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Abstract
We investigated the false-negative, true-negative, false-positive, and true-positive pre-
dictive values from a general group testing procedure for a heterogeneous population.
We show that its false (true)-negative predictive value of a specimen is larger (smaller),
and the false (true)-positive predictive value is smaller (larger) than that from indi-
vidual testing procedure, where the former is in aversion. Then we propose a nested
group testing procedure, and show that it can keep the sterling characteristics and
also improve the false-negative predictive values for a specimen, not larger than that
from individual testing. These characteristics are studied from both theoretical and
numerical points of view. The nested group testing procedure is better than individ-
ual testing on both false-positive and false-negative predictive values, while retains
the efficiency as a basic characteristic of a group testing procedure. Applications to
Dorfman’s, Halving and Sterrett procedures are discussed. Results from extensive
simulation studies and an application to malaria infection in microscopy-negative
Malawian women exemplify the findings.
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1 Introduction

Screening for diseases especially those with low prevalences can be very costly and
time-consuming. Group testing, as a cost-effective strategy, has been widely used in
many fields to identify diseased subjects, for example, genetics [10], infectious dis-
ease screening [9,11,26], pharmaceutical industries [14], and agriculture [20], among
others. Such a strategy was first used by [6] to test pooled blood samples for syphilis
antigen in the US army recruitment. In Dorfman’s [6] procedure, the blood samples
of subjects are pooled in some groups prior to testing. If a group is tested negative,
all subjects in the group are declared negative. Otherwise, at least one subject in the
group is infected and retesting is subsequently conducted on all subjects to identify the
diseased ones. It is clear that this screening procedure as compared to individual test-
ing can greatly save cost if the disease prevalence is low since a much larger number
of groups are tested negative. Meanwhile, it could reduce the turnaround time for test
results. Recently, group testing has been used for SARS-CoV-2 detection Lagopati et
al. [16].

Since Dorfman’s [6] seminal work on group testing, a lot of work has been done in
this area [12,22,23,25]. When the personal information is available, some informative
group testing procedures have been developed to further improve screening accuracy
in term of certain operating characteristic [2,3,21]. Common operating characteris-
tics include efficiency (expected number of tests per subject), pooling specificity and
sensitivity, and positive and negative predictive values [18].

Predictive value, as one of the most important measures of a diagnostic test’s accu-
racy [4,7], has also been used to evaluate the performance of a group testing procedure
[15,19]. Four predictive values including true-positive, false-positive, true-negative,
and false-negative predictive values are usually investigated [15,17]. The true (false)-
positive predictive value is the probability that a subject tested positive is truly diseased
(disease-free), and the true (false)-negative predictive value is the probability that a
subject tested negative is truly disease-free (diseased). The smaller the false-negative
and false-positive values are, the better a group testing procedure is. Low false-negative
predictive value is particularly desirable for life-threatening diseases such as human
immunodeficiency virus due to the serious consequences if missing treatment of the
disease, and coronavirus disease for its quick transmission among human beings.

In this work, we study four predictive values from a general group testing procedure
in which the test is conducted at multiple stages. By comparing it with individual
testing procedure, we show that the false-negative predictive value for a group testing
procedure is larger, while the false-positive predictive value is smaller. Moreover,
as the testing stage increases, the false-negative predictive value increases. So, we
propose a nested group testing strategy by retesting negative groups, which is shown to
yield smaller false-negative and false-positive predictive value than individual testing
procedure. The remaining parts of the paper are arranged as follows. In Sect. 2, we
introduce the predictive values from a general group testing procedure and show that
its false-negative predictive value is larger, and the false-positive predictive value is
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Nested Group Testing Procedure 665

Fig. 1 An illustrative diagram of L-stage group testing procedureAO (subfigure a) where positive groups
are successively split and tested until all specimens are detected. For negative groups, no further splitting
is conducted and all specimens in the group are declared negative. Subfigure b illustrates L-stage nested
group testing procedureAN , where retesting is performed for negative groups using Dorfman’s procedure
AD

lower than those from individual testing procedure. Then we propose a nested group
testing procedure that can improve the false-negative predictive value. Applications of
the new method to Dorfman’s, Halving and Sterrett procedures are discussed in Sect.
3. The extensive simulation studies and a real data analysis are conducted in Sect. 4
to investigate the performance of the proposed method. Section 5 concludes the work.
The technical details are provided in Appendix.

2 Main Results

2.1 Notations

Consider a general multi-stage group testing procedure, shown in Fig. 1a, being
denoted as AO , where groups tested positive are successively randomly split into
subgroups for retesting. In the first stage, all the available specimens are randomly
divided into a certain number of groups and testing are conducted at the group level.
In the subsequent stages, if a group is tested negative, no further splitting is needed and
all its members are declared negative; groups tested positive are further split into sub-
groups and tested until all subgroups are declared negative or individual testing occurs.
Assume that there are n specimens X1, . . . , Xn conducted in AO of L(≥ 1) stages.
Denote the probability that the sth specimen is truly diseased by ps , s = 1, . . . , n,
which are allowed to be different among subjects. Suppose specimens are tested by
an assay with the sensitivity Se and specificity Sp. We assume that Se and Sp do not
depend on the group size.

Denote the testing results of these n specimens by I(l1)
1 , . . . , I(ln)

n taking 0 if being
declared negative and 1 otherwise, with the corresponding true diseased statuses being
˜I1, . . . ,˜In , where ls ∈ {1, . . . , L} is the stage at which the disease status of the sth
specimen is declared, s = 1, . . . , n. For example, if X1 is tested negative in the
third stage, then l1 = 3. For s = 1, . . . , n, the false-negative and true-negative
predictive values are defined, respectively, as ξ1,AO (Xs) = Pr

(

˜Is = 1|I(ls )
s =

0
)

and ξ2,AO (Xs) = Pr
(

˜Is = 0|I(ls)
s = 0

)

. Similarly, the false-positive and true-

positive predictive values are η1,AO (Xs) = Pr
(

˜Is = 0|I(ls )
s = 1

)

and η2,AO (Xs) =
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666 W. Xiong

Pr
(

˜Is = 1|I(ls )
s = 1

)

, respectively. Denote the true and testing status of the group
containing Xs in the j th stage by ˜G( j)(Xs) and G( j)(Xs) , j ≤ ls , s = 1, . . . , n.

We use a toy example to illustrate the effectiveness of implementing retesting.
Consider the Dorfman’s algorithm. Under the same size of the master pool, suppose
we perform testing in two ways: one is to use a group size of k, denoted by AD(k);
the other is to use a group size of 2k but with each group tested twice, denoted
by A′

D(2k). Then the overall number of tests is almost the same for AD(k) and
A′

D(2k). The corresponding false-negative predictive values of specimens X tested
negative in the first stage are ξ1,AD(k)(X) = Pr

(

˜I = 1|Gk = 0
)

and ξ1,A′
D(2k)(X) =

Pr
(

˜I = 1|G1,2k = 0,G2,2k = 0
)

respectively, where G1,2k and G2,2k representing

the groups which are tested twice. Using the Bayesian rule, we obtain
ξ1,AD (k)(X)

ξ1,A′
D (2k)(X)

=
1 + Sp(Se+Sp−1)(1−p)k

(1−Se)[1−Se+(Se+Sp−1)(1−p)k ] . The detailed derivation is given in Appendix A.

This ratio will be far larger than 1 if the sensitivity Se is approaching 1. For example,
let Se = Sp = 0.99, p = 0.01 and k = 10, then the ratio is 98.9. This means
the false-negative predictive value could be significantly reduced through retesting,
while using almost the same number of tests as using ordinary Dorfman’s algorithm.
This toy example shows the advantages of implementing retesting in group testing. It
motivates us to investigate thoroughly the properties of group testing algorithms by
incorporating retesting.

2.2 Predictive Values ofAO

For some s ∈ {1, 2, . . . , n}, if a specimen Xs is tested negative at the ls stage. Those
groups that containing this specimen Xs should be tested positive at the previous
stages, which is G( j)(Xs) = 1, j < ls and G(ls )(Xs) = 0. On the other hand, if Xs

is tested positive at the ls stage, then all groups containing Xs are tested positive at
the previous stage, which is G( j)(Xs) = 1, j ≤ ls . Therefore, the predictive values
defined above is actually determined by the process a specimen has went through until
being declared as positive or negative finally. For s = 1, . . . , n, the false-negative, true-
negative, false-positive, and true-positive predictive values using AO can be derived
as, respectively,

ξ1,AO (Xs) = Pr
(

˜Is = 1|G( j)(Xs) = 1, j < ls,G(ls )(Xs) = 0
)

,

ξ2,AO (Xs) = Pr
(

˜Is = 0|G( j)(Xs) = 1, j < ls,G(ls )(Xs) = 0
)

,

η1,AO (Xs) = Pr
(

˜Is = 0|G( j)(Xs) = 1, j ≤ ls
)

,

η2,AO (Xs) = Pr
(

˜Is = 1|G( j)(Xs) = 1, j ≤ ls
)

.

