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Abstract
The Fay-Herriot model can be seen as a linear mixed-effects model, with known within-
subject variance parameters. These values are given by the sampling variances of the direct
estimators of some parameters in the small areas under investigation. The linear predictor
of the Fay-Herriot model may be biased. When the linking regression model is not misspec-
ified, bias does not affect the linear predictor with equal sampling variances, because the
fixed-effects estimator reduces to the ordinary least squares regression estimator. In most
applications, these variances are quite different, and this is a cause of concern in the matter
of bias in the likelihood-based estimation procedures. We study how unequal sampling vari-
ances may cause bias and worse mean squared error of the linear predictor, also introducing
a measure of the efficiency of the predictor itself. Simulations are conducted, in order to eval-
uate empirically in several scenarios the consequences of the heterogeneity of the sampling
variances on the linear predictor, by different shapes of their empirical distribution.

Keywords Linear mixed models · Fay-Herriot model · Restricted maximum likelihood ·
Mean squared error · Predictor efficiency

1 Introduction

Small area estimation (SAE) involves estimating parameters in small sub-populations for
which direct design-based estimators are unreliable due to the small number of observations
in such domains. Among the works that exhaustively describe the existing theory of SAE,
there are Rao and Molina [18], Ghosh and Rao [11], Datta [6] and Morales et al. [15]. To
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estimate themodel parameters severalmethods have been proposed in the literature, including
Method ofMoments (MoM),MinimumNormQuadratic Unbiased Estimators andMaximum
Likelihood (ML) or Restricted Maximum Likelihood (REML), which require the normality
assumption. For more details, we refer the reader to [7, 18] and [15].

Depending on the aggregation level of the response variable, small-areamodels are divided
into unit-level models and area-level models. Among the latter, the Fay-Herriot (FH) model
[10] is widely used in SAE, since it allows to combine survey data with data from other
sources. It can be seen as a linear mixedmodel with random intercepts (see [18] and [15]), for
which the theory distinguishes two cases: balanced and unbalanced design. The peculiarities
of the FH model are the fact that the sampling variances are known and that each area is
an observation, configuring it as a balanced model. However, as these sampling variances
by area are different from each other, the heteroscedasticity of the residual error variances
configures it actually as an unbalancedmodel. For this reason, a point of interest of that model
may focus on possible biased REML estimates [5, 7, 22]. It is well known [7] that the bias of
the ML and REML estimators is a point of attention for theoretical and application studies.
These methods, and the MoM, are the most commonly used way to achieve the variance
component estimate in the FH model: the first two require the assumption of normality,
and the last one is a distribution-free estimation method. Some studies, in particular [7],
showed that the REML and the moment estimators are the most efficient, having a quite
similar behavior when the sample size and, in particular, the dimension of the vector of the
random-effects increases. They both approach the Cramer-Rao lower bound. ML and REML
estimators are translation invariant even additive functions of the data [18]. In particular,
REML estimation method searches for the maximization of a joint probability function of
the residual vector of independent contrast, given a matrix of independent column vectors
that transforms linearly the vector of parameters. The transformed data result no longer
function of the model covariates, and consequently independent of the best linear unbiased
estimates of the model fixed-effects [13]. Best Linear Unbiased Predictors under ML and
REMLestimators, togetherwith theMoMestimator, resultmodel-unbiased,when the random
components of the FH model are symmetrically distributed around zero [18]. While for the
balanced random intercepts model the four most employed above cited estimators coincide
and are at the same time unbiased, the situation is different when the random intercepts
model is unbalanced. In particular, the most used method, REML, results biased [7] in
case of unbalanced design. Therefore it is essential to discuss the measure of this bias.
The bias of the variance component of the random-area effects REML estimates will affect
both the fixed and random-effects of the FH model. Thus, this bias involves the small area
predictions, because the above variance component appears on both regression-synthetic and
direct estimator parts of the linear predictor of the FH model. Applications in SAE are quite
crucial because the bias of the variance parameters estimates lead to some consequences. The
small area predictors may be biased. We carefully assess the circumstance for which in both
the balanced random intercept model [7] and the FH model with equal sampling variances
[18] the GLS fixed effects estimator changes to the OLS estimator. In particular, we analyze
the impact of unequal sampling variances in the FH model on the bias of the linear predictor,
when theREMLestimationmethod is employed.We connect the bias of theREMLestimates,
considering the set of the unequal sampling variances in the FH model as being equivalent to
different sampling sizes among subjects (clusters) in the standard linear mixed model with
random intercepts. As we demonstrate empirically via simulation, the variability of sampling
variances, or the variability of the subject (cluster) sizes, is taken as the motivation of the
bias itself. Two measures of that bias are introduced, both starting from the departure of
the GLS estimator from the OLS estimator. The first is given by the relative variance of the
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GLS estimator with respect to the subject size of sampling variances, with respect to their
maximum variance. The second is based on the restricted log-likelihood displacement in the
direction of the vector of the actual subject (cluster) sizes, or the sampling variances in a
Fay-Herriot model, starting from the log-likelihood when using the OLS estimator.

