodule
of length 3. Both cases are impossible. ��

We will be interested in the faithful 3-Kronecker modules W with dimW = (3, 2)
and EndW = k; as we have mentioned, we call them just the special K (3)-modules.

Lemma 2.2 Let W be a K (3)-module with dimW = (3, 2) and EndW = k. Then the
indecomposable submodules of W of length 3 are atoms.

Proof This follows directly from 2.3. Namely, an indecomposable module of length
3 is either uniform or an atom, but W has no uniform submodule of length 3. ��

If M, N are modules, the largest submodule of M generated by N (thus the sum of
the images of all homomorphisms from N to M) is called the trace of N in M .

Proposition 2.3 Let W be a special K (3)-module. Let 0 = a ∈ E . The following
conditions are equivalent:

(i) The atom ˜C(a) has no factor module which is a subbristle of W .
(ii) The trace of ˜C(a) in W is an atom.
(ii′) The trace of ˜C(a) in W has length 3.

Let us add: If the trace of ˜C(a) in W is an atom, then ˜C(a) is cogenerated by W.
The converse is (of course) not true.

Proof (i) implies (ii). We assume that ˜C(a) has no factor module which is a subbristle
of W . Using the bilinear form [−,−], we see that there is a non-zero homomorphism
φ˜C(a) → W . The image cannot be of length 2, since otherwise the image would be
a subbristle of W . Thus φ is a monomorphism. Let D be the image of φ. We claim
that D is the trace of ˜C(a) in W . Otherwise, there is a homomorphism ψ˜C(a) → W
with ψ(a) /∈ D. Then N = Im φ + Imψ has length 4, and is generated by ˜C(a), thus
not faithful. It follows that N generates a bristle B which is also a subbristle of N , see
2.2. In particular, B is a subbristle of W . Now ˜C(a) generates N and N generates B,
thus ˜C(a) generates B. But this means that B is a factor module of ˜C(a), in contrast
to our assumption.

(ii′) implies (i). We assume that the trace D of ˜C(a) in W has length 3. We claim
that D is indecomposable. Otherwise, D would have a direct summand of the form S0
or S1. But W has no submodule of the form S0, since S0 is injective and W is special,
and S1 is not generated by ˜C(a). Since D is indecomposable and has length 3, Lemma
2.2 asserts that D is an atom. Assume that ˜C(a) has a factor module B which is a
subbristle of W . Since D is an atom, B � D. But this contradicts the assumption that
D is the trace of ˜C(a) in W . ��
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The Short Local Algebras of Dimension... 201

3 Bristle and Bar Submodules of Special K(3)-Modules

Let W be a K (3)-module with dimW = (3, 2). We recall that an indecomposable
submodule of W of length 2 is called a subbristle of W . A bar inW is a submodule of
W with dimension vector (2, 2) which is not faithful.

A detailed study of the subbristles and bars of a special K (3)-module will be given
in Sects. 4 and 5. Section 3 provides only some partial information which will be
needed in the proof of Theorem 1.1, namely Propositions 3.7 and 3.8.

3.1 The Structure of a Bar

Let W be a special K (3)-module.

(a) There are three different kinds of bars V in W :

• V is the direct sum of two isomorphic bristles, say of bristles isomorphic to B
(then all 3-dimensional submodules are isomorphic to B ⊕ S0).

• V is the direct sum of two non-isomorphic bristles, say V = B1 ⊕ B2 (then V
contains no further bristle).

• V is indecomposable and contains precisely one bristle.

(b) Any bar contains a bristle.
(c) Any bar has a factor module which is a subbristle of V , thus of W .
(d) All indecomposable submodules of length 3 of a bar are isomorphic (Note that

indecomposable submodules of length 3 do not exist iff V is the direct sum of two
isomorphic bristles).

Proof This follows directly from the classification of the 2-Kronecker modules, as
mentioned in 2.2. Namely, assume that the bar V is annihilated by 0 = z ∈ E , thus it
may be considered as a K (3)/〈z〉-module (thus as a 2-Kronecker module). In this way,
V is just a 4-dimensional 2-Kronecker module without a simple direct summand. For
the proof of (d), let U be an indecomposable submodule of V of length 3. Now any
submodule of V is again a K (3)/〈z〉-module. Since W has no uniform submodule of
length 3, we see that U has to be local. Thus U is a projective cover of S0 considered
as a K (3)/〈z〉-module. ��
Lemma 3.1 Let W be a special K (3)-modules and B, B ′ different subbristles of W ,
then B ∩ B ′ = 0, and B ⊕ B ′ is a bar.

Proof If B ∩ B ′ = 0, then B + B ′ is a submodule of W with dimension vector (2, 1),
thus either uniformor isomorphic to B⊕S1, impossible. Thus B∩B ′ = 0 and therefore
B + B ′ = B ⊕ B ′. The annihilator of a bristle is a 2-dimensional subspace of E . The
annihilator of B ⊕ B ′ is the intersection of the annihilator of B and the annihilator of
B ′, thus non-zero. ��
Lemma 3.2 Let W be a special K (3)-module. Let N , N ′ be different bars in W. Then,
there is a bristle B such that N ∩ N ′ = B + socW .
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202 C. M. Ringel

Proof Both N , N ′ contain socW . Thus, the dimension vector of N ∩ N ′ is (1, 2).
Assume that N ∩ N ′ is indecomposable, say isomorphic to (k, E/〈z〉). Since N is not
faithful, and has a submodule of the form (k, E/〈z〉), it follows that N is annihilated
by z. Similarly, N ′ is annihilated by z. SinceW = N+N ′, we see thatW is annihilated
by z. This contradicts the assumption that W is faithful.

Since N ∩ N ′ is decomposable, and W has no submodule isomorphic to S0, it
follows that N ∩ N ′ contains an indecomposable module of length 2, a bristle. ��
Lemma 3.3 Let W be a special K (3)-module. If there are two isomorphic subbristles
B, B ′, then B ∩ B ′ = 0 and B ⊕ B ′ is the only bar in W. The indecomposable
direct summands of B ⊕ B ′ are all the subbristles of W , and all subbristles of W are
isomorphic to B.

Proof According to 3.2, we have B ∩ B ′ = 0 and V = B1 ⊕ B2 is a bar. Since B and
B ′ are isomorphic, all submodules of V of length 3 are of the form B ⊕ S1.

Assume that there is a bristle B ′′ outside of V . Then W = V + B ′′ is annihilated
by Ann(B) ∩ Ann(B ′′), and Ann(B) ∩ Ann(B ′′) = 0, thus W is not faithful - a
contradiction. This shows that the indecomposable direct summands of V are the
subbristles of W . In particular, all subbristles of W are isomorphic to B.

Now, assume that there is a second bar V ′. According to 3.3, V ∩V ′ = B ′′ + socW
for some bristle B ′′. Since B ′′ is a subbristle ofW , we see that B ′′ is isomorphic to B.
Now V ′ is not faithful, say annihilated by 0 = z ∈ E . Then z annihilates B ′′, thus B
and B ′. Since W = V + V ′ = B + B ′ + V ′, we see that z annihilates W , impossible.

��
Lemma 3.4 Let W be a special K (3)-module. If there are (at least) three bristles
B1, B2, B3, not all isomorphic, then they are pairwise non-isomorphic, they are the
only bristles, themodules Bi ⊕Bj with i = j are the only bars andW = B1+B2+B3.

Proof The bristles are pairwise non-isomorphic, according to 3.4. If B1 ∩ B2 = 0,
then B1 + B2 is indecomposable, thus uniform. But this is impossible. Therefore
B1 ∩ B2 = 0, thus B1 + B2 = B1 ⊕ B2. Similarly, we have B1 + B3 = B1 ⊕ B3
and B1 + B3 = B2 ⊕ B3. Since B1, B2 are non-isomorphic, B1 and B2 are the only
subbristles of B1 ⊕ B2, therefore B3 � (B1 + B2). It follows thatW = B1 + B2 + B3.

Assume that V is a bar. Then V ∩ (B1 ⊕ B2) is of the form B + socW with B
a bristle, say, without loss of generality B = B1. Also V ∩ B2 ⊕ B3 is of the form
B ′ + socW for some bristle B ′, thus B ′ is either B2 or B3. In the first case, we have
V = B1 ⊕ B2, in the second case, we have V = B1 ⊕ B3. Thus, there are just three
bars B1 + B2, B1 + B3, B2 + B3.

Finally, consider any subbristles B. If B = B1, then B + B1 is a bar, thus one of
the three bars B1 + B2, B1 + B3, B2 + B3. The only subbristles of these bars are the
bristles B1, B2, B3, thus B is one of them. ��
Lemma 3.5 A special K (3)-module W has at most one indecomposable bar submod-
ule.