If a specimen Xs is tested negative at the second stage, that is ls = 2, then the
false- and true-negative predictive values are expressed as Pr

(

˜Is = 1|G(1)(Xs) =
1,G(2)(Xs) = 0

)

and Pr
(

˜Is = 0|G(1)(Xs) = 1,G(1)(Xs) = 0
)

, respectively. It is
clear that ξ1,AO (Xs)+ξ2,AO (Xs) = 1. The expressions for η1,AO (Xs) and η2,AO (Xs)

can be similarly derived. It isworthmentioning that, since a specimen could be detected
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Nested Group Testing Procedure 667

positive only after the first stage, the false- and true-positive predictive value are only
defined for stages ls > 1. After some algebraic manipulations given in Appendix A,
we have

ξ1,AO (Xs) = (1 − Se) S
ls−1
e ps/φ (ls, s) ,

ξ2,AO (Xs) = 1 − (1 − Se) S
ls−1
e ps/φ (ls, s) ,

η1,AO (Xs) = 1 − Slse ps/ψ (ls, s) ,

η2,AO (Xs) = Slse ps/ψ (ls, s) ,

where

φ(ls , s) = Sls−1
e (1 − Se)

(

1 − ϕ
(

G(ls )(Xs)
)) + Sp(1 − Sp)ls−1ϕ

(

G(1)(Xs)
)

+
ls−1
∑

τ=1
SpSτ

e (1 − Sp)ls−1−τ
(

1 − ϕ
(

G(τ )(Xs)\G(τ+1)(Xs)
))

ϕ
(

G(τ+1)(Xs)
)

,

ψ(ls , s) = Slse
(

1 − ϕ
(

G(ls )(Xs)
)) + (1 − Sp)lsϕ

(

G(1)(Xs)
)

+
ls−1
∑

τ=1
Sτ
e (1 − Sp)ls−τ

(

1 − ϕ
(

G(τ )(Xs)\G(τ+1)(Xs)
))

ϕ
(

G(τ+1)(Xs)
)

,

with ϕ(A) = ∏

{ j :X j∈A}(1 − p j ).
When L = 1, the procedure AO reduces to individual testing procedure, denote it

by AI . Then four predictive values for individual testing s ∈ {1, 2, . . . , n} are

ξ1,AI (Xs) = Pr
(

˜Is = 1|I(ls )
s = 0

)

= (1−Se)ps
Sp(1−ps )+(1−Se)ps

,

ξ2,AI (Xs) = Pr
(

˜Is = 0|I(ls )
s = 0

)

= Sp(1−ps )
Sp(1−ps )+(1−Se)ps

,

η1,AI (Xs) = Pr
(

˜Is = 0|I(ls )
s = 1

)

= (1−Sp)(1−ps )
Se ps+(1−Sp)(1−ps )

,

η2,AI (Xs) = Pr
(

˜Is = 1|I(ls )
s = 1

)

= Se ps
Se ps+(1−Sp)(1−ps )

.

2.3 Predictive Value Comparison BetweenAO andAI

The predictive value is important in real applications. A good group testing strategy
should have lower false-negative and lower false-positive predictive values compared
to individual testing procedure. Intuitively,AO should bring better false-positive pre-
dictive value than AI since the average number of testing for a positive specimen
is beyond one as L > 1. However, its false-negative predictive value is a little bit
optimistic because the testing results of the group containing it in the previous stages
are tested positive. The following Theorem 2.1 verifies these results, whose proof is
given in Appendix B.

Theorem 2.1 Suppose a specimen Xs is tested using AO and AI respectively, s =
1, . . . , n, then

ξ1,AO (Xs) > ξ1,AI (Xs) , ξ2,AO (Xs) < ξ2,AI (Xs) ,

η1,AO (Xs) < η1,AI (Xs) , η2,AO (Xs) > η2,AI (Xs) .
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668 W. Xiong

ξ1,AO (Xs) and ξ2,AO (Xs) are specified by the stage in which a specimen is tested
positive or negative. Intuitively, the false-negative values of a specimen tested negative
at different stages should be different. Theorem 2.2 below, whose proof is given in
Appendix C, reveals that the false-negative predictive value of a specimen increases
when it is declared in high stage under certain condition. Let ξ1,AO (Xs |ls = l) rep-
resent the false-negative predictive value of a specimen Xs declared negative in the

lth stage, l ≤ L . To simplify the notations, denote Vs,z = Pr
(

˜WG(z)(Xs )\G(z+1)(Xs )
=

0
)

= ∏

{ j :X j∈G(z)(Xs )\G(z+1)(Xs )}
(1− p j ), where ˜WA\B represents the true disease status

of the difference between two sets A and B containing specimen Xs tested negative
in the zth stage, z ≤ L .

Theorem 2.2 Suppose a specimen Xs is tested negative in the lth stage using AO.
Then the following relationships are established:

(1) ξ1,AO (Xs |ls = 1) < ξ1,AO (Xs |ls = 2) for l = 1,
(2) ξ1,AO (Xs |ls = l) < ξ1,AO (Xs |ls = l + 1) if SpVs,l(1 − Vs,l−1) > Se(1 − Vs,l)

for l > 1.

Group testing is usually applied for rare diseases, therefore the condition in result
(2) of Theorem 2 is frequently satisfied. Taking a homogeneous population as an
example, this condition reduces to Sp/SeVs,l+1(1+ Vs,l+1 + . . . + V �al�−1

s,l+1 ) > 1 and

al = (kl−1 − kl)/(kl − kl+1) ≥ 2, where Vs,l+1 = (1− p)kl−kl+1 , kl is the group size
in the lth stage, and �a� is the largest integer less then or equal a. This condition is
easy to satisfy, for example, if Sp ≥0.8 and (1 − p)k2 ≥ 0.75.

2.4 Nested Group Testing Procedure

A good group testing procedure is expected to have low false-negative and false-
positive and high true-negative and true-positive predictive values. As shown in
Theorem 1, using AO yields higher false-negative predictive values than AI . To
improve it, we propose a nested group testing procedure based on AO where the
negative groups are retested at each stage. With this doings, all specimens in the
groups tested negative at the ls stage are randomly split into a certain number of
groups for retesting using Dorfman’s procedure (AD). We call it the nested group
testing procedure, denoted by AN . See Fig. 1b for illustration.

Denote the false-negative predictive value of the specimen Xs from AN by
ξ1,AN (Xs; k), which is expressed as ξ1,AN (Xs; k) = Pr

(

˜Is = 1|G(ls )(Xs) =
0,G( j)(Xs) = 1, j < ls, Bs(k) = 0

)

, s ∈ {1, . . . , n}, where Bs(k) denotes the
group containing Xs , and k is the group size of retesting. The following Theorem 3,
whose proof is given in Appendix D, shows that usingAN yields lower false-negative
predictive value than AI .

Theorem 2.3 If (1−Se)/Sp ≤ Pr
(

˜WG(ls−1)(Xs )\G(ls )(Xs )
= 1

)

, then there exists a group

size k(ls )
s such that, for any k1 ≤ k(ls )

s and k2 > k(ls )
s the false-negative predictive value

of a specimen Xs using nested group testing procedureAN satisfies ξ1,AN (Xs; k1) ≤
ξ1,AI (Xs), and ξ1,AN (Xs; k2) > ξ1,AI (Xs), s ∈ {1, . . . , n}.
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Nested Group Testing Procedure 669

With the proposed procedure, if a group size larger than k(ls )
s is used, the false-

negative predictive value of Xs would be larger than that from individual testing
procedure; otherwise, it would be smaller. For a homogeneous population where all
specimens have the same probability of being positive (that is, ps = p for all s ∈
{1, . . . , n}), the condition in Theorem 3 reduces to (1− Se)/Sp ≤ 1−(1− p)kls−1−kls .

Since the upper-bounded group size k(ls )
s for different specimens may not be the same,

we split the specimens in the negative groups by the order of their upper-bounded
retesting size k(ls )

s in the nested group testing procedure. To be specific, in each stage,
we calculate k(ls )

s for all specimens in the negative groups and sort them in an ascending
order; the specimens are subsequently split based on the ordered upper-bounded sizes.

For convenience, we could directly use the group size k(ls )
s for retesting. In this

way, the false-negative predictive values from our nested group testing procedureAN

are reduced and more stable regardless of the stages. As shown in Theorem 2.2, the
false-negative predictive value of AO is far larger than that of AI especially when
the stage l goes high. The retest group size k(ls )

s is obtained through targeting the
individual testing. Therefore, the false-negative predictive value ofAN is close toAI

and maintains the efficiency. In another word, our procedure AN is more stable than
AO . To measure it, denote by ξ̄1,AN = 1

n

∑n
s=1 ξ1,AN (Xs), and

ΔAN = 1

n

n
∑

s=1

(

ξ1,AN (Xs) − ξ̄1,AN

)2
.