Another topic of study of the FH model could be found in the assumption of normality
for the response variable and random effects, because often this assumption doesn’t hold,
due to asymmetry in the data distribution [2]. Some authors, to overcome the problem of
asymmetry in the data pattern, have proposed to modify the distribution of the random effect
with a power exponential distribution [9] or to use another model for small area estimation
[2, 8] and [19]. To the best of our knowledge, there are no works dealing with the asymmetry
of the shape of the empirical distribution of the sampling variances.

The aim of the present work is to understand how the heterogeneity of the design vari-
ances influences the linear predictor of the FH model. This in terms of the possible bias of
the REML estimate of the variance component, and, given biased estimates, with an eval-
uation of its mean squared error. The heterogeneity of sampling variances is evaluated by
their empirical distribution. It occurs when considering the impact on the fixed-effects esti-
mates. The fixed-effects estimates play a role in the random-area estimates, together with the
variance components of the model. Thus, when we have a bias in the variance components
estimates, consequently the fixed and random part of the linear predictor result biased. Given
the level of variability of the sampling variances, another aspect is assessed in the present
work via simulation. We consider different realistic cases in which the shape of the empir-
ical distribution of the sampling variances may influence the level of the bias of the linear
predictor.

Our research question is, therefore, to understand how the heterogeneity of sampling vari-
ances impacts the predictor. In particular, we want to investigate how some key measures
related to the FH model change when the empirical distribution of the sampling variances
passes from a situation of positive asymmetry to a symmetric one. Moreover, we take into
account the issue of the relation between small area design estimates and their sampling vari-
ances. Graphical inspection in general shows that the relative standard error is a decreasing
function of the magnitude of the direct estimates. From another point of view, in some appli-
cations, those estimates at the area level are an increasing function of the sampling variances.
This suggests to investigate the relation between these two quantities. In the present paper,
we focused on both the two main types: linear and non-linear relationships. In particular,
how this given relation in the research may cause relevant changes in the measures, after the
model fitting: the bias of the predictor, its mean squared prediction error, and a measure of
predictor’s efficiency with respect to its MSE, introduced within the paper. The rest of the
work is organized as follows. Section2 gives some backgrounds on the Fay-Herriot model;
Sect. 3 studies some measures for the bias of the restricted maximum likelihood estimates,
both in the frame of the linear mixed models and the Fay-Herriot model, and introduces
a measure of the efficiency of the linear predictor; Sect. 4 presents simulation experiments
on artificial data to investigate the performance of model fitting in the presence of biased
REML estimates of the variance component of the FH model, also with an assessment of the
mean squared error; Sect. 5 gives some conclusions. The paper contains three appendices:
Appendix A gives developments for the Proof of Proposition 2, Appendix B gives develop-
ments for the Proof of Proposition 3, while Appendix C gives developments for the Proof of
Proposition 4.
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2 Background

2.1 The Fay-Herriot model

TheFay-Herriotmodel [10] is the basic area-levelmodel,widely used in small-area estimation
[18]. It is made by two components:

1. A sampling model
yi = θi + ei , i = 1, . . . ,m

where ei ∼ N (0, ψi ) is the sampling error associated with the direct estimator yi and
m the number of small areas. The linking model below assumes that the small area
parameter θi is related to auxiliary variables through a linear regression model:

2. A linking model
θi = x′

iβ + ui , i = 1, . . . ,m

where β is a p × 1 vector of regression coefficients and ui are the area specific random
effects, ui ∼ N (0, σ 2

u ). The sampling model and the linking model lead to a linear mixed
model given as

yi = x′
iβ + ui + ei , i = 1, . . . ,m

Random effects ui and sampling errors ei are mutually independent. The model variance σ 2
u

is unknown and needs to be estimated, differently from the sampling variance ψi that in the
Fay-Herriot model is usually assumed to be known. Sampling variances are quite different
among the areas, and together with the circumstance that we get one unit per subject in the
mixed-effects framework, this situation constitutes the most distinctive feature of the model.
Like in a general linear mixedmodel, we can calculate an estimate of the variance component
σ̂u and of the fixed effect̂β. The so-calledEmpiricalBest LinearUnbiasedPredictor (EBLUP)
of the parameter under the FH model is given by