Proof LetW be a special K (3)-module. Assume N = N ′ are indecomposable bars in
W . According to 3.3, N ∩ N ′ = B + socW for some bristle B.
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The Short Local Algebras of Dimension... 203

Since B is a bristle, and N is an indecomposable 2-Kronecker module, the classifi-
cation of the indecomposable 2-Kronecker modules shows that N/B � B. Similarly,
N ′/B � B. We claim that W/B has a direct summand isomorphic to S0. Namely, we
have W/B = (N + N ′)/B = N/B + N ′/B. Since N/B and N/B ′ are isomorphic,
N/B is a direct summand of N/B + N ′/B and a direct complement has to be of
the form S0. Thus W/B = N/B ⊕ U/B for some submodule U with B ⊆ U and
U/B � S0. If U is decomposable, then U � B ⊕ S0, thus S0 is a submodule of W .
Or else U is uniform. Both cases are impossible, according to 2.4. ��
Proposition 3.6 A special K (3)-module W has at most three isomorphism classes of
subbristles and at most three bars.

Proof If W has subbristles B = B ′ which are isomorphic, then we apply 3.4 in order
to see thatW has only one isomorphism class of subbristles and only one bar. IfW has
at least 3 subbristles which are pairwise non-isomorphic, then we apply 3.5 in order
to see that W has only 3 subbristles (thus 3 isomorphism classes of subbristles) and
only 3 bars.

Thus, we can assume thatW has at most 2 subbristles. We claim thatW has at most
two bars. If W has two subbristles B, B ′, then B ⊕ B ′ is a bar, and this is the only
decomposable bar. IfW has just one subbristle, then there cannot be any decomposable
bar. This shows that ifW has at most 2 subbristles, there is at most one decomposable
bar. And according to 3.6, there is at most one indecomposable bar. ��
Remark 3.7 As we will see later, the number of isomorphism classes of subbristles of
a special 3-Kronecker module is the same as the number of bar submodules, see 4.6.

Proposition 3.8 Let M be a K (3)-module with dimM = (3, 2). Any subbristle of M
is contained in a bar submodule.

Proof Let B be a subbristle of M , annihilated by linearly independent elements y, z ∈
E . We choose elements c, d of M such that B, c, d generate M . Let F = 〈y, z〉 and
T = 〈c, d〉. We consider the multiplication map μ : F ⊗ T → socM . This is a
linear map, say with kernel K of dimension at least 2 (since F ⊗ T has dimension 4).
The set of decomposable tensors in F ⊗ T is a subvariety Y isomorphic to P

1 × P
1,

thus dimY = 2. Let K = PK , it has dimension 1. Thus K and Y are subvarieties
of P(F ⊗ T ) which intersect non-trivially, since dimK + dimY ≥ dim P(F ⊗ T ).
Thus there are elements 0 = e ∈ F and 0 = t ∈ T with μ(e ⊗ t) = 0. Let
V = B + At + socW . Then V is 4-dimensional, contains B and is annihilated by e
(note that e ∈ F annihilates not only t but also B, and of course socW ). This shows
that V is a bar. ��
Addendum Any special K (3)-module contains a bristle.

Remark 3.9 An immediate consequence of 3.9 and 3.8 is: Any special K (3)-module
contains a bar. This is the essential new information, because the known classification
of the 2-Kronecker modules shows that any bar contains a bristle.

Proof of 3.9. It has been shown in [5] that any K (3)-moduleM with dimM = (2, 3)
has a submodule U with dimension vector (1, 2), thus M has a factor module with
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dimension vector (1, 1). Using duality, we see that any K (3)-module with dimension
vector (3, 2) has a submodule with dimension vector (1, 1).

For the convenience of the reader, let us copy the proof of [5]. LetM = (M1, M2) be
a K (3)-modulewithdim(2, 3).We first show that there are non-zero elementsm ∈ M1
and α ∈ E such that αm = 0. Let K be the kernel of the map f : E⊗k M1 → M2. We
have dim E ⊗k M1 = 3 · 2 = 6. Since dim M2 = 3, it follows that dim K ≥ 3. The
projective space P(E ⊗ M1) has dimension 5, the decomposable tensors in E ⊗ M1
form a closed subvariety V of P(E ⊗ M1) of dimension (3− 1)+ (2− 1) = 3. On the
other hand, K = P(K ) is a closed subspace of P(E ⊗ M1) of dimension 2. It follows
that

dim(V ∩ K) ≥ 3 + 2 − 5 ≥ 0,

thusV∩K is non-empty. As a consequence, we get non-zero elementsm ∈ M1, α ∈ E
such that αm = 0, as required.

Given non-zero elements m ∈ M1 and α ∈ E such that αm = 0, the element
m generates a submodule U ′ which is annihilated by α, thus dimU ′ = (1, u) with
0 ≤ u ≤ 2. Since dim M2 ≥ 3, there is a semi-simple submodule U ′′ of M with
dimension vector (0, 2 − u) such that U ′ ∩ U ′′ = 0. Let U = U ′ ⊕ U ′′. This is a
submodule of M with dimension vector dimU = dimU ′ ⊕U ′′ = (1, 2). ��

As we have mentioned already in the introduction, the number of subbristles of a
special K (3)-module W will be called the bristle type of W .

4 Coefficient Quivers and Bristle-Bar Layouts

We are going to describe coefficient quivers for the special K (3)-modules as well as
the corresponding bristle-bar layouts.

The bristle-bar layout of a special 3-Kronecker moduleW is given by the projective
plane P(W0) with marks which highlight the elements 〈a〉 ∈ PW0 with Aa being a
subbristle of W (say using squares �) as well the top lines t(N ) = {〈a〉 ∈ PW0 |
Aa ⊂ N }, where N is a bar in W (say by drawing t(N ) as a solid line). To any bar
N , we add the annihilator 〈z1, . . . , zt 〉 of N in E (here, z1, . . . , zt are elements of E).
(Note that this kind of visualization was used already in our joint paper [7] with Zhang
Pu.)

Convention: If W0 = k3, we draw the plane PW0 as follows: the left corner is
(100), the right corner is (010), thus the upper corner is (001).
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4.1 The Special K(3)-Modules

Recall that the bristle type of a special K (3)-moduleW is the number of subbristles of
W . Given a special K (3)-module W , we are going to write down a coefficient quiver,
as defined in [4].

Proposition 4.1 The bristle type of a special K (3)-module W is 1, 2, 3 or∞.Depend-
ing on its bristle type, W can be described by one of the following coefficient quivers.
On the right, we show the corresponding bristle-bar layout.
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The proof of Proposition 4.2 will be given in Sect. 5. In the present Sect. 4, we
verify that a Kronecker module with one of the four coefficient quivers presented in
the table is special and has the described bristle-bar layout. We also present a bijection
between the subspaces 〈z〉 of E , where dim zW = 1 and the subbristles ofW , see 4.5.

Theorem 4.2 Let W be a K (3) -module as exhibited in 4.2. Let 0 = a ∈ W0. If 〈a〉 is
marked by a black square, then a generates a bristle, otherwise it generates an atom.

Proof It is straightforward to see that the bristles displayed in the layout actually
do exist. We only write down how to verify that the remaining non-zero elements
a ∈ W0 = k3 generate atoms. We identify W1 = k2, by choosing as first basis
element of W1 the element x(100), as second one the element x(010) if the bristle
type is 1, 2 or ∞ and y(010) if the bristle type is 3.
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Type 1. First, assume that 〈a〉 lies on the shown bar, but is different from 〈100〉, say
a = (α, 1, 0) for some α ∈ k. Then xa = (α, 1) and ya = (1, 0), thus a generates
an atom. Second, assume that 〈a〉 does not lie on the bar, say a = (α, β, 1) for some
α, β ∈ k. Then za = (1, 0) and ya = (β, 1). Again, a generates an atom.

Type 2. The elements (100) and (001) generate bristles. Since these bristles are non-
isomorphic, (α, 0, γ )with α = 0, γ = 0 generates an atom. Finally, let a = (α, 1, γ ).

Then xa = (α, 1) and za = (1, 0) show that a generates an atom. Thus, there are
precisely 2 bristles.

Type 3. The elements (100), (010) generate pairwise non-isomorphic bristles, thus
the elements (1, β, 0) with β = 0 generate atoms. Similarly, the elements (1, 0, γ )

and (0, 1, γ ) with γ = 0 generate atoms. Finally, consider a = (α, 1, γ ) with α = 0
and γ = 0. Then xa = (α, 0) and za = (0, γ ) shows that a generates an atom.

Type ∞. The elements on the bar generate bristles. Let a be outside the bar, thus
we can assume a = (α, β, 1). Then za = (1, 0) and ya = (0, 1), thus a generates a
bristle. ��
Theorem 4.3 Let W be a K (3)-module as exhibited in 4.2. Then W is a special K (3)
-module.