For individual testing, we have ΔAI = 0 for homogeneous population. This mea-
surementΔAN features the difference of false-negative predictive value of specimens.
We name it as false-negative(FN)-alike measurement. In next section, we will show in
detail that the nested group testing procedure has smaller FN-alikemeasurementΔAN ,

compared with the original group testing procedure AO . In another word, the nested
group testing procedure has more stable performance on the false-negative predictive
value at each stage.

3 Applications to the Existing Group Testing Procedures

Considerable attention has been given to Dorfman’s [6] group testing strategy since
its appearance, resulting in various extensions and improvements. Here we focus on
hierarchical group testing algorithms including two-stageDorfman’s procedure, three-
stage Halving procedure and one-step Sterrett procedure [13,24].

3.1 Dorfman’s and Halving Procedure

To investigate the performance of the proposed method, we apply it to two com-
mon group testing procedures including Dorfman’s procedure (AD) with L = 2 (see
Fig. 2a) and Halving procedure (AH ) with L = 3 (see Fig. 2c) [1,3,5]. We also
construct versions of nested group testing procedures for these two procedures (see
Fig. 2b, d).
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670 W. Xiong

Fig. 2 An illustrative diagram of Dorfman’s group testing procedures (subfigure a) and nested Dorfman’s
procedure (subfigure b), Halving procedure (subfigure c) and nested halving procedure (subfigure d)

A specimen can be tested negative in stage 1 or 2 for Dorfman’s procedure (Fig. 2a),
and in stage 1, 2, or 3 for the three-stage halving procedure (Fig. 2c). The predicative
values for these two nested procedures are given as follows.
Dorfman’s procedure:

ξ1,AD (Xs |ls = 1) = Pr
(

˜Is = 1|G(1) (Xs) = 0
) = (1−Se)ps

1−Se+rϕ(G(1)(Xs ))
,

ξ1,AD (Xs |ls = 2) = Pr
(

˜Is = 1|G(1) (Xs) = 1,G(2) (Xs) = 0
)

= (1−Se)Se ps
Se(1−Se)+r Se(1−ps )−r Spϕ(G(1)(Xs ))

.

Halving procedure:

ξ1,AH (Xs |ls = 1) = Pr
(

˜Is = 1|G(1) (Xs) = 0
) = (1−Se)ps

1−Se+rϕ(G(1)(Xs ))
,

ξ1,AH (Xs |ls = 2) = Pr
(

˜Is = 1|G(1) (Xs) = 1,G(2) (Xs) = 0
)

= (1−Se)Se ps
Se(1−Se)+r Seϕ(G(2)(Xs ))−r Spϕ(G(1)(Xs ))

,

ξ1,AH (Xs |ls = 3) = Pr
(

˜Is = 1|G(1) (Xs) = 1,G(2) (Xs) = 1,G(3) (Xs) = 0
)

= (1−Se)S2e ps
S2e (1−Se)+r S2e ϕ(G(3)(Xs ))−r SeSpϕ(G(2)(Xs ))−r Sp(1−Sp)ϕ(G(1)(Xs ))

,
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Nested Group Testing Procedure 671

where ϕ(A) = ∏

{ j :X j∈A}(1− p j ) and r = Se + Sp − 1. The detailed derivations are
given in Appendix A.

Set the prevalence as p = 0.005, 0.01 and 0.03 and initial group size as k1 = 80,
40 and 20. The sensitivity and specificity (Se, Sp) are set to be (0.8,0.8), (0.85,0.85),
(0.9,0.9), (0.95,0.95), and (0.99,0.99). Table 1 presents the false-negative predictive
values for the Dorfman’s procedure and Halving procedure, respectively, and their
corresponding nested procedures. In addition, the results for AI are also reported.
The notations are as follows. Denote the lth stage of Dorfman’s procedure and the
corresponding nested group testing procedure by Dl and nDl , and the lth stage of
three-stage halving procedure and the corresponding nested group testing procedure
by Hl and nHl , respectively. Since D1 and H1 are the same, we omit the the results of
H1. Denote the retest group size in the lth stage by k(l). If a maximum tolerance group
size is imposed, say, kmax = 100, then the group size for the implemented Dorfman’s
procedure in our nested group testing procedure is k(l)∗ = min{k(l), kmax}.

As expected, the false-negative predictive values of AI are lower than those of D1
and D2, and H2 and H3. For example, when p = 0.005, k1 = 80 and Se = Sp =
0.85, the false-negative predictive values of D1, D2, H2, and H3 are, 1.212 × 10−3,
1.985 × 10−3, 2.952 × 10−3 and 4.329 × 10−3, respectively, which is by far larger
than 0.886 × 10−3 of AI . Instead, using nested group testing procedure with group
size k(l)∗ = 100, 40, 35 and 7, these values become 0.248 × 10−3, 0.522 × 10−3,
0.565× 10−3, and 0.78× 10−3, respectively. Obviously, the false-negative predictive
values are greatly reduced.

Subsequently, we explore the possibility of a specimen tested negative at the ls stage
with ls > 1, which is defined as φ(ls, s) = Pr(G( j)(Xs) = 1, j < ls,G(ls )(Xs) = 0).
Table 2 displays the results for selected values of prevalences, group sizes and testing
error rates. From this table, we see that the probability is nonignorable. For example,
when p =0.005, k1 = 80, Se =0.99, and Sp =0.99, the probability of a specimen
reported negative in the third stage of Halving procedure is 0.173.

In Table 2, we also report the FN-alike measurement ΔAD for Dorfman’s algo-
rithm and ΔAnD for the nested Dorfman’s algorithm, along with their ratio rD =
ΔAnD/ΔAD . This measurement is computed based on Table 1. The small ratio rD
indicates specimens having similar performance on the false-negative predictive value
although they might have went through different processes. It is an appealing charac-
teristic since it is expected to have comparable false-negative predictive value for all
specimens. The results are similar for Halving algorithm.

3.2 One-Step Sterrett Procedure

The difference between Sterrett’s and Dorman’s procedures is that in Sterrett’s proce-
dure a unit randomly chosen from a positive group is for testing until a positive one
is identified, then the remained units are formed to a group for testing. A graphical
presentation of one-step Sterrett procedure is given in Fig. 3, denoted by AS .

Denote the lth stage of Sterrett procedure by Sl , l = 1, 2, 3. Note that in stage 2,
specimens could be tested negative in two different ways. Without loss of generality,
assume the first group in stage 1 is tested positive, and subsequently in stage 2 the
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672 W. Xiong

Table 1 The false-negative predictive values of D1 and D2 (the first and second stage of the Dorfman’s pro-
cedure), nD1 and nD2 (the nested Dorfman), H1 and H2 (the first and second stage of Halving procedure),
and nH2 and nH3 (the nested Halving)

Dorfman (Se, Sp) AI D1 nD1 k(1)∗ D2 nD2 k(2)∗

p = 0.005, k1 = 80 (0.8,0.8) 1.255 1.662 0.486 100 2.530 1.255 80

(0.85,0.85) 0.886 1.212 0.248 100 1.985 0.872 79

(0.9,0.9) 0.558 0.787 0.100 100 1.388 0.558 80

(0.95,0.95) 0.264 0.383 0.023 100 0.729 0.264 80

(0.99,0.99) 0.051 0.075 0.001 100 0.152 0.038 79

p = 0.01, k1 = 40 (0.8,0.8) 2.519 3.326 1.351 100 5.094 2.519 40

(0.85,0.85) 1.779 2.426 0.725 100 4.003 1.779 40

(0.9,0.9) 1.121 1.574 0.306 100 2.803 1.121 40

(0.95,0.95) 0.531 0.767 0.072 100 1.475 0.531 40

(0.99,0.99) 0.102 0.150 0.003 100 0.308 0.061 39

p = 0.03, k1 = 20 (0.8,0.8) 7.673 11.40 4.602 42 13.17 7.673 20

(0.85,0.85) 5.428 8.480 2.753 100 10.04 5.428 20

(0.9,0.9) 3.425 5.607 3.419 100 6.803 3.425 20

(0.95,0.95) 1.625 2.781 1.109 100 3.460 1.625 20

(0.99,0.99) 0.312 0.553 0.058 100 0.701 0.116 20

Halving AI H2 nH2 k(2)∗ H3 nH3 k(3)∗

p = 0.005, k1 = 80 (0.8,0.8) 1.255 3.458 1.251 67 5.811 1.239 2

(0.85,0.85) 0.886 2.952 0.873 70 4.330 0.884 13

(0.9,0.9) 0.558 2.284 0.554 74 2.867 0.545 22

(0.95,0.95) 0.264 1.360 0.260 77 1.424 0.253 31

(0.99,0.99) 0.051 0.321 0.044 79 0.283 0.044 38

p = 0.01, k1 = 40 (0.8,0.8) 2.519 6.912 2.476 33 11.80 2.482 1

(0.85,0.85) 1.779 5.900 1.746 35 8.817 1.734 6

(0.9,0.9) 1.121 4.563 1.109 37 5.856 1.094 11

(0.95,0.95) 0.531 2.717 0.491 38 2.917 0.472 15

(0.99,0.99) 0.102 0.641 0.068 39 0.582 0.089 19

p = 0.03, k1 = 20 (0.8,0.8) 7.673 18.98 7.393 16 25.99 7.402 4

(0.85,0.85) 5.428 15.76 5.157 17 19.46 4.841 5

(0.9,0.9) 3.425 11.77 3.206 18 12.95 3.161 7

(0.95,0.95) 1.625 6.688 1.498 19 6.462 1.224 8

(0.99,0.99) 0.312 1.502 0.127 19 1.290 0.114 9

The values are multiplied by 103
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674 W. Xiong