ỹi = γ̂i yi + (1 − γ̂i )x′
i
̂β

with γ̂i the shrinkage factor γ̂i = σ̂ 2
u

σ̂ 2
u +ψi

. Furthermore, given the variance component - σ 2
u -

the Mean Squared Error (MSE) of the BLUP is:

MSE(ỹblupi ) = g1i (σ
2
u ) + g2i (σ

2
u ),

g1i (σ
2
u ) = σ 2

u ψi

σ 2
u + ψi

= γiψi ; g2i (σ
2
u ) = (1 − γi )

2x′
i

( m
∑

i=1

γixix′
i

)−1

whereas the MSE of the Empirical BLUP is, with σ̂ 2
u estimator of σ 2

u :

MSE(ỹeblupi ) = g1i (̂σ
2
u ) + g2i (̂σ

2
u ) + g3i (̂σ

2
u ),

g3i (̂σ
2
u ) = (1 − γi )

2γi σ̂
−2
u V (̂σ 2

u )

where V (̂σ 2
u ) is the asymptotic variance of σ̂ 2

u . Prasad and Rao [17, 18] derived the analytic

estimator of MSE(ỹeblupi ) as

mse(ỹeblupi ) = g1i (̂σ
2
u ) + g2i (̂σ

2
u ) + 2g3i (̂σ

2
u ),

where σ̂ 2
u is the REML estimator.
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3 Some theoretical considerations

3.1 On the bias of the REML estimates

In this section, we consider the following special case of the general Linear Mixed Effects
model (LME), the random-intercepts model (see for a comprehensive coverage [7] and [12]:

y = Xβ + Zu + e, u ∼ N (0, σ 2
u Im), e ∼ N (0, σ 2In), (1)

with

yi = Xiβ + Zi ui + ei , Zi = 1ni , ui ∼ N (0, σ 2
u ), ei ∼ N (0, σ 2Ini ),

yi j = x′
i jβ+ui + ei j , i = 1, . . . ,m, j = 1, . . . , ni , �m

i=1ni = n,

var(Zi ui ) = ZiG∗Z′
i = σ 2

u 1ni 1
′
ni , G∗ = var(ui ),

where β is a p × 1 vector of fixed effects, u an m × 1 vector of random effects, X and Z
are the design matrices of fixed and random effects, respectively. The Best Linear Unbiased
Predictor is:

ỹ = X̂β + ũ = X̂β + GZ′V−1( y − Xβ) (2)

The model in (1) is the unbalanced LME model with random intercepts. In the context
of the normal distribution of random effects and model errors, both Maximum Likelihood
(ML) and REML estimators are generally employed in the applications. REML estimators
take advantage of the reduction of the bias in the variance components and LME models.
Maximization algorithms are developed in order to find estimates of the variance parameters
θ of the model (1), e.g., Newton–Raphson, or Fisher-scoring. The components of the vector
θ are the variance parameters that made the General Least Squares (GLS) estimates of the
fixed effects of the LME model (see for example [13]). In the case of normality of random
effects and residual errors,moment estimators can approximate the performance of theREML
estimators, the last considered as the golden standard in the estimation of the parameters in
the LMEmodel. In general, these methods produce, in case of normality, estimates that result
very close together, and close to the Cramér-Rao bound when m is large [7].

With the focus on the REML estimation method, the restricted log-likelihood function of
the block-diagonal version of the LME model is:

lR(θ) = −1

2
(n − p) log σ 2 − 1

2
log

∣

∣

∣�
m
i=1X

′
iV

−1
i Xi

∣

∣

∣− 1

2
�m
i=1 logVi

− 1

2σ 2 log
[

�m
i=1(yi − Xiβ)′V−1

i (yi − Xiβ)
]

, (3)

where Vi = ZiGZ′
i + Ini = σ−2var(ui )1ni 1

′
ni + Ini = g1ni 1

′
ni + Ini , and G =σ−2G∗ =

g1ni 1
′
ni , the scaled covariance matrix of random effects.