Proof The module W has no submodule which is simple injective, since the non-zero
elements ofW0 generate bristles and atoms. ThemoduleW has no uniform submodule
V of length 3. Namely, t(V ) would be a line consisting of pairwise non-isomorphic
bristles. Lines of bristles do exist only in type ∞, but in this case, all the bristles are
isomorphic.

According to Proposition 2.1, it follows that EndW = k, thus, W is indecom-
posable. As we have mentioned in 2.2, an indecomposable 3-Kronecker module
with dimension vector (3, 2) which is not faithful has infinitely many pairwise non-
isomorphic subbristles. Thus W has to be faithful. ��.
Proposition 4.4 Let W be a K (3)-module with dimW = (3, 2).

(a) If W has no simple injective submodule and z ∈ E satisfies dim zW = 1, then zW
is the socle of a subbristle.

(b) If W is special, then we obtain in this way a bijection between the subspaces 〈z〉
generated by the elements z ∈ E with dim zW = 1 and the subbristles of W .

Proof (a) Let z ∈ E with dim zW = 1. Of course, U = (0, zW ) is a submodule of
W and W/U is a 3-Kronecker module annihilated by z, thus a 2-Kronecker module
for E/〈z〉. The dimension vector of W/U is (3, 1). It must have a direct summand
isomorphic to S0. Thus there is a submodule V ⊆ W with U ⊆ V and V /U isomor-
phic to S0. Of course, dimV = (1, 1). If V would be decomposable, S0 would be a
submodule of V , thus of W . But this is impossible, since we assume that W has no
simple injective submodule. ThereforeU is indecomposable, thus a bristle. The socle
of U is just zW .

(b) We assume now that W is special. First, let us start with a subbristle B of W .
Let U = soc B. Then W/U has B/U as a submodule. Since W/U is isomorphic to
S0, we see that B/U is a direct summand, thus there is V ⊆ W with U ⊆ V and
W/U = B/U ⊕ V /U . The module V has dimV = (2, 1), thus it cannot be faithful:
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there is 0 = z ∈ E with zV = 0. But this means that zW ⊆ U . Since W is special,
W is faithful, thus we must have zW = 0, therefore zW = U .

It remains to be seen that given a bristle B and elements z, z′ with zW = z′W =
soc B, the subspaces generated by z and by z′ are equal. Assume not. Then there is
an element x ∈ E such that x, z, z′ is a basis of E . Let U = zW = z′W . Since W0 is
3-dimensional, there is a 2-dimensional subspace X of W0 with x X ⊆ U . We claim
that (X ,U ) is a submodule of W . Namely, since U = zW = z′W , we have zX ⊆ U
and z′X ⊆ U . By assumption, we also have x X ⊆ U . Note that dim(X ,U ) = (2, 1).
Since W is special, W has no submodule with dimension vector (2, 1). ��
Corollary 4.5 Let W be a special K (3)-module. The number θ of bristles in W is the
same as the number of subspaces 〈z〉 of E with dim zW = 1, namely 1, 2, 3 or ∞.
Recall that this number θ is called the bristle type of W. The number of bars in W is
less or equal to θ (the number of subbristles of W ).

Actually, when we have finished the proof of 4.2, we will know that the number of
bars in a special Kronecker module W is equal to the number of isomorphism classes
of subbristle of W .

Proof of Corollary. The first assertion is just 4.5 (b). For the second assertion, one
only has to observe: For any z ∈ E with dim zW = 1, the submodule (Ker z,W0) is
a bar in W . ��
Remark 4.6 Wehave seen in 4.5 that given a special 3-KroneckermoduleW and z ∈ E
with dim zW = 1, then zW = soc B for some bristle B. Let us stress that there are
two different possibilities, namely, we may have either zB = 0 or else zB = 0 (and
then zB = soc B).

Both possibilities occur, as the special modules of bristle type 2 (exhibited in 4.2)
show: There are two bristles, namely B generated by (100) and B ′ generated by (001).
The element y ∈ E satisfies yW = soc B and we have yB = 0. The element z ∈ E
satisfies zW = soc B ′ and we have zB ′ = 0.

Theorem 4.7 Let W be a special K (3) -module as exhibited in 4.2. it Then all bars in
W it are shown in the corresponding layout on the right.

Proof Again, it is clear that the lines marked in the layout are bars. We have to show
that there are no additional ones.

Type θ = 1, 2, 3. Here we have θ bristles. According to 4.4, W is a special K (3)-
module. Thus, according to 4.6, there are at most t bars. Since t lines are marked as
bars, we see that these are the only bars.

Type ∞. Since the submodules generated by (100) and (010) are isomorphic bris-
tles, Lemma 3.3 asserts that W has only one bar. ��
Remark 4.8 LetW be a 3-Kronecker module as exhibited in 3.2.We see: if the number
of subbristles is finite, then the number of subbristles is the same as the number of
bars, namely 1, 2, or 3 and that any bar contains a bristle. Also, if a bar contains at least
3 bristles, then it contains infinitely many bristles and there is no other bar. Finally, a
line with at least two bristles is a bar.

Altogether, these assertions imply: If there are precisely three bristles, the bars form
a triangle (they intersect in pairwise different vertices).
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Proof the three bristles cannot lie on a single bar (since otherwise there would exist
infinitely many bristles), thus they are the corners of a triangle. This yields 3 bars, so
there cannot be a further bar. ��

5 Proof of Proposition 4.2

5.1 Type 1: Precisely One Bristle

Proof Let B ⊂ N , where B is the bristle and N a bar. Since there is only one bristle,
N is indecomposable. Let a be a generator of B and assume that z generates the
annihilator of N . According to 4.5 (a), we have zW = soc B. Since zN = 0, we have
za = 0. Since B is a bristle and annihilated by z, there is a basis x, y, z such that also
yB = 0. Now a is not in the kernel of x , thus d = xa is a non-zero element in W1.

Since N is an indecomposable bar with subbristle B, also N/B is isomorphic to B,
thus x maps N ∩ W0 bijectively onto W1.

Since x has rank 2, its kernel has dimension 1. Let c be a non-zero element in the
kernel of x . According to 4.5 (a), the image of z coincides with the socle of B. Thus,
replacing, if necessary, c by a non-zero multiple, we can assume that zc = d. Note
that d = zc and e = yc have to be linearly independent in W1, since otherwise c
would generate a second bristle.

Choose b′ ∈ N∩W0 such that yb′ = d (since ya = 0, the elements a, b′ are linearly
independent). Write xb′ as a linear combination of d and e, say xb′ = δd + εe. Note
that ε = 0, since otherwise b′ would generate a bristle. Let b = −δa + b′. Then

xb = −δxa + xb′ = −δd + δd + εe = εe

and

yb = −δya + yb′ = d.

We obtain the following coefficient quiver
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...........
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...................................................................................................................................................................................................................................

..........................................................

x

x

z
y

y

a b c

d e
,

where the dashed line indicates that here a non-zero scalar is involved, namely xb = εe.
In order to remove the scalar, we replace x by ε−1x and a by εa. Then we get the
same picture, with the dashed line replaced by a solid one. ��
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5.2 Type 2: Precisely Two Bristles

Proof Let B = B ′ be the bristles of W . According to 3.4, they are not isomorphic
and B ∩ B ′ = 0. The annihilator of B ⊕ B ′ is 〈y〉 for some non-zero element y,
therefore dim yW = 1. According to 4.5, there is an element z ∈ E such that also
dim zW = 1, with y, z being linearly independent. The submodule Ker z is a bar.
Note that Ker y = Ker z, since otherwise B ⊕ B ′ would be annihilated by y and z,
and then B and B ′ would be isomorphic bristles. According to 3.3, the intersection
Ker z ∩ Ker y contains a bristle. Without loss of generality, B ⊆ Ker z ∩ Ker y and
then B ′ is not contained in Ker z.

Since B ′ is not contained in Ker z, we see that zB ′ is the socle of B ′, therefore
zW = soc B ′.On the other hand, using again 4.5, yW is the socle of a bristle different
from B ′, thus yW = soc B.

Choose x ∈ E such that x, y are linearly independent and annihilate B ′. Since
z does not annihilate B ′, we see that x, y, z is a basis of E . We know that yW and
zW are both one-dimensional. Since there are only 2 bristles, 4.5 asserts that we have
dim xW = 2, thus xW = W1.

The bristle B is annihilated by y, z, the bristle B ′ is annihilated by x, y. Since
these are the only bristles, no non-zero element in W0 is annihilated by x and z. Thus
(Ker z) ∩ W0 is mapped under x bijectively to W1.