Fig. 3 An illustrative diagram of one-step Sterrett procedure (subfigure a) and nested Sterrett procedure
(subfigure b)

first d − 1 individuals are tested negative, while the dth individual is tested positive.
Denote by S2(1) the procedure for specimens using individual testing in stage 2. For
those remaining specimens in that positive group, denote by S2(2) the procedure for
specimens using group testing in stage 2.We use ξ1,AS (Xs |ls = 2(1)) or ξ1,AS (Xs |ls =
2(2)) to denote the false-negative predictive value of Xs that is tested negative in stage
2 by S2(1) or S2(2) , respectively. Specifically, the false-negative predictive value of Xs

is denoted by

ξ1,AS (Xs |ls = 1) = Pr
(

˜Is = 1|G(1) (Xs ) = 0
)

,

ξ1,AS

(

Xs |ls = 2(1)
)

= Pr

(

˜Is = 1|G(1) (Xs ) = 1,
d−1
∑

j=1
I j = 0,Id = 1

)

,

ξ1,AS

(

Xs |ls = 2(2)
)

= Pr

(

˜Is = 1|G(1) (Xs ) = 1,
d−1
∑

j=1
I j = 0,Id = 1,G(2) (Xs ) = 0

)

,

ξ1,AS
(Xs |ls = 3) = Pr

(

˜Is = 1|
d−1
∑

j=1
I j = 0,Id = 1,G(l) (Xs ) = 1, l ≤ 2,G(3) (Xs ) = 0

)

.

Similarly, we could obtain the true-positive predictive value of Xs . We summarize
the results in the following theorem.

Theorem 3.1 Suppose a specimen Xs is tested using one-step Sterrett procedure AS

and individual testing AI respectively, s = 1, . . . , n, then

ξ1,AS (Xs) > ξ1,AI (Xs) , ξ2,AS (Xs) < ξ2,AI (Xs) ,

η1,AS (Xs) < η1,AI (Xs) , η2,AS (Xs) > η2,AI (Xs) .

This result is parallel to Theorem 1, with proof given in Appendix E. Note that
Sterrett procedure is slightly different with Dorfman’s or Halving procedure. Theorem
4 shows that improvement is also necessary for Sterrett procedure. Similarly, we
propose to retest those specimens which is declared negative. For example, suppose a
specimen Xs belongs to the set S2(1) . Denote by Bs(k) the retesting group with group
size k which contains Xs . Then the false-negative predictor value of Xs after retesting
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Nested Group Testing Procedure 675

is defined as

ξ1,AN (Xs; k2) = Pr

(

˜Is = 1|G(1) (Xs) = 1,
d−1
∑

j=1
I j = 0, Id = 1, Bs (k2) = 0

)

.

The false-negative predictor value of Xs belonging to S1, S2(2) or S3 is defined in the
same way. In the following theorem, we will show that it is an increasing function
with respect to the retesting size kr . The situation in stage 2 of Sterrett procedure is
complex due to the characteristic of this procedure. Therefore, we cannot obtain a
result parallel to Theorem 3, but we can still obtain Theorem 3.2. The proof is given in
Appendix F. Simulations reported in Table 3 show the false-negative predictor value
is considerably reduced using nested Sterrett procedure.

Theorem 3.2 The false-negative predictor values of a specimen using nested Sterrett
procedure are strictly increasing with respect to the retest group size kr .

To investigate the false-negative predictive value of Sterret procedure and the nested
Sterrett procedure, we run simulations with the prevalence p = 0.005, 0.01 and 0.03
and initial group size as k1 = 80, 40 and 20 correspondingly. Set number of groups
by 200 and repeat the simulations by 1000 times. Note that a positive group will be
tested individually until the first positive specimen comes out. Obviously, the position
of the first positive specimen varies. So, we reported average false-negative predictive
value of different types of specimens in Table 3. We omit the retesting group sizes k∗
since they are also varies.

From Table 3, the false-negative predictive value from individual testing (AI ) is
lower than that from Sterrett procedure (S2(1) , S2(2) and S3). For example, when p =
0.005, k1 = 80 and Se = Sp = 0.9, the false-negative predictive values from S2(1) ,
S2(2) , and S3 are 1.460×10−3, 3.847×10−3 and 1.813×10−3, respectively,which is by
far larger than 0.552×10−3 for individual testing procedure. After using nested group
testing procedure, these values become 0.282 × 10−3, 0.758 × 10−3, 0.371 × 10−3

respectively. Although the false-negative predictive value of nS2(2) is slightly higher
than 0.552 × 10−3, all the false-negative predictive values are greatly reduced, while
compared with the original Sterrett procedure. Meanwhile, we report the FN-alike
measurement of Sterret algorithm. Not surprisingly, the nested Sterrett procedure has
more stable performance on the false-negative predictive value. Additionally, the ratio
ΔAnS /ΔAS are all smaller than 0.5.

4 Further Evaluation of Nested Group Testing Procedures

4.1 Pooling Sensitivity and Specificity

In this part, we compare the pooling sensitivity and specificity of individual testing,
Dorfman’s andHalving procedure, and the nested group testing procedures. The initial
group size k1 is set to be 40 and the prevalence p to be from 0.003 to 0.03. The group
sizes for retesting are calculated based on Theorem 3, with a maximum tolerance
group size kmax = 100. Set sensitivity and specificity to Se = Sp =0.95, and repeating
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Fig. 4 Pooling sensitivities and specificities of the individual testing (black point), Dorfman’s procedure
(blue circle) and nested Dorfman procedure (red pentagram), Halving procedure (blue square) and nested
halving procedure (red x-mark), Sterrett (blue diamond) and nested Sterrett (red star) with Se = Sp = 0.95.
The left panel is for sensitivity and right panel for specificity

time of M = 1000. We simulate the four group testing procedures and then calculate
pooling sensitivity and pooling specificity of these procedures; the results are presented
in Fig. 4.

From this figure, we observe that the nested Dorfman’s procedure always has larger
pooling sensitivity than individual testing procedure. For example, when the preva-
lence is p = 0.01, the pooling sensitivity from individual testing,Dorfman’s procedure
and the nested group testing method are 0.9494, 0.9013 and 0.9907, respectively. We
notice that the nested group testing method has slightly lower pooling specificity
than Dorfman’s procedure. Nevertheless, it outperforms individual testing based on
all commonly used operating characteristics including false (true)-negative predictive
value, false (true)-positive predictive value, pooling sensitivity and pooling specificity.
For Halving procedure, similar conclusions can be drawn.

4.2 Malaria Infection Group Testing

Zhou et al. [27] reported a study of detecting malaria infection in microscopy-negative
Malawianwomen using nested PCR (nPCR) [27]. They found that about 3.2% subjects
in histology-negative group (433 dried blood spot) were nPCR positive. The method
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678 W. Xiong

PCR had a median sensitivity of 96% and specificity of 99.1%. The group size was
10 for each group. So we set p = 0.032, Se = 0.96 and Sp = 0.991. According
to [8], the maximum group size is set by kmax = 20. Based on the configuration of
parameters, we record the process of decoding the specimens. Upon completion of the
procedure, the observed status of each specimen can be obtained. Then we calculate
the false-negative predictive values for specimens at different stages, the efficiency,
pooling sensitivity, and pooling specificity.

The results are summarized in Table 4, which show that the Dorfman’s procedure,
Halving procedure andSterrett procedure have slightly higher false-negative predictive
values than that from individual testing. The proposed nested group testingmethod can
substantially reduce the false-negative predictive values, which are lower than those
for individual testing procedure. For example, the false-negative predictive value at
the third stage of the nested halving procedure (nH3) is 0.986 × 10−3, while that
of Halving procedure (H3) is 10.81 × 10−3. We also consider two different settings
of Se = Sp = 0.95, 0.99. The performances are similar. Moreover, as compared
to individual testing procedure and original group testing procedures, the proposed
nested method can improve the pooling sensitivity.

5 Conclusion

Group testing strategy is cost-effective for rare disease. However, such efficiency gain
often couples with higher false-negative predictive value, which is not desirable for
life-threatening diseases such as malaria infection during pregnancy which may result
in severe maternal anemia, prematurity and low birth weight of babies, increasing the
risk of maternal and neonatal deaths [27]. In the present paper, we investigated pre-
dictive values including false (true)-negative predictive value and false (true)-positive
predictive values from a group testing algorithm. As compared to the individual test-
ing, we theoretically showed that multi-stage group testing procedures have higher
false-negative predictive value, and lower false-positive predictive value. Our pro-
posed nested group testing procedure can reduce the false-negative predictive value,
lower than that from individual testing through careful selection of group sizes. We
provide formulas and demonstrate the usage in details for commonly used group test-
ing procedures, including Dorfman’s algorithm, Halving and Sterrett algorithms.