An alternative version of the (3) is the profile-likelihood function, that comes from
considering that the variance σ 2 can be employed as the following maximizer σ̂ 2 =
n−1�m

i=1(yi − Xiβ)′V−1
i (yi − Xiβ) of the parameter σ 2 in the log-likelihood. e.g., This

procedure reduces the number of parameters to be estimated. Thus the profile restricted
log-likelihood function l∗R , with θ = σ 2

u , and σ 2 eliminated, is defined as follows:

l∗R(β, σ 2
u ) = −1

2
(n − p) log

[

�m
i=1(yi − Xiβ)′V−1

i (yi − Xiβ)
]

−1

2
log

∣

∣

∣�
m
i=1X

′
iV

−1
i Xi

∣

∣

∣− 1

2
�m
i=1 log |Vi | . (4)
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An interesting feature of the REML estimation method, when applied to the model in (1),
is that when data are balanced (i.e. there are the same number of units per subject - cluster of
observations - ni = ni ′ , i, i ′ = 1, . . . ,m) the estimates coincide with moment estimates and
with other quadratic unbiased estimates. Conversely, when we have an unbalanced design
both ML and REML estimators lead to biased variance parameters estimates, particularly in
the case of small samples.

In many applications with unbalanced data is then important to know the level of the
departure of these estimates from unbiasedness. In this case there are no closed-form solution
for ML or REML component estimates of θ , while for a balanced design and a model as in
(1) these estimates admit an explicit solution.

Substituting in the profile-likelihood (4) |Vi | = ∣

∣g1ni 1
′
ni + Ini

∣

∣, and V−1
i = (g1ni 1

′
ni +

Ini )
−1 = Ini − g

1+ni g
1ni 1

′
ni , the log-likelihood (4) for the unbalanced model becomes (see

hereafter again [7]):

l∗R(β, g) = −1

2
(n − p) log

[

�m
i=1(yi − Xiβ)′V−1

i (yi − Xiβ)
]

−1

2
log

∣

∣

∣�
m
i=1X

′
iV

−1
i Xi

∣

∣

∣− 1

2
�m
i=1 log |Vi |

= −1

2
(n − p) log

[

�m
i=1(yi − Xiβ)′(yi − Xiβ) − g�m

i=1
n2i (yi − β ′xi )2

1 + ni g

]

−1

2
log

∣

∣

∣

∣

∣

�m
i=1(X

′
iXi − n2i g

1 + ni g
xix′

i )

∣

∣

∣

∣

∣

− 1

2
�m
i=1 log(1 + ni g)

= −1

2
(n − p) log T (ni ) − 1

2
log

∣

∣

∣

∣

∣

�m
i=1(X

′
iXi − n2i g

1 + ni g
xix′

i )

∣

∣

∣

∣

∣

−1

2
�m
i=1 log(1 + ni g)

T (ni ) = �m
i=1(yi − Xiβ)′(yi − Xiβ) − g�m

i=1
n2i (yi − β ′xi )2

1 + ni g

yi = 1

ni
�

ni
j=1y

′
i1ni , xi = 1

ni
�

ni
j=1X

′
i1ni . (5)

Then, we get the GLS estimate of β as:

̂β = (�m
i=1X

′
iV

−1
i Xi )

−1�m
i=1X

′
iV

−1
i yi

=
[

�m
i=1(X

′
iXi − n2i g

1 + ni g
xix′

i )

]−1 [

�m
i=1(X

′
iyi − n2i g

1 + ni g
xi yi )

]

. (6)

Proposition 1 Given the model (1), a sufficient condition for the unbiasedness of the REML
covariance parameter estimates is that ni = ni ′ = n, ∀i, i ′ = 1, . . . ,m, i.e., a balanced
LME model. The parameter estimates ĝR and σ̂ 2

R are:

ĝR = (m − 1)−1 ×
[

1

m(n − 1)
�m
i=1

{

(yi − XîβOLS)
′(yi − XîβOLS) − n(yi − y)2

}

]−1

×�m
i=1(yi − y)2 − 1

n
σ̂ 2
R = [m(n − 1) − p + 1]−1�m

i=1

[

(yi − XîβOLS)
′(yi − XîβOLS) − n(yi − y)2

]

, (7)
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where y = y′1n, y = m−1�m
i=1yi . Further, we have that ̂β ≡ ̂βOLS.

The proofs of the equality ̂β ≡ ̂βOLS , and of the closed-form solutions for the REML
estimates ĝR and σ̂ 2

R can be found in [7], Section 2.4.1.
The underlying assumption of the Proposition 1 is when we have a balanced LMEmodel,

and consequently, an OLS estimate of the vector of the fixed-effects parameters, the REML
estimator of the variance components results unbiased. Thus, a roughmeasure of the departure
from unbiasedness can be assumed in terms of the difference

∣

∣̂β − ̂βOLS
∣

∣. In particular, the
size of subjects (clusters) canbeverydifferent. Thus, in the nextProposition2,we introduce an
index based on var(̂β −̂βOLS), when the subjects (clusters) vary. This variance is multiplied
in the proposed index by a coefficient, to be found via simulation, due to the non-linearity of
the REML function maximization algorithms. Clearly when var(̂β −̂βOLS) = 0, the REML
estimates are unbiased.