Let c be a generator of B ′ and e = zc. Choose b ∈ (Ker z) ∩ W0 such that xb = e.
Let d = yb. Then d is a non-zero element of the socle of B. Let a be a generator of
B with xa = d. Altogether we have obtained the following coefficient quiver:
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5.3 Type 3: At Least Three Pairwise Non-isomorphic bristles

Proof Let B1, B2, B3 be pairwise non-isomorphic subbristles of the special K (3)-
moduleW . According to 3.2, we have Bi ∩ Bj = 0 for i = j . Let x ′, y, z′ be non-zero
elements of E such that x ′(B2 + B3) = y(B1 + B3) = z′(B1 + B3) = 0. Since B1
and B3 are non-isomorphic, B1 + B3 = B1 ⊕ B3 contains only the bristles B1, B3,

thus B1 + B2 + B3 = W . If we would have y ∈ 〈x ′, z′〉, then y would annihilate
W = B1 + B2 + B3, but we assume that W is faithful. Thus x ′, y, z′ is a basis of E .
Let a ∈ B1 \ soc B1, b ∈ B2 \ soc B2, c ∈ B3 \ soc B3. Since B1 + B3 = B1 ⊕ B3,

the elements x ′a, z′c form a basis of W1. Therefore yb = αx ′a + γ z′c for some
(non-zero) elements α, γ ∈ k. Let x = αx ′ and z = γ z′, so that yb = xa + zc. We
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get the following coefficient quiver:

................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
..................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
..

x y y z

a b c

xc zc
.

��

5.4 Type∞. At Least Two Isomorphic Bristles

Proof Let N be a bar which is the direct sum of two isomorphic bristles, say bristles
isomorphic to B. Let B = (k, E/〈y, z〉),where x, y, z is a basis of E . ThenKer x is not
contained in N , since otherwise we get an embedding of S0 intoW . Let c ∈ Ker x \N .
Then c does not generate a bristle (since otherwise W would not be faithful), thus
yc, zc is a basis of W1. There are elements a, b ∈ N0 with xa = zc and xb = yc.
Altogether we get

.............................................................................................................................
........................

........................
........................

........................
........................

........................
........................

........................
.........................................................................................................................

...........
...........

...........
...........

...........
...........

...........
...........

..

x

x

z

y

a b c

zc yc
.

��
Remark 5.1 We have seen: In case the bristle type of W is not 1, then W is a tree
module. Let us add: A special K (3)-module with precisely one bristle is not a tree
module.

Proof There are only two possibilities for the coefficient quiver of a tree module with
dimension vector (3, 2), namely

•
•

•
•

•..............................................................
...........
...........
...........
.....................................................................

...........
...........
...........
....... •

•
• •

•
..............................................................

...........
...........
...........
..........................................................

.................................... .

In both cases, we see that there are at least 2 bristles. (Actually, only the first case can
occur, since in the second case,W contains a submodule with dimension vector (2, 1),
and such a submodule is either uniform or has S0 as a submodule.) ��
Remark 5.2 All the coefficient quivers which occur are without parameters. This is
clear for tree modules. In the remaining case (type 1), there is just one bar, and this
bar contains a bristle. Thus the submodule U given by the cycle is not a bar. The fact
that U is faithful implies immediately that any parameter can be deleted.

6 L(3)-Modules

Wewant to adapt Propositions 3.7 and 3.8, as well as 2.5 to L(3)-modules. As we have
mentioned in the introduction, L(3) is the 4-dimensional local k-algebra with radical

123



The Short Local Algebras of Dimension... 211

square zero, thus L(3) = k〈x, y, z〉/(x, y, z)2. The radical of L(3) will be denoted
by E . The dimension vector dimM of an L(3)-module M is the pair of numbers
(dim M/EM, dim EM).

6.1 Atoms and Bristles

The notation to be used corresponds to the notation for K (3)-modules introduced in
Sect. 2.1; the precise correspondence will be stated in Sect. 6.3.

If 0 = a ∈ E , then C(a) = C(〈a〉) = A A/〈a〉 is an atom, any atom is
obtained in this way, and a �→ C(a) provides a bijection between PE and the
set of isomorphism classes of atoms. If a1, a2 are linearly independent in E , then
B(a1, a2) = B(〈a1, a2〉) = A A/〈a1, a2〉 is a bristle, any bristle if obtained in this
way, and 〈a1, a2〉 provides a bijection between the set of lines in PE and the set of
isomorphism classes of bristle. If 0 = a ∈ E , and l is a line in E, then 〈a〉 ∈ l iff C(a)

maps onto B(l).
The relation between K (3) and L(3) is given by the push-down functor π :

mod K (3) → mod L(3) which will be described in two different (of course related)
ways (partly, we follow the presentation in the appendix A of [8]).

6.2 The Push-Down Functor�

This is the functor

π : mod K (3) → mod L(3)

which sends the K (3)-module M = (M0, M1, φ : E ⊗ M0 → M1) to the L(3)-
module πM = (M0 ⊕ M1,

[ 0 φ
0 0

]

). The decisive property of π is the following: If
M, M ′ are 3-Kronecker modules without non-zero simple direct summands, then we
have

HomL(3)(π(M), π(M ′)) = π HomK (3)(M, M ′) ⊕ HomL(3)(π(M), π(M ′))ss;

here, we denote by HomL(3)(X , X ′)ss the set of L(3)-homomorphisms with semisim-
ple image, for arbitrary L(3)-modules X , X ′.

The functor π provides a bijection between the isomorphism classes of the inde-
composable K (3)-modules M different from S1 and the isomorphism classes of the
indecomposable L(3)-modules, such that dimM = dimπM . (Of course, also π S1 is
defined; but dimS1 = (0, 1), whereas dimπ S1 = (1, 0).)

The L(3)-module L(3)L(3) is just π(k, E). Of course, the radical of π(k, E) is
0 ⊕ E = E . Let us stress that in this way, the arrow space E of the quiver K (3) is
identified with the radical of L(3).

There is an alternative way to define π . The K (3)-modules may be seen as the
R-modules, where R is the path algebra of the quiver K (3), thus R = [

k 0
E k

]

is
the ring of all matrices of the form

[

λ 0
e λ′

]

, with λ, λ′ ∈ k and e ∈ E . Here, the

K (3)-module (M0, M1;φM ) corresponds to the set
[

M0
M1

]

of column matrices, and
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the module multiplication is just matrix multiplication using the map φM . By abuse
of notation, we denote the ring R also by K (3) (this explains our convention to call
the K (3)-modules just K (3)-modules). We may consider L(3) as the subring of K (3)
given by the matrices of the form

[

λ 0
e λ

]

with λ ∈ k, and e ∈ E . Then, the functor π

is the restriction functor, which sends the K (3)-module M to the L(3)-module often
denoted by M |L(3) (the map K (3) → Endk M given by the module multiplication is
restricted to L(3)). In particular, in this interpretation, the underlying vector spaces of
M and πM are the same. This interpretation is particular helpful when we compare
the submodule structure of M and of πM, see 6.3 and 6.4.

6.3 Socle Properties

Theorem 6.1 Let M be a K (3)-module. Always, we have | socM | = | socπM |. If M
is indecomposable and not simple, then socM = M1 = J (πM) = socπM .

Proof It is enough to look at indecomposable K (3)-modules. If M is simple, then
also πM is simple. Now assume that M = (M0, M1, φM ) is indecomposable and not
simple. SinceM is not isomorphic to S0, we have socM = M1. On the other hand,πM
is an indecomposable L(3)-module of Loewy length 2, therefore socπM = J (πM)

and J (πM) is the image of φM , thus J (πM) = M1. ��
Corollary 6.2 The K (3)-module M is uniform iff the L(3)-module πM is uniform.

Atoms The functor π provides a bijection between the isomorphism classes of the
atom K (3)-modules and the isomorphism classes of the atom L(3)-modules with

π˜C(a) = C(a),

where 0 = a ∈ E .

Bristols The functor π provides a bijection between the isomorphism classes of the
bristle K (3)-modules and the isomorphism classes of the bristle L(3)-modules with

π ˜B(a1, a2) = B(a1, a2),

where a1, a2 are linearly independent in E .

6.4 Submodules

Given a K (3)-module M , its K (3)-submodules are, of course, also L(3)-submodules,
but usually, there are L(3)-submodules of πM which are not K (3)-submodules. There
is the following general observation:

Lemma 6.3 Let M be a K (3)-module. Then any L(3)-submodule N of πM with
M1 ⊆ N is a K (3)-submodule of M .

Proof We note that K (3) is generated as a vector space by L(3) and the matrix p =
[

0 0
0 1

]

, and we have pM = M1. Thus any L(3)-submodule N of M with M1 ⊆ N is a
K (3)-submodule. ��
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6.5 Special K(3)-Modules, Special L(3)-Modules

An L(3)-module M will be said to be special provided dimM = (3, 2), M is faithful,
and has no simple direct summand and no uniform submodule of length 3.