As alternatives to hierarchical group testing procedures, non-hierarchical proce-
dures such as array testing (or matrix pooling) and three-dimensional procedures are
also used in group testing. Due to the overlapped groups, it is not a trivial thing to
extend the proposed method to non-hierarchical group testing procedures. Besides
this, we assumed that the sensitivity and specificity are known and do not depend on
the group size. It is better to consider the dilution effect with different group sizes.
Both issues might be future topics.
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Appendix

A. Derivation of Predictive Values

In the toy example, we have investigated the false-negative predictive value of
Dorfman’s algorithm through comparing ξ1,AD(k)(X) = Pr

(

˜I = 1|Gk = 0
)

and
ξ1,A′

D(2k)(X) = Pr
(

˜I = 1|G1,2k = 0,G2,2k = 0
)

respectively, where G1,2k and
G2,2k representing the groups which are tested twice. A detailed derivation is as fol-
lows:

ξ1,AD (k)(X)

ξ1,A′
D (2k)(X)

= Pr
(

˜I=1|Gk=0
)

Pr
(

˜I=1|G1,2k=0,G2,2k=0
) = (1−Se)p

Pr(Gk=0)
Pr(G1,2k=0,G2,2k=0)

(1−Se)2 p

= S2p(1−p)k+(1−Se)2[1−(1−p)k ]
Sp(1−p)k+(1−Se)[1−(1−p)k ]

1
(1−Se)

= 1 + Sp(Se+Sp−1)(1−p)k

(1−Se)[1−Se+(Se+Sp−1)(1−p)k ] .

Next, for a general hierarchical group testing procedure, the false-negative predic-
tive value is derived as follows:

ξ1,AO (Xs) = Pr
(

˜Is=1,G( j)(Xs )=1, j<ls ,G(ls )(Xs )=0
)

Pr(G( j)(Xs )=1, j<ls ,G(ls )(Xs )=0)
,

in which the numerator is derived as follows:

Pr
(

˜Is = 1,G( j) (Xs) = 1, j < ls,G
(ls ) (Xs) = 0

)

= Pr
(

G( j) (Xs)=1, ˜G( j) (Xs)=1, j < ls,G
(ls ) (Xs)=0, ˜G(ls ) (Xs)=1,˜Is =1

)

= (1 − Se) S
ls−1
e ps .

Denote the denominator by φ(ls, s), and

φ (ls, s) = ∑

Ωs
Pr

(

G( j) (Xs) = 1, j < ls,G(ls ) (Xs) = 0, ˜G(u) (Xs) = du, u ≤ ls
)

= ∑

Ωs
Pr

(

G(ls ) (Xs) = 0|˜G(ls ) (Xs) = dls
)

×∏ls−1
j=1 Pr

(

G( j) (Xs) = 1|˜G( j) (Xs) = d j
)

Pr
(

˜G(u) (Xs) = du, u ≤ ls
)

= ∑

Ωs
(1 − Se)dls S

1−dls
p

∏ls−1
j=1 S

d j
e

(

1 − Sp
)1−d j × Pr

(

˜G(u) (Xs) = du,
u ≤ ls) ,

where Ωs = {d j , j = 1, . . . , ls |dls ≤ · · · ≤ d1 ∈ {0, 1}}. Note that dls ≤ · · · ≤ d1,
that is, if a group ˜G( j1)(Xs) is positive, then ˜G( j2)(Xs) = 1 for all j2 ≤ j1. Therefore
we have
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I: if ˜G(ls )(Xs) = 1, then we have ˜G( j)(Xs) = 1 for j ∈ {1, . . . , ls}.
II: if ˜G(ls )(Xs) = 0, then there exists τ that ˜G( j)(Xs) = 1, for j ∈ {1, . . . , τ } and

˜G( j)(Xs) = 0, for j ∈ {τ + 1, . . . , ls}. Note that τ = 0 if ls = 1, so ˜G(1)(Xs) = 0.
So, the function φ(ls, s) is expressed as follows, with the first component represents

case I and the second component represents the case of τ = 0:

φ (ls, s) = Sls−1
e (1 − Se) Pr

(

˜G(ls ) (Xs) = 1
) + Sp

(

1 − Sp
)ls−1 Pr

(

˜G(1) (Xs) = 0
)

+
ls−1
∑

τ=1
SpSτ

e

(

1 − Sp
)ls−1−τ Pr

(

˜G( j1) (Xs) = 1, j1 ≤ τ, ˜G( j2) (Xs)

= 0, j2 ≥ τ + 1) .

Define by ˜WA\B the true diseased status of the difference between two sets A and
B. Then Pr(˜G( j1)(Xs) = 1, j1 ≤ τ, ˜G( j2)(Xs) = 0, j2 ≥ τ + 1), is equal to
Pr(˜G(τ+1)(Xs) = 0)Pr( ˜WG(τ )(Xs )/G(τ+1)(Xs )

= 1). Let ϕ(A) = ∏

{ j : j∈A}(1 − p j ).

In ϕ(·), the notation G(l)(Xs) represents the set containing Xs at the j th stage. There-
fore,

φ (ls, s) = Sls−1
e (1 − Se)

(

1 − ϕ
(

G(ls ) (Xs)
)) + Sp

(

1 − Sp
)ls−1

ϕ
(

G(1) (Xs)
)

+
ls−1
∑

τ=1
SpSτ

e

(

1 − Sp
)ls−1−τ (

1 − ϕ
(

G(τ ) (Xs) \G(τ+1) (Xs)
))

ϕ

(

G(τ+1) (Xs)
)

.

Specifically, for Dorfman’s procedure AD and halving procedure AH , the false-
negative predictive value is

ξ1,AD (Xs |ls = 2) = Pr
(

˜Is = 1|G(1) (Xs) = 1,G(2) (Xs) = 0
)

= (1−Se)Se ps
Se(1−Se)+r Se(1−ps )−r Sp

∏

j∈G(1)(Xs )(1−p j)
,

ξ1,AH (Xs |ls = 2) = Pr
(

˜Is = 1|G(1) (Xs) = 1,G(2) (Xs) = 0
)

= (1−Se)Se ps
Se(1−Se)+r Se

∏

j∈G(2)(Xs )(1−p j)−r Sp
∏

j∈G(1)(Xs )(1−p j)
,

ξ1,AH (Xs |ls = 3) = Pr
(

˜Is = 1|G(1) (Xs) = 1,G(2) (Xs) = 1,G(3) (Xs) = 0
)

= (1−Se)S2e ps
S2e (1−Se)+r S2e ϕ(G(3)(Xs ))−r SeSpϕ(G(2)(Xs ))−r Sp(1−Sp)ϕ(G(1)(Xs ))

,

where ϕ(A) = ∏

{ j : j∈A}(1 − p j ) and r = Se + Sp − 1.

Next, we derive the false-positive predictive value, η1,AO (Xs) = 1 − Pr(˜Is =
1|G( j)(Xs) = 1, j ≤ ls). Straightforwardly, we have η1,AO (Xs) = 1 −
Slse ps/Pr(G( j)(Xs) = 1, j ≤ ls). Denote by ψ(ls, s) the denominator Pr(G( j)(Xs) =
1, j ≤ ls). Following the way of deriving φ(ls, s), it is formulated as follows:

ψ (ls, s) = Slse Pr
(

˜G(ls ) = 1
)

+ (

1 − Sp
)ls Pr

(

˜G(1) = 0
)

+
ls−1
∑

τ=1

Sτ
e

(

1 − Sp
)ls−τ Pr

(

˜G( j1) = 1, j1 ≤ τ, ˜G( j2) = 0, j2 ≥ τ + 1
)
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= Slse
(

1 − ϕ
(

G(ls ) (Xs)
))

+ (

1 − Sp
)ls ϕ

(

G(1) (Xs)
)

+
ls−1
∑

τ=1

Sτ
e

(

1 − Sp
)ls−τ

(

1 − ϕ
(

G(τ ) (Xs) \G(τ+1) (Xs)
))

ϕ
(

G(τ+1) (Xs)
)

.

B. Proof of Theorem 2.1

Suppose a specimen Xs is tested negative at ls th stage. Rewrite ξ1,AO (Xs) as follows:

ξ1,AO (Xs) = Pr
(

˜Is = 1|G( j) (Xs) = 1, j < ls,G(ls ) (Xs) = 0
)

= Pr
(

G( j)(Xs )=1, j<ls ,G(ls )(Xs )=0|˜Is=1
)

Pr
(

˜Is=1
)

Pr(G( j)(Xs )=1, j<ls ,G(ls )(Xs )=0)

= Pr
(

G(ls )(Xs )=0|˜Is=1
)

Pr
(

˜Is=1
)

Pr(G(ls )(Xs )=0)
· Pr

(

G( j)(Xs )=1, j<ls |˜Is=1
)

Pr(G( j)(Xs )=1, j<ls |G(ls )(Xs )=0)
.