Proposition 2 Given the LME model with the unbalanced design (1), and the GLS estimator
of the fixed effects (6) with given g = σ−2var(ui ), and the subject (cluster) sample size as
a set of m parameters ηi ∈ U, U ⊂ R : 0 < ηi ≤ mη, with η = μ(η) and S2(η) as the
variance of the ηi ’s. Then (6) takes the form:

̂β(η) =
[

�m
i=1

(

X′
iXi − η2i g

1 + ηi g
xix′

i

)]−1 [

�m
i=1

(

X′
iyi − η2i g

1 + ηi g
xi yi

)]

(8)

where ̂β(η) is a continuous and differentiable function of η, with values among the m subject
(clusters). Thus, with = η2(m − 1):

S2(̂β(η) − ̂βOLS) =
(

∂̂β(η)

∂η

∂̂β ′(η)

∂η

)∣

∣

∣

∣

η=η

× S2(η)

with:

∂(̂β(η) − ̂βOLS)

∂η
= 2

[

�m
i=1X

′
iXi − η2i g

1 + ηi g
�m
i=1xix

′
i

]−1

[

(�m
i=1ηxix

′
i ) × ̂βOLS − �m

i=1ηxi yi
]

.

An index, say δ1, of bias of the REML estimates for ĝR and σ̂ 2
R is then:

δ1 = S2(η)(̂β ′
OLS1p)

−1

η2(m − 1)
tr
[

λ(p) × S2(̂β(η) − ̂βOLS)
]

= S2(η)(̂β ′
OLS1p)

−1

η2(m − 1)
tr

[

λ(p) ×
(

∂̂β(η)

∂η

∂̂β ′(η)

∂η

)∣

∣

∣

∣

η=η

]

. (9)

The index δ1 reports an unknown coefficient λ, depending on the dimension of the vector
β.

The Proof is reported in Appendix A.
The departure from the unbiasedness of the REML variance component estimates of g and

σ 2 can be measured by the displacement of the profile log-likelihood l∗R , when we introduce
a perturbation vector η = (η1, . . . , ηm)′ in the likelihood that gives theOLS estimator ̂βOLS .
Remembering that with η = const ., e.g., say η, among subjects (clusters), for the model
(1) it happens that ̂β(η) ≡ ̂βOLS , it suffices we take the likelihood displacement [18] and
[1] by the m × 1 vector η of the perturbed profile log-likelihood l∗R to get a measure for
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departure from unbiasedness. The influence of η is then given by the “distance” of̂β(η) from
̂βOLS . Formula (9) takes into account a coefficient of proportionality λ, that depends on the
non-linearity of the optimization estimation procedure, to be estimated.

Proposition 3 Under the unbalanced LME model (1), and given the REML profile log-
likelihood l∗R, the perturbation m × 1 vector η = (η1, . . . , ηm)′, with η = (η, . . . , η)′,
and the likelihood displacement LD(η):

LD(η) = 2[l∗R(̂βOLS(η), ĝR) − l∗R(̂β(η), ĝR)],
l∗R(̂βOLS(η), ĝR) = l∗R(β(η))

∣

∣

β=̂βOLS ,g=ĝR
,

l∗R(̂β(η), ĝR) = l∗R(β(η))
∣

∣

β=̂β,g=ĝR
(10)

the sensitivity of the ̂βOLS estimate in the “direction” of ̂β is given by the curvature δ2 of
the surface (ω′, LD(ω)) [1]:

δ2 = ∂2LD(ω)

∂b2
= ∂2LD(η + bη)

∂b2

∣

∣

∣

∣

b=0
, (11)

with LD(ω) = LD(η)|η=ω, ω = η + bη = (η + bη1, . . . , η + bηm)′, and b a scalar.
Furthermore, given the p × m matrix:

C = {

Ci j
} =

{

∂2l∗R(̂β(η), ĝR)

∂βi∂η j

}

,

together with the negative information matrix of the model, of dimension p × p:

I(β) =
{

∂2l∗R(̂βOLS(η), ĝR)

∂βiβ j

}

,

and the m × m matrix D = C′I−1(β)C, the maximum curvature is achieved over the norm
‖η∗‖ = 1 of the unit vector η∗ by value of δ2, say δ∗

2 , given by:

δ∗
2 = max

∣

∣η∗′Dη∗∣
∣ .