Lemma 6.3 Let W be a K (3)-module with dimW = (3, 2). Then W is a special
K (3)-module iff πW is a special L(3)-module.

Proof According to condition (ii) in 2.3,W is a special K (3)-module iffW is faithful,
indecomposable and has no uniform submodule of length 3.

Let M be an arbitrary K (3)-module. As we have mentioned, M is indecomposable
iff πM is indecomposable. Also, M = (M0, M1) is faithful iff there is no non-zero
element e ∈ E with eM0 = φM (e ⊗ M) = 0, iff there is no non-zero element e ∈ E
with e(πM) = 0 iff πM is faithful. Also, if U is a uniform submodule of M , then U
is an L(3)-submodule of πM , and U is uniform also as an L(3)-module.

Conversely, assume that V is a uniform L(3)-submodule of πM . Let V = πU .
The embedding v : V → πM is of the form v = πu + v′, where u : U → M is
K (3)-linear and v′ : V → πM is an L(3)-homomorphism with semisimple image.
Then v′ : V → πM vanishes on soc V . Thus v = πu + v′ shows that u does not
vanish on socU . Since U is uniform, u is a monomorphism, thus M has a uniform
submodule of length 3. ��

Following [8], an L(3)-module M is said to be solid provided M = πW for some
K (3)-module W with EndW = k.

Corollary 6.4 An L(3)-moduleM is special iff M has dimension vector (3, 2), is
faithful and solid.

We are interested in bristle and bar submodules of these special L(3)-modules.

6.6 Bristle Submodules

Let M be a K (3)-module. The bristle K (3) -submodules are bristle L(3)-submodules
of πM and for any bristle L(3) -submodule U ′ of πM , there is a bristle K (3) -
submoduleU of M such that socU ′ = socU . All bristle L(3) -submodulesU ′ and
U ′′ of πM with socU ′ = socU ′′ are isomorphic.

The following formulation provides more details: Let R = K (3) and A = L(3) ⊂
K (3). Let B = Rb be a subbristle of RM , then B is a subbristle of πM with B ∩
M0 = 0. For any element x ∈ M1, A(b + x) is a subbristle of πM , and the R-
submodule generated by A(b+ x) is Rb+ Rx (thus a bristle iff Rx ⊆ Rb). We have
A(b+ x) = A(b+ x ′) iff x − x ′ ∈ B ∩ M1; also, A(b+ x)∩ M0 = 0 iff x ∈ B ∩ M1.

Conversely, any subbristle of πM is of the form A(b + x), where Rb is an R-bristle
and x ∈ M1.

Bristlemodules are defined for any algebra, barmodules not. Similar to the case of a
K (3)-module with dimension vector (3, 2), we consider here an L(3)-module M with
dimension vector (3, 2) and call a submodule N of M a bar, provided dimN = (2, 2)
and N is not faithful.
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6.7 Bar Submodules of Special Modules

Theorem 6.5 Let W be a special K (3)-module. Any bar L(3)-submodule of πW is
actually a K (3)-submodule.

Proof This follows directly from 6.4. ��
Proposition 6.6 A special L(3)-module has at most 3 isomorphism classes of sub-
bristles and at most 3 bar submodules. Any subbristle of a special L(3)-module is
contained in a bar submodule.

Remark 6.7 One has to be aware that there is a decisive difference between special
K (3)-modules and special L(3)-modules: Whereas a special K (3)-module may have
only finitely many subbristles (and then 1, 2, or 3), a special L(3)-modules always has
infinitely many subbristles, see 3.9 and 6.6.

Proof of Proposition 6.6 Let W be a special K (3)-module. The bar K (3)-submodules
are the bar L(3)-submodules of πW . The bristle K (3)-submodules are bristle L(3)-
submodules of πW and for any bristle L(3)-submodule U of πW , there is a bristle
K (3)-submodule U ′ of W such that U and U ′ are isomorphic K (3)-modules and
socU = socU ′. Altogether we see that 6.8 is a direct consequence of 3.7 and 3.8. ��
If M is a special L(3)module, the number of simple modules which occur as the socle
of a subbristle ofM will be called the bristle type ofM . If M is a special K (3)-module,
then the bristle type of M is equal to the bristle type of πM .

Finally, we show that also the analog of 2.5 holds true. Note that the assertion (ii′) has
to be modified, see 6.11.

Proposition 6.8 Let M be a special L(3)-module. Let 0 = a ∈ E . The following
conditions are equivalent:
(i) The atom C(a) has no factor module which is a subbristle of M.
(ii) The trace of C(a) in M is an atom.
(ii′) The trace of C(a) in M is indecomposable and has length 3.

Proof Let M = πW , where W is a special K (3)-module.
(i) �⇒ (ii). We assume that C(a) has no factor module which is a subbristle of

M . If φ : ˜C(a) → W would be a K (3)-homomorphism whose image is a bristle, then
π(φ) would be an L(3)-homomorphism whose image is a bristle. Thus, we see that
˜C(a) has no factor module which is a subbristle of W , this is condition (i) in 2.5. It
follows that the trace D of ˜C(a) inW is an atom. Of course, π(D) is a submodule ofM
which is an atom. First of all, thismeans that there is a homomorphismψ : ˜C(a) → W
with image D. As a consequence, π(ψ) : C(a) → M has image in πD. Second, any
homomorphism ˜C(a) → W maps into D. Let f : C(a) → M be a homomorphism.
According to 6.2, we can write f = π(ψ ′) + f ′, where ψ ′ : ˜C(a) → W and where
f ′ : C(a) → M has semisimple image. As we have mentioned, ψ ′ maps into π(D).
Since π(D) is an atom, its socle has length 2, and therefore coincides with the socle of
M . Since the image of f ′ is semisimple, this image is contained in socM = socπD,
thus in πD. This shows that πD is the trace of C(a) in M .
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(ii′) �⇒ (i). We assume that the trace N of C(a) in M has length 3 and is
indecomposable. Since M has no uniform submodule of length 3, it follows that N
is an atom. There is f : C(a) → M whose image is N . According to 6.2, we
write f = π(φ) + f ′, with a K (3)-homomorphism φ : ˜C(a) → W and an L(3)-
homomorphism f ′ : C(a) → M with semisimple image. The image of f ′ lies in
socM . Since the image of f does not lie in socM , the image of φ cannot lie in socW .
Therefore the image of φ has length 2 or 3. Now, the image of φ cannot be a bristle,
since otherwise also the image of π(φ) would be a bristle. This shows that the image
of φ has length 3. Let D be the trace of ˜C(a) in W . Then Im(φ) ⊆ D, thus |D| ≥ 3.
On the other hand, the trace D of ˜C(a) in W is mapped under π into the trace N of
C(a) in M . But π(D) ⊆ N implies that |D| ≤ |N | = 3. This shows that the trace D
of ˜C(a) inW has length 3. According to 2.5, it follows that ˜C(a) has no factor module
which is a subbristle of W .

Assume that C(a) has a factor module B which is a subbristle of M . Since there
is an L(3)-epimorphism C(a) → B, there is also a K (3)-epimorphism ˜C(a) → ˜B,
where π(˜B) = B. Since B is a subbristle of M , ˜B is a subbristle of W , thus ˜C(a) has
a factor module which is a subbristle of W , a contradiction. ��
Remark 6.9 If M is a special L(3)-module and 0 = a ∈ E,the trace ofC(a) in M has
length 3 or 4. In both cases, the trace of C(a) in M may be decomposable.

Proof Let W be a special L(3)-module and M = πW . Since L(3) is a local algebra
and C(a) is non-zero, the socle socM of M is contained in the trace D of C(a)

in M . Also, there is a non-zero homomorphism φ : ˜C(a) → W . Since the image of
π(φ) : C(a) → M is not contained in socM , we see that socM is a proper submodule
of D. Thus, |D| ≥ 3.On the other hand, D is not faithful, thus D is a proper submodule
of M , therefore |D| ≤ 4.

Here is an example where the trace has length 3 and is decomposable: Let W
be the special K (3)-module of bristle type 1, as exhibited in Proposition 4.2. The
module ˜C(y) is the local module annihilated by y, it has as factor module the bristle
B = B(y, z) annihilated by y and z. Now B is the submodule ofW generated by (100),
and this is the trace of ˜C(y) in W . The trace D of C(y) in M = πW is πB + socM .
Thus D has length 3 and is the direct sum of πB and a simple module.

Here is an example where the trace has length 4 and is decomposable: Let W be
the special K (3)-module of bristle type 2, as exhibited in Proposition 4.2. The trace
of the module ˜C(y) in W is the direct sum of two bristles, thus also the trace of C(y)
in M = πW is the direct sum of two bristles. ��

7 The Special Algebras

Lemma 7.1 Let A be a short local algebra with radical J and assume that J 2 = 0.
The following conditions are equivalent.