If Se > 0.5 and Sp > 0.5, then

Pr(G( j)(Xs ) = 1, j < ls |˜Is = 1)

Pr(G( j)(Xs ) = 1, j < ls |G(ls )(Xs ) = 0)

= Sls−1
e

∑

b Pr(G
( j)(Xs ) = 1, j < ls |˜G( j)(Xs ) = b j , j < ls )Pr(˜G( j)(Xs ) = b j , j < ls |G(ls )(Xs ) = 0)

≥ Sls−1
e

∑

b Sls−1
e Pr(˜G( j)(Xs ) = b j , j < ls |G(ls )(Xs ) = 0)

= 1.

The inequality is established because
∑ls−1

j=1 b j ≤ ls − 1 and then Pr(G( j)(Xs) =
1, j < ls |˜G( j)(Xs) = b j , j < ls) ≤ Sls−1

e . Therefore, we have

ξ1,AO (Xs) ≥ Pr(G(ls )(Xs )=0|˜Is=1)Pr(˜Is=1)
Pr(G(ls )(Xs )=0)

= Pr(˜Is = 1|G(ls )(Xs) = 0).

For individual testing AI , the false-negative predictive value is defined as follows:
ξ1,AI (Xs) = Pr(˜Is = 1|I(ls )

s = 0). We have

ξ1,AO (Xs) ≥ Pr(˜Is = 1|G(ls )(Xs) = 0) = Pr(G(ls )(Xs )=0|˜Is=1)Pr(˜Is=1)
Pr(G(ls )(Xs )=0)

≥ (1−Se)Pr(˜Is=1)

Pr(I(ls )
s =0)

= ξ1,AI (Xs).

The equality is established if and only if the group size of G(ls )(Xs) is equal to 1,
which reduces to individual testing.

Next, the false-positive predictive value is defined as follows:

η1,AO (Xs) = 1 − Pr
(

˜Is = 1|G( j) (Xs) = 1, j < ls,G
(ls ) (Xs) = 1

)

= 1 − η2,AO (Xs) .
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Note that G(ls )(Xs) is a single point set, containing the specimen Xs . So it is identical
to I(ls)

s . Rewrite η2,AO (Xs) as follows

η2,AO (Xs) = Sle ps

Pr
(

G( j)(Xs )=1, j<ls ,I(ls )
s =1

) = Se ps

Pr
(

I(ls )
s =1

) · Sls−1
e

Pr
(

G( j)(Xs )=1, j<ls |I(ls )
s =1

) .

The false-positive predictive value of individual testing is defined as

η1,AI (Xs) = 1 − η2,AI (Xs) = 1 − Se ps

Pr
(

I(ls )
s =1

) .

We proceed to show that Pr(G( j)(Xs) = 1, j < ls |I(ls )
s = 1) ≤ Sls−1

e .

Pr
(

G( j) (Xs) = 1, j < ls |I(ls )
s = 1

)

= Pr
(

G( j) (Xs) = 1, j < ls |˜Is = 1, I(ls )
s = 1

)

Pr
(

Ĩs = 1|I(ls )
s = 1

)

+Pr
(

G( j) (Xs) = 1, j < ls |˜Is = 0, I(ls )
s = 1

)

Pr
(

˜Is = 0|I(ls )
s = 1

)

≤ Sls−1
e .

Since Pr(G( j)(Xs) = 1, j < ls |˜Is = 0, I(ls )
s = 1) ≤ Sls−1

e , the last inequality is
established. Therefore, we have η1,AO (Xs) ≤ η1,AI (Xs).

C. Proof of Theorem 2.2

Suppose a specimen Xs is diagnosed negative at stage ls , then its false-negative pre-
dictive value is ξ1,AO (Xs |ls). We aim to compare the false-negative predictive value
of a specimen Xs tested negative at different stages. We start with ls = l or ls = l + 1.
Firstly, consider l = 1, then

ξ1,AO (Xs |ls=2)
ξ1,AO (Xs |ls=1) − 1 = Pr(˜Is=1|G(2)(Xs )=0,G(1)(Xs )=1)

Pr(˜Is=1|G(1)(Xs )=0)
− 1

= SePr(G(1)(Xs )=0)−Pr(G(2)(Xs )=0,G(1)(Xs )=1)
Pr(G(2)(Xs )=0,G(1)(Xs )=1)

= (Se+Sp−1)Pr(˜G(2)(Xs )=0)[Se−(Se+Sp)Pr( ˜WG(1)(Xs )\G(2)(Xs )
=1)]

Pr(G(2)(Xs )=0,G(1)(Xs )=1)
.

The probability Pr( ˜WG(1)(Xs )\G(2)(Xs )
= 1) is usually very small since group testing

is often used for rare diseases. Especially, it is usually smaller than Se/(Se + Sp). So,
two stage hierarchical group testing procedures, for example Dorfman’s procedure,
satisfy ξ1,AO (Xs |ls = 2) > ξ1,AO (Xs |ls = 1).
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Secondly, consider l ∈ {2, . . . , L−1}. Denote by Dl the event {G( j)(Xs) = 1, j <

l}, therefore

ξ1,AO (Xs |ls = l) = (1−Se)Sl−1
e Pr(˜Is=1)

Pr(G(l)(Xs )=0|Dl )Pr(Dl )
= (1−Se)SlePr(˜Is=1)

SePr(G(l)(Xs )=0|Dl )Pr(Dl )
,

ξ1,AO (Xs |ls = l + 1) = (1−Se)SlePr(˜Is=1)
Pr(G(l+1)(Xs )=0,G(l)(Xs )=1|Dl )Pr(Dl )

.

Let

pi j |Dl = Pr
(

˜G(l+1)(Xs) = i, ˜WG(l)(Xs )\G(l+1)(Xs )
= j |Dl

)

.

We proceed to verify that

Pr
(

G(l+1) (Xs) = 0,G(l) (Xs) = 1|Dl

)

− SePr
(

G(l) (Xs) = 0|Dl

)

= −r [Sp p00|Dl − Se p01|Dl ] ≤ 0.

First,

p00|Dl = 1

Pr(Dl)
Pr(Dl |˜G(l+1)(Xs) = 0, ˜WG(l)(Xs )\G(l+1)(Xs )

= 0) × Pr
(

˜G(l+1)(Xs)

= 0, ˜WG(l)(Xs )\G(l+1)(Xs )
= 0

)

= 1

Pr(Dl)
Pr

(

Dl , ˜G(l)(Xs) = 0
)

>
1

Pr(Dl)
Pr

(

Dl , ˜G(l)(Xs) = 0, ˜WG(l−1)(Xs )\G(l)(Xs )
= 1

)

>
1

Pr(Dl)
Pr

(

Dl |˜G(l)(Xs) = 0, ˜WG(l−1)(Xs )\G(l)(Xs )
= 1

)

×Pr
(

˜G(l)(Xs) = 0, ˜WG(l−1)(Xs )\G(l)(Xs )
= 1

)

,

and therefore

Sp p00|Dl

Se p01|Dl

>
SpPr

(

˜G(l)(Xs) = 0, ˜WG(l−1)(Xs )\G(l)(Xs )
= 1

)

SePr
(

˜G(l+1)(Xs) = 0, ˜WG(l)(Xs )\G(l+1)(Xs )
= 1

) .

The right hand side of the above inequality is derived as

Sp
∏

{ j :X j∈G(l)(Xs )}(1−p j )[1−∏

{ j :X j∈G(l−1)(Xs )\G(l)(Xs )}(1−p j )]
Se

∏

{ j :X j∈G(l+1)(Xs )}(1−p j )[1−∏

{ j :X j∈G(l)(Xs )\G(l+1)(Xs )}(1−p j )]

= Sp
∏

{ j :X j∈G(l)(Xs )\G(l+1)(Xs )}(1−p j )[1−∏

{ j :X j∈G(l−1)(Xs )\G(l)(Xs )}(1−p j )]
Se[1−∏

{ j :X j∈G(l)(Xs )\G(l+1)(Xs )}(1−p j )] .