Then δ∗
2 is the specified by the eigenvector η corresponding to the largest eigenvalue δ∗

2 ofD.
The set of ni ∈ N correspondent to the maximum normal curvature δ∗

2 , δ
∗
2(n) is then given

by the vector n∗ = (n∗
1, . . . , n

∗
m) for which we have min ‖mη∗ − n‖.

The Proof is provided in Appendix B.
The Fay-Herriot model described in Sect. 2 can be viewed as a particular case of the

block-diagonal LME model in (1), for which we have one observation per subject (cluster),
i.e., ni = ni ′ = 1, �m

i=1 = m, a balanced design, and:

yi = x′
iβ+ui + ei , i = 1, . . . ,m, ui ∼ N (0, σ 2

u ), ei
ind∼ N (0, ψi )

y = Xβ + Zu + e, y = col
1≤i≤m

(yi ), X = col
1≤i≤m

(x′
i ), Z = Im,

u = col
1≤i≤m

(ui ), e = col
1≤i≤m

(ei ), Vi = (σ 2
u + ψi ), V = diag

1≤i≤m
(V1, . . . , Vm) (12)

123



How the sampling variances affect the linear predictor… 117

The restricted version of the log-likelihood of the FH model and the GLS fixed-effects
estimator are then [18]:

lR(σ 2
u ) = const . − 1

2
�m
i=1 log |Vi | − 1

2
log

∣

∣

∣�
m
i=1xix

′
i V

−1
i

∣

∣

∣− 1

2
�m
i=1(yi − x′

iβ)′V−1
i (yi − x′

iβ)

̂β =
[

�m
i=1xix

′
i V

−1
i

]−1 [

�m
i=1xi yi V

−1
i

]

= [

�m
i=1xi (σ

2
u + ψi )

−1x′
i

]−1 [
�m
i=1xi (σ

2
u + ψi )

−1yi
]

. (13)

The estimator in (12) can be viewed as a special case of the estimator in (6). With:

Xi = x′
i , xi = xi , yi = yi , g = σ 2

u ,

ni = ni ′ = 1, �m
i=1ni = m,

and setting di = 1 − (σ 2
u + ψi )

−1, the estimator ̂β for the FH model becomes:

̂β = [

�m
i=1(xix

′
i − dixix′

i )
]−1 [

�m
i=1(xi yi − dixi yi )

]

.

Now, if in the estimator (8) we have ηi = αi , g = σ 2
u , we get:

η2i g

1 + ηi g
≡ di = α2

i σ
2
u

1 + αiσ 2
u

.

Suppose we have α∗ = (α∗
1 , . . . , α

∗
m)′, as a positive solution of α2

i σ
2
u − diαiσ

2
u − di = 0,

then:

d∗
i = (α∗

i )
2σ 2

u

1 + α∗
i σ

2
u

= 1 − (σ 2
u + ψi )

−1

−→ ψi = 1 + α∗
i σ

2
u

1 + α∗
i σ

2
u + (α∗

i )
2σ 2

u
− σ 2

u

Proposition 4 Under the Fay-Herriot model in (12), and di = 1 − (σ 2
u + ψi )

−1 = α2
i σ

2
u

1+αiσ
2
u
,

αi ∈ U, U ⊂ R : 0 < αi ≤ mα with α = μ(α) and S2(α) as the variance of the αi ’s, we
have that:

̂β(α) = [

�m
i=1(xix

′
i − dixix′

i )
]−1 [

�m
i=1(xi yi − dixi yi )

]

,

δ1 = S2(α)(̂β ′
OLS1p)

−1

α2(m − 1)
tr
[

λ(p) × var(̂β(α) − ̂βOLS)
]

. (14)

When α∗ = (α∗
1 , . . . , α

∗
m)′ = (α, . . . , α)′, di = d, ̂β(α) ≡ ̂βOLS, and constant ψ =

(ψ1, . . . , ψm) = (ψ, . . . , ψ), under normality we get:

(yi − x′
iβ)2/(1 − d) ∼ χ2

m−p. (15)

The Proof is given in Appendix C.

3.2 Ameasure of the predictor efficiency

As in applied research and simulation experiments is quite essential the appraisal of themodel
fitting, here we introduce a normalized index as measure of efficiency. This index takes the
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form of an average correlation coefficient, with values that range between 0 and 1, with 1
denoting the maximum efficiency, and 0 the total inefficiency.

Since, in the area-level models, the residual error variance is not to be estimated, some
interesting consequences in terms of the measure of the general efficiency of the predictor
can arise.