(i) A J is faithful as an A/J 2-module.
(i′) If z ∈ J with z J = 0, then z ∈ J 2.
(i′′) soc JA ⊆ J 2.
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(ii) J 2 = soc JA.
(iii) JA has no simple direct summand.

Proof The equivalence of (i) and (i′) is just the definition of faithfulness. (i′) implies
(i′′): The socle of a right module MA are just the elements m ∈ M with mJ = 0.

(i′′) implies (ii): Since A is short, we have J 2 ⊆ soc JA.
(ii) implies (iii): Since J 2 = 0, we know that JA is a right module of Loewy

length 2. A right module MA of Loewy length 2 has no simple direct summand iff
MJ = socMA.

(iii) implies (i′). Assume there is z ∈ J \ J 2 with z J = 0. Then 〈z〉 is a simple
direct summand of JA. ��
Lemma 7.2 Assume that A is a short local algebra of Hilbert type (3, 2) with J 2 =
soc A A = soc AA. Then the following conditions are equivalent:

(i) A A has no uniform submodule of length 3.
(ii) A has no serial module of length 3.
(i*) AA has no uniform submodule of length 3.
(ii*) Aop has no serial module of length 3.

Proof (i) �⇒ (ii): Assume that there exists a serial module M of length 3. Since M
is local, its projective cover is A A and �M is a left ideal of length 3. The socle of �M
is contained in soc A A, thus of length 1 or 2. If the socle of �M would be of length 2,
then socM = soc A A = J 2, and then M = AA/�M has Loewy length at most 2, a
contradiction.

(ii) �⇒ (i): Assume that A A has a uniform submodule U of length 3. Then
J 2 = soc A A is not contained in U , therefore A A/U is a module of length 3 which is
of Loewy length 3. Of course, a module of length 3 and Loewy length 3 is serial.

The equivalence of (ii) and (ii∗) is given by k-duality. ��
Proposition 7.3 Let A be a short local algebra of Hilbert type (3, 2). The following
conditions are equivalent.

(i) J 2 = soc A A = soc AA and there is no uniform left ideal with length 3.
(i′) J 2 = soc A A = soc AA and there is no uniform right ideal with length 3.
(ii) A J is a special L(3)-module.
(ii′) JA is a special L(3)-module.
(iii) A J is a solid A-module, JA is a solid Aop-module.

Recall that we call an algebra special provided it satisfies the equivalent conditions
mentioned in Proposition 7.3. It is shown in [8] that for a short local algebra with
Hilbert type (3, 2) the existence of a non-projective reflexive module implies that both
A J and JA are solid, thus that A is special. This is the implication (i) �⇒ (iii) in the
main theorem of the present paper.

The importance of condition (ii) lies in the fact that this condition refers only to
properties of A as a left A-module.

Proof of Proposition 7.3 The equivalence of (i) and (i′) is shown in 7.2.
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The equivalence of (i) and (ii) is seen as follows: To say that A J is special means
that A J is faithful as an A/J 2-module, that A J has no simple direct summand and
no uniform submodule of length 3. According to 7.1, the condition J 2 = soc JA is
equivalent to the condition that A J is faithful as an A/J 2-module. Second, J 2 =
soc A J is equivalent to the condition that A J has no simple direct summand.

Since the conditions (i) and (i′) are equivalent, also (ii) and (ii′) are equivalent.
According to Corollary 6.5, (ii) implies that A J is solid. Since (ii) and (ii′) are equiv-
alent, we see that these conditions imply that also JA is solid. Thus (ii) implies (iii).

Finally, let us show that (iii) implies (ii). We assume that both A J and JA are solid.
Since JA is solid, it has no simple direct summand, thus, according to 7.1, A J is
faithful as an A/J 2-module (that means, as an L(3)-module). Since A J is also solid,
Corollary 6.5 asserts that A J is special. ��

Let us mention an important property of these special algebras.

Lemma 7.4 Let A be a special algebra. Then any left or right ideal of A of length 3
or 4 is a two-sided ideal.

Proof Since the opposite of a special algebra is a special algebra, we only have to look
at left ideals.

Since A is short, J 2 ⊆ soc A J ∩ soc JA. Since A J is solid, it has no simple direct
summand, thus soc A J ⊆ J 2. Since A J is faithful as an A/J 2-module, 7.1 asserts
that JA has no simple direct summand, thus also soc JA ⊆ J 2. Altogether, we see that
J 2 = soc A A = soc AA.

Since A is special, we know that A J has no uniform submodule of length 3. It
follows that any left ideal of A of length at least 3 contains soc A J = J 2. Thus, let U
be a left ideal of A included in J . We want to see that Ua ⊆ U for any a ∈ A. Now
a = λ + a′ for some λ ∈ k and a′ ∈ J . Of course, Uλ ⊆ U . And Ua′ ⊆ J 2 ⊆ U . ��

Since for a special algebra A the radical J considered as a left module is a special
L(3)-module, and any proper left ideal of A is contained in J , we can apply Proposition
6.6 and obtain:

Proposition 7.5 A special algebras has at most 3 isomorphism classes of bristle mod-
ules which occur as left ideals and at most 3 left ideals which are bars. Any bristle left
ideal is contained in a left ideal which is a bar. ��
If A is a special algebra with radical J such that A J = πW , then we call the bristle
type of W the left bristle type of A; it is the number of simple left ideals of A which
occur as socle of a bristle left ideal. Similarly, the right bristle type of A is the number
of simple right ideals of A which occur as socle of a bristle right ideal.

8 The Correspondence Between Bristle Left Ideals and Right Bars

Lemma 8.1 Let A be a special algebra. If B is a left module which is a bristle, let
l(B) = {a ∈ A | aB = 0}, this is the left annihilator of B. Then �(AB) = l(B), and
this is a 4-dimensional ideal of A and B = A/l(B). In this way, we obtain a bijection
between the isomorphism classes of bristles and the 4-dimensional ideals of A.
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Proof LetM be a localmodule and f : A A → M be a projective cover, thus�(AM) =
Ker f .Of course, l(M) = {a ∈ A | aM = 0} ⊆ Ker f = �(AM), since fora ∈ l(M)

we have f (a) = f (a ·1) = a f (1) = 0.Actually, l(M) is the largest two-sided ideal of
Awhich is contained inKer f (namely, if I is a two-sided ideal of A, then I (A/I ) = 0).

Now, ifM = B is a left bristle, then�(AB) is 4-dimensional and any 4-dimensional
left ideal of A is a two-sided ideal, see 7.4. This shows that �(AB) = l(B). It follows
that B � A A/l(B). Thus, if B, B ′ are bristles with l(B) = l(B ′), then B and B ′ are
isomorphic.

Of course, conversely, isomorphicmodules have the same annihilator. Thus, if B, B ′
are isomorphic left modules, then l(B) = l(B ′). ��

Lemma 8.2 Let A be a special algebra. Under this bijection the isomorphism classes
of the bristles which occur as left ideals correspond bijectively to the right bars.

Proof Let B = Aa be a left bristle. Then �(AB) = l(B) is annihilated from the right
by a, thus not faithful as right A/J 2-module. Conversely, assume that NA is a bar of
JA, say annihilated by a ∈ J \ J 2 (from the right). Consider the map A A → A A given
by right multiplication with a; its image is Aa, its kernel is�(A Aa). Since a ∈ J \ J 2,
Aa has length at least 2. Since Na = 0, we see that N is contained in the kernel. But
N is of dimension 4, thus Aa has length 2, and N = �(A Aa).

Remark 8.3 The bijection is between isomorphism classes of bristles and individual
ideals. In particular, this has to be noticed in case we consider left ideals which are
bristles and right bars, thus on the one hand we deal with left ideals of dimension
2 (better: with the corresponding isomorphism classes) and on the other hand with
ideals of dimension 4.

Applying Lemma 8.1 to Aop, we similarly get a bijection between the isomorphism
classes of right bristles and the 4-dimensional ideals of A, where a right bristle B is
sent to r(B) = {s ∈ A | Ba = 0}, whereas a 4-dimensional ideal I of A is sent to
B = A/I , considered as a right B-module.

But note, since L(3) is commutative, any left bristle B may be considered also as
a right bristle and conversely; also, the left annihilator l(B) coincides with the right
annihilator r(B) and one obtains in this way just the 4-dimensional ideals.

Lemma 8.4 Let A be a special algebra. Under the bijection between the bristle right
modules and the 4-dimensional ideals of A the isomorphism classes of the bristles
which occur as right ideals correspond bijectively to the left bars. ��

9 Proof of Theorem 1.1

We assume that A is a special algebra. We fix a complement E of J 2 in J , thus E is a
subspace of J with J = J 2 ⊕ E . Of course, we may identify E with J/J 2 (thus with
the radical of L(3) = A/J 2).
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9.1 The Projective Plane PE

The projective plane PE as index set for the atoms. If a ∈ J \ J 2, letU (a) = Aa+ J 2,
thus we have C(a) = A A/U (a). Similarly, the set of lines in PE is index set for the
bristles. If 〈a〉 is an element of PE , and l is a line in PE , then 〈a〉 ∈ l iff B(l) is a
factor module of C(a).