123



686 W. Xiong

Denote by Vs,l = Pr( ˜WG(l−1)(Xs )\G(l)(Xs )
= 0), then the last equation above is identical

to SpVs,l+1(1−Vs,l)/(Se(1−Vs,l+1)). If this term is larger than 1, that is SpVs,l+1(1−
Vs,l)/(Se(1 − Vs,l+1)) > 1 for l > 1, then the conclusion ξ1,AO (Xs |ls = l + 1) >

ξ1,AO (Xs |ls = l) will be established. We continue to investigate this condition for
homogeneous population. In this case, Vs,l = (1 − p)kl−1−kl and

Sp p00|Dl
Se p01|Dl

>
Sp

∏

{ j :X j∈G(l)(Xs )\G(l+1)(Xs )}(1−p j )[1−∏

{ j :X j∈G(l−1)(Xs )\G(l)(Xs )}(1−p j )]
Se[1−∏

{ j :X j∈G(l)(Xs )\G(l+1)(Xs )}(1−p j )]

= SpVs,l+1[1−Vs,l ]
Se(1−Vs,l+1)

= SpVs,l+1[1−V

kl−1−kl
kl−kl+1
s,l+1 ]

Se(1−Vs,l+1)

≥ SpVl+1[1−V
� kl−1−kl
kl−kl+1

�
s,l+1 ]

Se(1−Vs,l+1)
= SpVs,l+1[1−V

�al �
s,l+1]

Se(1−Vs,l+1)

= Sp
Se
Vs,l+1(1 + Vs,l+1 + · · · + V �al�−1

s,l+1 ),

where al = (kl−1 − kl)/(kl − kl+1) and kl denotes the group size in lth stage. Suppose
each group in the lth stage is split intoml groups, then al = (ml −1)ml+1/(ml+1−1).
If ml ≥ 3, then al ≥ 2. Or, if ml = 2 and ml+1 = 2, then al ≥ 2. Generally, for
hierarchical group testing procedure, we have al ≥ 2. In Halving procedure, when
l = L − 1, in which mL−1 = 2 and mL = kL−1 > 2, then al < 2. However, if
l = L−1, then al = 2. In this case, the condition becomes Sp/SeVs,l+1(1+Vs,l+1) >

1. So, the conclusion ξ1,AH (Xs |ls = l) < ξ1,AH (Xs |ls = l + 1) is established if
Vs,l+1 = (1 − p)kl+1 ≥ (−1 + (1 + 4Se/Sp)1/2)/2. Suppose Se, Sp ≥ 0.8, then
Se/Sp ≤ 1/0.8 and (−1 + (1 + 4Se/Sp)1/2)/2 ≤ 0.73. Then (1 − p)k2 ≥ 0.75 is
sufficient.

D. The Proof of Theorem 2.3

The following two lemmas are needed for the proof of Theorem 2.3. As defined,
Bs(k) represents the group containing Xs while retesting, and ξ1,AN (Xs; k) represent
the false-negative predictive value of the specimen Xs after it has been retested in a
group of size k. It is formulated as

ξ1,AN (Xs; k) = Pr(˜Is = 1|G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls, Bs(k) = 0)

= (1−Se)2S
ls−1
e

Pr(G(ls )(Xs )=0,G( j)(Xs )=1, j<ls ,Bs (k)=0)
.

Lemma 5.1 Denote h(k) = ξ1,AN (Xs; k) as a function of the group size k while
retesting the specimen Xs. The function h(k) is monotonically increasing with respect
to k.

Proof Weonly need to verify the denominator of ξ1,AN (Xs; k) is a decreasing function
with respect to k, which is Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls, Bs(k) = 0).
Suppose we add an individual I(ls)∗ to the group Bs(k). Then a new group Bs(k + 1)
is formed with group size of k + 1.
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Pr
(

G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls, Bs(k + 1) = 0
)

=
∑

i, j∈{0,1}
Pr(˜Bs(k) = i,˜I(ls )∗ = j)

×Pr
(

G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls, Bs(k + 1) = 0|˜Bs(k) = i,˜I(ls )∗ = j
)

=
∑

i, j∈{0,1}
Pr

(

G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls |˜Bs(k) = i,˜I(ls )∗ = j
)

×Pr(Bs(k + 1) = 0|˜Bs(k) = i,˜I(ls )∗ = j)Pr(˜Bs(k) = i,˜I(ls )∗ = j)

= Sp A00 p00 + (1 − Se)A01 p01 + (1 − Se)(A10 p10 + A11 p11),

where Ai j = Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls |˜Bs(k) = i,˜I(ls )∗ = j) and

pi j = Pr(˜Bs(k) = i,˜I(ls )∗ = j). Similarly, we have

Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls, Bs(k) = 0)

=
∑

i, j∈{0,1}
Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls |˜Bs(k) = i,˜I(ls )∗ = j)

×Pr(Bs(k) = 0|˜Bs(k) = i,˜I(ls )∗ = j)Pr(˜Bs(k) = i,˜I(ls )∗ = j)

= Sp A00 p00 + Sp A01 p01 + (1 − Se)(A10 p10 + A11 p11).

If Sp > 0.5 and Se > 0.5, then we have

Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls, Bs(k + 1) = 0)

< Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls, Bs(k) = 0).

Thus, the function

ξ1,AN (Xs; k) = (1 − Se)2S
ls−1
e

Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls, Bs(k) = 0)

is an increasing function with respect to the retest group size k.

Lemma 5.2 Suppose a specimen Xs is tested negative using group testing procedure.
Suppose (1− Se)/Sp ≤ Pr( ˜WG(l−1)(Xs )\G(l)(Xs )

= 1). Retest the specimen Xs individ-
ually will result in a lower false-negative predictive value, ξ1,AN (Xs; 1) ≤ ξ1,AI (Xs).

Proof For ls = 1, we have

ξ1,AN (Xs; k|ls = 1) = Pr
(

˜Is = 1|G(1)(Xs) = 0, Bs(k) = 0
)

= Pr(˜Is=1,Bs (k)=0)
Pr(Bs (k)=0)

1−Se
Pr(G(1)(Xs )=0|Bs (k)=0)

<
Pr(˜Is=1,Bs (k)=0)

Pr(Bs (k)=0) .
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688 W. Xiong

If the rest group size is k = 1, then

ξ1,AN (Xs; k = 1|ls = 1) ≤ Pr
(

˜Is = 1|Bs(1) = 0
) = ξ1,AI (Xs).

For ls > 1, we have

ξ1,AN (Xs; k) = Pr(˜Is=1,Bs (k)=0)
Pr(Bs (k)=0)

Pr(G(ls )(Xs )=0,G( j)(Xs )=1, j<ls |˜Is=1,Bs (k)=0)
Pr(G(ls )(Xs )=0,G( j)(Xs )=1, j<ls |Bs (k)=0)

= Pr(˜Is=1,Bs (k)=0)
Pr(Bs (k)=0)

(1−Se)S
ls−1
e

Pr(G(ls )(Xs )=0,G( j)(Xs )=1, j<ls |Bs (k)=0)
.

So, Pr(˜Is = 1|Bs(k) = 0) − ξ1,AN (Xs; k) ≥ 0 is equivalent to

Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls |Bs(k) = 0)

(1 − Se)S
ls−1
e

− 1 ≥ 0.

Let k = 1, then

Pr(G(ls )(Xs) = 0,G( j)(Xs) = 1, j < ls |Bs(1) = 0)(1 − Se)S
ls−1
e − 1

> Pr(G̃(1s )(Xs) = 1|Bs(1) = 0) − 1

+ Sp
1 − Se

Pr(G̃(1s )(Xs) = 0, ˜WG(ls−1)(Xs )\G(ls )(Xs )
= 1|Bs(1) = 0)

= SpPr(G̃(ls )(Xs) = 0)

Bs(1) = 0

[

Sp
1 − Se

Pr( ˜WG(ls−1)(Xs )\G(ls )(Xs )
= 1) − 1

]

.

Therefore, we have ξ1,AN (Xs; 1) < Pr( Ĩl,s = 1|Bs(1) = 0) = ξ1,AI (Xs) if
(1 − Se)/Sp ≤ Pr( ˜WG(ls−1)(Xs )\G(ls )(Xs )

= 1), l > 1. Note that the probability
Pr( ˜WG(l−1)(Xs )\G(l)(Xs )

= 1) is identical to 1 − (1 − p)kls−1−kls for homogeneous
population. In this case, the condition in Lemma 5.2 reduces to (1 − Se)/Sp ≤
1 − (1 − p)kls−kls .

Based on the result of Lemmas 5.1 and 5.2, we have ξ1,AN (Xs; 1) ≤ ξ1,AI (Xs)

and ξ1,AN (Xs; k) is an increasing function with respect to k. Therefore, there exists a
group size k(ls )

s satisfying Theorem 2.3. Then the proof of Theorem 2.3 is complete.

E. The Proof of Theorem 3.1

As shown in Fig. 3a, specimens are classified into four types. The false-negative
predictive value of S1 is the same as ξ1,AD (Xs |ls = 1) or ξ1,AH (Xs |ls = 1), so we
obtain that ξ1,AS (Xs1) > ξ1,AI (Xs1) for s1 ∈ S1.