In the frame of the area-level SAE models, we adapt the general linear mixed model
y = Xβ + Zu + e, with var( y) = V = ZV uZ′ + V e = V u + V e, where Z = Im with
V u = var(u) = σ 2

u Im, V e = var(e) = diag
1≤i≤m

(ψ1, . . . , ψm) the matrix of the sampling

variances, and P = V−1(I−PX ) the projectionmatrix in the residuals complement subspace
of y, with PX = X(X ′V−1X)−1X ′V−1 the projection matrix onto the column space of X .

Considering the following relations

ŷblup = y − V eP y

MSE (̂ yblup) = V e − V ePV e,

the conditional residuals are given by: rc = y − yblup:

rc = y − ŷblup = V eP y, and

var(rc) = var( y − ŷblup) = V ePV PV e = V ePV e.

The covariance between rc and e is given by:

cov(rc, e) = cov(V eP y, e) = V e Pcov( y, e)

= V ePV e = V e − MSE (̂ yblup) = var(rc).

Denoting with ci j the generic element of cov(rc, e) with i = 1, . . . ,m, j =
1, . . . ,m, i �= j indicating the small areas, and denoting with cii the diagonal one, we
have:

[cov(rc, e)]i i = cii = ψi − g1, j (̂θ) − g2,i (̂θ)

corr(rci , e j ) = cov(rci , e j )
√

var(rci )var(e j )
= ci j
√

ciiψ j
, (16)

where in case of i = j it holds corr(rci , ei ) =
√

cii
ψi
.

Following [14], a measure of the predictor efficiency, based on tr [cov(rc, e)] is then
introduced as:

ε = 1

m

∑

i

corr(rci , ei ) = 1

m

∑

i

√

cii
ψi

, 0 ≤ ε ≤ 1.

That measure is closely linked to the capability of the model in fitting the data and the
sampling variances. In fact, when this relationship is linear, the MSE can “replicate” the
behavior of the sampling variances, translating into more efficiency—as the value of the
sampling variances increases.

4 Simulations

In this section, three simulations are carried out in order to evaluate the impact of the distri-
bution of the sampling variances on the small area predictor, in terms of increase or decrease
in the performance measures. In most applications, when a direct estimator is available, the
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area variances of the direct estimator of the parameters under study depend on the sample
size given by the design, together with the variance of the characteristic of interest in that
area. The aim of the simulation experiments is to study the behavior of the linear predictor of
the FH model, when focusing on the shape of the empirical distribution of a set of sampling
variances. The cases investigated may represent, in our opinion, the realistic way in which
the heterogeneity of the sampling variances may arise.

The behavior of the sampling variances is assessed when we pass from a situation of
positive asymmetry to one of quasi-symmetry distribution. All the simulations are based
on artificial data, but they differ by the relation which links the sampling variances and the
parameter of interest.

A fundamental point in the simulation with artificial data is to preserve the proportionality
that exists between the value of the small area parameter and its variability. To do this, for
each domain of interest i = 1, . . . ,m, first, generate with a Beta distribution the standard
error of the sampling variances

√
ψi , and then obtain the value of the parameter (hereafter

referred to as ȳi ) by linking them in a relationship that makes the latter distributed as a
Beta distribution of the second kind, in the first simulation, while, in the second simulation,
they are linked in a linear relation with a Beta distribution. In the third simulation, instead,
no relationship is assumed between the parameter of interest and the standard error of the
sampling variances.

Furthermore, the use of the Beta distribution allows to manage of the data generating
process, with regards to set and controlling the range [a, b], but also to analyze the relation-
ship between the variance and the asymmetry—which in a Beta distribution are inversely
proportional.

In each simulation, three scenarios are settled: the first scenario represents the case of a
strong positive asymmetry, and the second—even if remains a case of positive asymmetry—
has the same variability as the third, set to be the quasi-symmetrical distribution scenario.

We treated the case of the FH model without auxiliary variables, that is ANOVA with
random effects yi = ui + ei , with ui ∼ N (0, σ 2

u ), and ei ∼ N (0, ψi ).

4.1 Simulation 1

From the following expression
√

ψi = ȳi−δ1
(δ2−δ1)

(

1 − √
ψi
)

with fixed δ2 and δ1 is obtained

the mean of the population parameter ȳi = δ1 + (δ2 − δ1)
√

ψi

[1−√
ψi ]

.

Set the sampling variances distributed as a Beta with parameters α and β,
√

ψi ∼
Beta(α, β), it follows that

√
ψi

[1−√
ψi ]

= Beta(α,β)
[1−Beta(α,β)] is a Beta distribution of the second

kind. So the relation between the standard error of the sampling variances and the mean
population parameter depends on a non-linear relation.