As we have seen in Lemma 7.4, any left or right ideal of A of length 3 or 4 is a
two-sided ideal. Thus, the left bristles may be considered also as right bristles, the left
atoms as right atoms.

9.2 The Lines g(B) and t(N)

If N is a 4-dimensional ideal of A, let t(N ) = {〈a〉 | a ∈ N ∩ E}. Clearly, t(N ) is
a line in PE (it is the line joining a and a′, where a, a′ are elements of E such that
N = Aa + Aa′).

If B is a bristle, we write g(B) for the set of all elements 〈a〉 ∈ PE , where a ∈ E ,
such that B is a factor module of C(a). Of course, g(B) is a line in PE , and all lines
in PE are obtained in this way, see 6.1.

Lemma 9.1 Lemma 9.1 Let A be a special algebra. If B is a bristle, then

g(B) = t(�AB).

Proof First, consider a ∈ E with 〈a〉 ∈ g(B). Thus there is an epimorphism φ :
C(a) → B. Since C(a) is local, the projective cover of C(a) is A A and there is a
commutative diagram with exact rows

0 −−−−→ Aa + soc A −−−−→ A A −−−−→ C(a) −−−−→ 0

μ

⏐

⏐

�

∥

∥

∥

⏐

⏐

�
φ

0 −−−−→ �AB −−−−→ A A −−−−→ B −−−−→ 0

with an inclusion map μ. The inclusion map μ shows that a ∈ �AB ∩ E is a non-zero
element and thus 〈a〉 ∈ t(�AB).

Conversely, if 0 = a ∈ �AB∩E (so that 〈a〉 ∈ t(�AB)), then Aa+soc A ⊆ �AB,
and we get the left part of the commutative diagram seen above (with μ the inclusion
map). Completing it on the right, we obtain the required epimorphism C(a) → B. ��
Proposition 9.2 Let A be a special algebra. Let 0 = a ∈ E. The following conditions
are equivalent:

(i) The element 〈a〉 in PE does not belong to a left bar, and aA is not a right bristle.
(ii) The atom C(a) is extensionless (and �C(a) is an atom).

Remark 9.3 The bracket in (ii) adds a general fact: If M is an indecomposable non-
projective module which is extensionless, then�M is indecomposable, again, see [8].
Of course,C(a) is indecomposable and non-projective. Thus, ifC(a) is extensionless,
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then �C(a) is indecomposable. Since C(a) = A A/U (a), with U (a) = Aa + J 2, we
have �C(a) = U (a). If U (a) is indecomposable, then it is an atom.

Proof of 9.2 (i) implies (ii). First, let us assume that a does not belong to a left bar.
Then Aa is not a bristle (see 7.5), thus an atom. Let D be the trace ofU (a) in A J , thus
U (a) ⊆ D. Since D is generated by Aa and Aa is not faithful as an L(3)-module, also
D is not faithful. Since A J is faithful as an L(3)-module, D is a proper submodule of
A J . If D has length 4, then D is a left bar. But a is not contained in a left bar, D has
length 3 and therefore D = U (a). Since aA is not a bristle, it follows that aA = U (a).
As a consequence, the embedding Aa = U (a) → A J is a left A A-approximation,
of course a minimal one. This shows that 0 → Aa → A A → C(a) → 0 is an
�-sequence, thus C(a) is extensionless.

(ii) implies (i). Assume that C(a) is extensionless. Then �C(a) = U (a) is inde-
composable, thus equal to Aa, and 0 → Aa → A A → C(a) → 0 is an �-sequence.

Assume that a belongs to a left bar N . Since Aa is a local module of length 3,
and N is not faithful as an L(3)-module, Aa generates the module N , thus there is a
homomorphism φ : Aa → N with image not contained in Aa. Since the inclusion
map μ : Aa → A A is a left A A-approximation, there is φ′ : A A → A A with
φ = φ′μ. Now φ′ is the right multiplication by some element b ∈ A, therefore
φ(a) = φ′μ(a) = ab ∈ aA. Thus φ(Aa) = Aφ(a) ⊆ AaA = U (a) = Aa. This
contradiction shows that a does not belong to a left bar.

Finally, we show that U (a) = aA. Let x ∈ socU (a). The map φ : Aa → A A
with φ(a) = x factors through the inclusion map μ : Aa → A A, thus there is
φ′ : A A → A A with φ = φ′μ. Again, φ′ is the right multiplication by some element
b ∈ A, therefore x = φ(a) = φ′μ(a) = ab ∈ aA. This shows that socU (a) ⊆ aA,

therefore aA = U (a). In particular, aA is not a bristle. ��
Proposition 9.4 Let A be a special algebra. Let 0 = a ∈ E. The following conditions
are equivalent:

(i) The element 〈a〉 in PE does not belong to a right bar.
(i′) The atom C(a) has no factor module which is a left subbristle.
(ii) The trace of C(a) in A A is an atom.

Let us add: If the trace of C(a) in A A is an atom, then C(a) is torsionless. The
converse is of course not true.

Proof of Proposition. The equivalence of (i) and (i′) follows from Lemma 9.2.
which asserts that g(B) = t(�B). For the equivalence of (i′) and (ii), see 6.10 with
M = A J . ��
Corollary 9.5 If a does not belong to a left bar nor to a right bar, then C(a) is both
extensionless and torsionless. Thus, �C(a) is a reflexive atom.

Proof Assume that a does not belong to a left bar nor to a right bar. Then aA is
not a right bristle, since otherwise a belongs to a right bar, see 7.5. According to
Proposition 9.2, C(a) is extensionless and �C(a) = U (a) is an atom. According to
Proposition 9.4, C(a) is torsionless. Also, �U (a) = ��C(a), thus �U (a) = C(a).
This shows that �U (a) is torsionless. Since both U (a) and �U (a) are torsionless,
U (a) is reflexive. ��
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9.6 Proof of Theorem 1.1

We take an element 0 = a ∈ E which does not belong to a left bar nor to a right bar.
Such elements do exist, since there are only finitely many left bars and finitely many
right bars, and k is algebraically closed.

Since 〈a〉 does not belong to a right bar, aA is not a right bristle. According to 9.5,
�C(a) is a reflexive atom. ��
Remark 9.6 Let A be a short local algebra with radical J . LetU be an atom submodule
of J . Even if the trace of U in A J is an atom, the embedding U → J does not have
to be a left A A-approximation.

Example 9.7 Let A be the algebra shown in the upper row on the left (with Aop on the
right). Let U = Ay. In the lower row, we depict ��C(y) = �(Ay).

A

• • •
• •

•..................................................................................................................................................................................................................................................
...........
...........
...........
...........
................................................................................................

...........
...........
...........
...........
...........
...........
.................

.................
.................

.................
.................

.................
.................

......................................................................

x

x x

y

y

z

z

A

• • •
• •

•..................................................................................................................................................................................................................................................
...........
...........
...........
...........
...................................................................................................................................................................................................

...........
...........
...........
...........
...........
...........
.................

.................
.................

.................
.................

.................
.................

......................................................................

x

x

y

y y

z

z

�(Ay)

• • •
• •

•
•
• •
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...........
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...........
...........
...........
.................
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.................

.................
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.................

......................................................................

........................
........................

........................
........................

........................
........................

........................
.....................................................................

................................................................................................................................

x

x
x

x

y

y y

z

z
z

Note that for all pairs (β, γ ) = 0, the right ideal (β y + γ z)A is a bristle, thus
C(β y + γ z) is not extensionless (The atom C(αx + β y + γ z) is extensionless iff
α = 0 and γ = 0) The picture shows the case α = 0, β = 1, γ = 0.

As we have seen in Proposition 9.2 and Remark 9.6 the fact that C(a) = A/Aa is
not extensionless depends not only on the left module structure of the radical J , but
also on the right module structure of J .

Given a special algebra A with radical J = πW , where W is a (special) K (3)-
module, andU an atom inW , there is a short local algebra A′ with the “same” radical
πW (where “same” refers to the left-module structure) such that πU , considered as
an A′-module, is Gorenstein-projective. Namely:

Proposition 9.8 Let dimW = (3, 2). Let U be a submodule of W with dimU = (1, 2)
such that also the trace of U in W is an atom.

Assume that the annihilator of U in E is generated by x ∈ E . There is a short local
algebras A with an element x ∈ J such that A J = W and U = Ax .

If A is a short local algebra with an element x ∈ J such that A J = W andU = Ax,
then x is a (left and right) Conca element of A (thus, U is a Gorenstein projective
A-module with �U � U ).