For s2 ∈ S2(1) , note that there is no common specimen between {∑d−1
j=1, j 	=s2 I j =

0, Id = 1,G1} and {˜Is2 = 1}. Then we have

ξ1,AS (Xs2) = Pr(˜Is2 = 1|G(1)(Xs2) = 1, Is2 = 0,
d−1
∑

j=1, j 	=s2

I j = 0, Id = 1)
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= Pr(G(1)(Xs2) = 1, Is2 = 0|˜Is2 = 1,
d−1
∑

j=1, j 	=s2

I j = 0, Id = 1)

×Pr(
∑d−1

j=1, j 	=s2 I j = 0, Id = 1,G(2)(Xs2)|˜Is2 = 1)Pr(˜Is2 = 1)

Pr(G(1)(Xs2) = 1, Is2 = 0,
∑d−1

j=1, j 	=s2 I j = 0, Id = 1)

= Se(1 − Se)Pr(
∑d−1

j=1, j 	=s2 I j = 0, Id = 1,G(2)(Xs2))Pr(˜Is2 = 1)

Pr(G(1)(Xs2) = 1, Is2 = 0,
∑d−1

j=1, j 	=s2 I j = 0, Id = 1)
.

In order to verify it is large than ξ1,AI (Xs2) = (1−Se)Pr(˜Is2=1)
Pr(Is2=0) , we only need to verify

Se·Pr
(

∑d−1
j=1, j 	=s2

I j=0,Id=1
)

Pr
(

G(1)(Xs2 )=1,Is2=0,
∑d−1

j=1, j 	=s2
I j=0,Id=1

) ≥ 1
Pr(Is2=0) ,

which is equivalent to

Pr

⎛

⎝G(1)(Xs2) = 1, Is2 = 0|
d−1
∑

j=1, j 	=s2

I j = 0, Id = 1

⎞

⎠

≤ Se · Pr (Is2 = 0
)

. (5.1)

Since

Pr(G(1)(Xs2) = 1, Is2 = 0,
d−1
∑

j=1, j 	=s2

I j = 0, Id = 1)

= Pr(Is2 = 0)Pr(
d−1
∑

j=1, j 	=s2

I j = 0, Id = 1) × Pr

⎛

⎝G(1)(Xs2) = 1|Is2 = 0,

d−1
∑

j=1, j 	=s2

I j = 0, Id = 1

⎞

⎠ ,

we can rewrite (5.1) as Pr(G(1)(Xs2) = 1|Is2 = 0,
∑d−1

j=1, j 	=s2 I j = 0, Id = 1,G1) ≤
Se. It’s straightforward that the above inequality holds.

Next we proceed to prove for s3 ∈ S2(2) . Note that there is no overlap between
{∑d−1

j=1 I j = 0, Id = 1} and {G(2)(Xs3)}, so they are independent. Then we have

ξ1,AS (Xs3) = Pr(˜Is3 = 1|G(1)(Xs3) = 1,G(2)(Xs3) = 0,
∑d−1

j=1 I j = 0, Id = 1)

= Se(1−Se)Pr(
∑d−1

j=1 I j=0,Id=1)Pr(˜Is3=1)

Pr(G(1)(Xs3 )=1,G(2)(Xs3 )=0,
∑d−1

j=1 I j=0,Id=1)
.
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To verify that ξ1,AS (Xs3) is larger than ξ1,AD (Xs |ls = 1) = (1−Se)Pr(˜Is=1)
Pr(G(1)(Xs )=0)

, we need
to verify that

Se·Pr(∑d−1
j=1 I j=0,Id=1)

Pr(G(1)(Xs3 )=1,G(2)(Xs3 )=0,
∑d−1

j=1 I j=0,Id=1)
≥ 1

Pr(G(2)(Xs3 )=0)
,

which is equivalent to

Pr(G(1)(Xs3) = 1,G(2)(Xs3) = 0|
d−1
∑

j=1

I j = 0, Id = 1) ≤ Se · Pr(G(2)(Xs3) = 0).

(5.2)

Since there is no overlap between {∑d−1
j=1 I j = 0, Id = 1} and {G(2)(Xs3)}, then we

can rewrite (5.2) as

Pr(G(1)(Xs3) = 1|G(2)(Xs3) = 0,
∑d−1

j=1 I j = 0, Id = 1) ≤ Se.

It also holds. Finally, we proceed to prove the result of S3. For s4 ∈ S3, note that there
is no overlap between {∑d−1

j=1 I j = 0, Id = 1} and {G(2)(Xs4) = 1, Is4 = 0}, so they
are independent. Then we have

ξ1,AS (Xs4) = Pr(˜Is4 = 1|G(1)(Xs4) = 1,G(2)(Xs4) = 1, Is4 = 0,
∑d−1

j=1 I j = 0, Id = 1)

= S2e (1−Se)Pr(
∑d−1

j=1 I j=0,Id=1)Pr(˜Is4=1)

Pr(G(1)(Xs4 )=1,G(2)(Xs4 )=1,Is4=0,
∑d−1

j=1 I j=0,Id=1)
.

Weproceed toprove ξ1,AS (Xs4) is larger than ξ1,AH (Xs4 |ls =2)= (1−Se)Se·Pr(˜Is4=1)

Pr(G(2)(Xs4 )=1,Is4=0)
.

Therefore, we need to prove

Se · Pr(∑d−1
j=1 I j = 0, Id = 1)

Pr(G(1)(Xs4) = 1,G(2)(Xs4) = 1, Is4 = 0,
∑d−1

j=1 I j = 0, Id = 1)

≥ 1

Pr(G(2)(Xs4) = 1, Is4 = 0)
, (5.3)

which is equivalent to

Pr

⎛

⎝G(1)(Xs4) = 1,G(2)(Xs4) = 1, Is4 = 0|
d−1
∑

j=1

I j = 0, Id = 1

⎞

⎠

≤ Se · Pr(G(2)(Xs4) = 1, Is4 = 0).
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Since there is no overlap between {∑d−1
j=1 I j = 0, Id = 1} and {G(2)(Xs3) =

1, Is4 = 0}, we can rewrite (5.3) as

Pr(G(1)(Xs4) = 1|G(2)(Xs4) = 1, Is4 = 0,
∑d−1

j=1 I j = 0, Id = 1) ≤ Se.

The above inequality holds, so we have proved that the false-negative predictive value
of Sterret procedure is larger than that of individual testing. We continue to investigate
the true-positive predictive value. Suppose the first group in stage 1 is tested positive.
In stage 2, the dth specimen is tested positive and the remaining specimens are tested
positive as a group, denoted by T1 = {d : Id = 1} and T2 = { j : d < j ≤ k},
respectively. The true-positive predictive value is denoted by

η2,AS (Xt1) = Pr(˜It1 = 1|G(1)(Xt1) = 1, Id = 1,
d−1
∑

j=1

I j = 0), t1 ∈ T1,

η2,AS (Xt2) = Pr(˜It2 = 1|G(1)(Xt2) = 1, Id = 1,
d−1
∑

j=1

I j

= 0,G(2)(Xt2) = 1, It2 = 1), t2 ∈ T2.

We will give proof for η2,AS (Xt1). The proof for η2,AS (Xt2) is similar and is omitted.
For t1 ∈ T1, let A = {G(1)(Xt1) = 1, Id = 1} and B = {∑d−1

j=1 I j = 0}. Note that
there is no overlap between B and It1 . So we have

η2,AS (Xt1) = Pr(˜It1 = 1|A, B) = Pr(A|˜It1=1,B)Pr(B|˜It1=1)Pr(˜It1=1)
Pr(A,B)

= S2e Pr(B)Pr(˜It1=1)
Pr(A,B)

.

In order to verify it is larger than the false-positive predictive value of individual

testing, which is η2,AI (Xt1) = Pr(˜Is = 1|I(ls )
s = 1) = SePr(˜It1=1)

Pr(It1=1) . We need to show

SePr(B)
Pr(A,B)

≥ 1
Pr(It1=1) , which is Pr(A|B) ≤ SePr(It1 = 1).

This inequality holds because

Pr(A|B) = Pr(G(1)(Xt1) = 1, Id = 1|B) = Pr(G(1)(Xt1)

= 1|Id = 1, B)Pr(Id = 1)
≤ SePr(Id = 1).

F. The Proof of Theorem 3.2

For S2(1) , let r2 = r1+1, and denote the event A1 = {Bs2(kr1) = 0}, A2 = {Bs2(kr2) =
0}, B = {G(1)(Xs2) = 1, Is2 = 0} and C = {∑d−1

j=1, j 	=s2 I j = 0, Id = 1}. Note that
there is no overlap between B and Is2 , so they are independent. Then we have
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692 W. Xiong

ξ1,AS (Xs2; ki ) = P
(

˜Is2 = 1|Ai , B,C
)

= P
(

Ai ,B|˜Is2=1,C
)

P(C|˜Is2=1)P(˜Is2=1)

P(Ai ,B,C)

= Se(1−Se)2P(C)P(˜Is2=1)
P(Ai ,B,C)

.

Since

P
(

Bs2(kr1) = 0, B,C
) − P

(

Bs2(kr2) = 0, B,C
)

= [

Sp − P(Bs2(kr1) = 0|˜Bs2(kr2) = 0, B,C)
]

P
(

˜Bs2(kr2) = 0, B,C
)

> 0.

Then we finish the proof of ξ1,AS (Xs2; kr2) ≥ ξ1,AS (Xs2; kr1) for any positive integer
r1. For other types, S2(2) and S3, we could prove in the same way. 
�
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