Recall that if A is a short local algebra, then x ∈ A is said to be a (left and right)
Conca element provided x2 = 0 and x J = J x = J 2 (see [1] and also [8]).
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Proof Let a, b, c be a generating set ofW such that x generatesU . Let A be generated
by x, y, z, with radical J such that x · 1 = a, y · 1 = b, z · 1 = c. ��

10 The Left Layout and the Right Layout of a Special Algebra

Lemma 10.1 The right layout of a special algebra is isomorphic to the left layout.

Proof The following table shows in the left column the various special algebras A and
the corresponding opposite algebra Aop in the right column. We assume that A is a
special algebra with radical πW , whereW is a K (3)-module with coefficient quiver as
displayed in Sect. 4. Note that this means that we work with a fixed basis x, y, z of E ,
and also with a fixed basis (say (100), (010), (001)) ofW0. In our identification of A J
with πW , the elements (100), (010), (001) of πW will correspond (in some order) to
a second basis x ′, y′, z′ of E , the order which we choose is seen in the pictures in the
left column.

It is straightforward to observe that indeed the opposite algebra has the presentation
as shown in the right column. In particular, its radical (and this is the right module JA)
has a coefficient quiver which is obtained from the coefficient quiver we started with
by replacing x, y, z by x ′, y′, z′.

Bristle type

................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
..................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
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....................................................................................................................................................................
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..................
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y′ x ′

.............................................................................................................................
........................

........................
........................

........................
........................

........................
........................

........................
.........................................................................................................................
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....................................................................................................................................................................
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z
y

x

∞

��
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Aswe have seen, the left layout and the right layout have the same shape. Of course, as
subsets of PE they may be different. Let us present an example with 3 left subbristles
and 3 right subbristles, all pairwise different.

Example 10.2 A special algebra A with six isomorphism classes of bristles which are
left or right subbristles. The algebra A is defined by the following relations:

zx = 0, x2 = yx, xy = y2 = zy, xz = 0, yz = z2, y2 + x2 + z2.

.................
.................

.................
..................

.................
.................

..................
.................

.................
.....................................................................................................................................................................

................................................................................................................................................................................

........................................................................................................

......................................................................................

........................................................................

......................................................................................

........................................................................................................

......................................................................................................... . . . . . . . . . . . . . . . . . . . .

x

x
x

y

y y
y

z

z
z

One easily checks that A is a special algebra. Also:

• Ax is annihilated by z and x − y;
• Ay is annihilated by x − y and y − z;
• Az is annihilated by x and y − z.
• (x − y)A is annihilated by x and y;
• (y − z)A is annihilated by y and z;
• (x − y + z)A is annihilated by x and z.

Therefore: the left ideals

Ax, Ay, Az

are bristles, and the right ideals

(x − y)A, (y − z)A, (x − y + z)A

are also bristles, thus there are 6 isomorphism classes of bristles which occur as left
or right ideals. Also, there are 6 four-dimensional ideals which are left bars or right
bars, namely

Ax + Ay, Ax + Az, Ay + Az;
(x − y)A + (y − z)A, (x − y)A + zA, (y − z)A + x A.

11 Commutative Algebras

Proposition 11.1 Let M be a special L(3)-module. There is a commutative algebra A
such that A J = M as A/J 2-module.
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Proof Here are such algebras (on the right, we write down the defining relations, in
order to obtain A from k[x, y, z]):

Bristle type Relations

................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
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1 yz, x2, y2 − xz, z2
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.....................................................................................................................................................................
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∞ xy, x2, y2, z2

When dealingwith a commutative special algebra, a bar is a 4-dimensional ideal which
is not faithful as an L(3)-module.

Proposition 11.2 Let A be a commutative special algebra and a ∈ E. The following
conditions are equivalent:

(i) The element 〈a〉 does not belong to a bar.
(ii) The atom C(a) is extensionless.
(iii) The trace of C(a) in A A is an atom (in particular, C(a) is torsionless).
(iv) The atom C(a) is Gorenstein-projective.
(v) The atom C(a) is reflexive.

If these conditions are satisfied, then C(a) is �-periodic with period at most 2.

Concerning the condition (iii): Assume that the trace of C(a) is an atom Y . Since
Y is local, there is a homomorphism φ : C(a) → A A with image Y . Since both C(a)

and Y have length 3, φ is an isomorphism. This shows thatC(a) is torsionless. Remark
11.6 will show that the converse is not true: C(a)may be torsionless, whereas its trace
in A A is not an atom.

Proof of 11.2 The equivalence of (i) and (ii) follows from Proposition 9.2, the
equivalence of (i) and (iii) follows from Proposition 9.4.
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Let us show that the equivalent conditions (i)–(iii) imply (iv). Thus, assume that
a does not belong to a bar. According to (ii), C(a) is extensionless, and therefore
U (a) = �C(a) is indecomposable, thus equal to Aa. According to (iii), the trace of
C(a) in A A is an atom, say equal to Ab for some b ∈ E .

For any x ∈ A, letρx : A A → A A be the rightmultiplication by x . Then Ab = U (b)
is the image of ρb and Aa is the image of ρa . Look at the composition

A A
ρa−−−−→ A A

ρb−−−−→ A A.

The image of ρa is Aa = U (a). The image Ab of ρb is the trace of C(a) in A A. It
follows that U (a) is the kernel of ρb. In particular, we have ba = 0 and the sequence
exhibited above is exact.

Since A is commutative, we also have ab = 0. Therefore, also the sequence

A A
ρb−−−−→ A A

ρa−−−−→ A A

is a complex. Now. the image Ab of ρb has length 3. Also the image Aa of ρa has
length 3, thus the kernel of ρa has length 3, and therefore this sequence is also exact.
Altogether, we see that U (b) = Ab = �Aa. It follows that C(a) = Ab is �-periodic
with period at most 2. This proves the additional assertion.

If we consider the complex P•

· · · −−−−→ P2
ρb−−−−→ P1

ρa−−−−→ P0
ρb−−−−→ P−1 −−−−→ · · ·

with all modules Pi = A A and using alternatively ρa and ρb, we obtain an exact
complex. The A-dual of P• is again P•, since the A-dual of ρx : A A → A A is just the
left multiplication by x . Thus shows that C(a) is the image in an exact complex P•
whose A-dual is also exact, thus C(a) is Gorenstein-projective.

Of course, (iv) implies (ii), and also (iv) implies (v).
(v) implies (iii). Assume that C(a) is reflexive. Then C(a) and �C(a) both are

torsionless and we have an �-sequence 0 → C(a) → A At → �C(a) → 0, for some
t ≥ 1. If t ≥ 2, then the Loewy length of the cokernel of C(a) → A At would be 3,
but this cokernel is �C(a) and �C(a) has Loewy length 2, since it is torsionless (and
has no non-zero projective direct summand). Therefore t = 1. Since the embedding
C(a) → A A is a left A A-approximation, the image of C(a) in A A has to be the trace
of C(a) in A A, thus the trace of C(a) in A A is an atom. ��
Remark 11.3 In condition (iii) of 11.2, it is not enough to assume that the atomC(a) is
torsionless: ThemoduleC(a)may be torsionless, without beingGorenstein projective.
As an example, take the following commutative algebra A.
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z
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Here, the atoms C(x) and C(z) both are torsionless, but �C(x) and �C(z) are
decomposable. Thus, for a = x and a = z, the module C(a) is torsionless, but not
extensionless and, as a consequence, not Gorenstein-projective. The traces of C(x)
and C(z) in A A have length 4 (the trace of C(x) is decomposable, the trace of C(z) is
indecomposable). ��

Remark 11.4 In case W is a special K (3)-module of bristle type ∞, there is also an
anti-commutative short local algebra A with A J = πW as A/J 2-module:
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.....................................................................................................................................................................
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.

12 More About 6-Dimensional Local Algebras

Let A be a local algebra which is not self-injective and has a non-projective reflexive
module. We have mentioned in the introduction that in case A is short the dimension
of A has to be at least 6. Using Proposition 4.2, one may construct many isomorphism
classes of short local algebras of dimension 6 which are not self-injective, but have
non-projective reflexive modules. Let us stress that there do exist also 6-dimensional
local algebras which are not self-injective, with non-projective reflexive modules, and
which are not short.

6-dimensional local algebras with non-projective reflexive modules need not to be
self-injective or short.

Example 12.1 Let A′ = k〈x, y〉/(x2, y2, yxy) and M = A′x = A′/A′x .

A′

•
•
•

•

•
•

........

........

........

........

........

........

........

........

.........

...........
...........
...........
...........
.............................................................................................

x

x

xy

y M

•
•
•

........

........

........

........

........

........

........

........

........

x

y

The module M is�-periodic with period 1, and Gorenstein projective, thus reflexive.
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