For fixed values of
√

ψi the population mean ȳi is an exact Beta distribution of second
kind in the range [δ1, δ2] with mean E(ȳi ) = (δ2 − δ1)

α
(β−1) with β > 1, and variance

V (ȳi ) = (δ2 − δ1)
2 α(α+β−1)

(β−2)(β−1)2
with β > 2.

Simulation 1 has the following steps:

1. For k = 1, 2, 3 set the following combination of parameters αk = (1, 2, 3), βk =
(7, 2.69, 3) to have different scenarios of skewness.
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2. Denoting the domain of interest as i = 1, . . . ,m with m = 200, and define the sampling

variances as
√

ψ
(k)
i ∼ a + (b − a)Beta(αk, βk) in the range [a = 0, b = 1]. Generate

random samples of the sampling variances ψ
(k)
i for each scenario k of skewness.

3. Calculate the population parameter ȳ(k)
i = δ1+(δ2−δ1)

√

ψ
(k)
i

[

1−
√

ψ
(k)
i

] with
√

ψ
(k)
i generated

in the previous step and with fixed δ1 = 0 and δ2 = 3.
4. Repeat L = 103 times (l = 1, . . . , L):

4.1 Calculate ψ
∗(k,l)
i ∼ N (ψ

(k)
i , 0.0001).

4.2 Calculate the parameter in the l-th sample replicate as ȳ∗(k,l)
i = δ1 + (δ2 −

δ1)

√

ψ
∗(k,l)
i

[

1−
√

ψ
∗(k,l)
i

] .

4.3 Fit the Anova model to the simulated data and obtain the predictor ỹ(k,l)
i .

4.4 Calculate the mse
(

ỹ(k,l)
i

)

.

5. Calculate the following performance measures BIAS and Root MSE (RMSE):

BI AS(k)
i = 1

L

L
∑

l=1

(ỹ(k,l)
i − ȳ(k)

i ), RMSE (k)
i =

(

1

L

L
∑

l=1

(ỹ(k,l)
i − ȳ(k)

i )2
)1/2

,

6. Calculate the corresponding relative performance measures in %, i.e Average Absolute
Relative BIAS (AARBIAS) and Average Absolute Relative Root MSE (AARRMSE):

RBI AS(k)
i = 100

BI AS(k)
i

¯̄y(k)
i

, RRMSE (k)
i = 100

RMSE (k)
i

¯̄y(k)
i

, with ¯̄y(k)
i = 1

L

L
∑

l=1

ȳ(k)
i

AARBI AS(k) = 1

m

m
∑

i=1

|RBI AS(k)
i |, AARRMSE (k) = 1

m

m
∑

i=1

|RRMSE (k)
i |.

7. Calculate the estimatedMSE of the predictor,mse(ỹ(k,l)
i ) denoted as Average Root MSE

(ARMSE):

ARMSE (k) = 1

m

m
∑

i=1

√

√

√

√

1

L

L
∑

l=1

mse
(

ỹ(k,l)
i

)

.

8. Calculate the following efficiency measure introduced in Sect. 3.2:

ε(k) = 1

m

m
∑

i=1

corr(rci , ei )
(k) = 1

mL

m
∑

i=1

L
∑

l=1

√

√

√

√

c(k,l)
i i

ψ
∗(k,l)
i

, 0 ≤ ε(k) ≤ 1.

Table 1 presents the results of Simulation 1 for the performancemeasures of the predictor in
three scenarios of skewness for the distribution of the sampling variances. For the considered

k scenarios the corresponding variances of the Beta distribution of
√

ψ
(k)
i are respectively:

0.01, 0.04 and 0.04. While the corresponding variances of the Beta distribution of second
kind are respectively: 0.04, 3.75, and 3.75. The results show that the relative BIAS and the
relative MSE, as well as the efficiency measure ε, tend to decrease as the sampling variances
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Table 1 Performance measures
of ỹ∗(k) in each scenario of
skewness k = 1, 2, 3 with
parameters αk = (1, 2, 3) and
βk = (7, 2.69, 3), when a
non-linear relation between ȳi
and ψi is assumed

Measure k = 1 k = 2 k = 3

AARBI AS % 44.0222 1.3109 0.7468

AARMSE % 51.2381 1.5095 0.7564

ARMSE 0.1028 0.4209 0.4997

ε 0.3196 0.1297 0.1067

Table 2 Performance measures of ỹ∗(k) in each scenario of skewness k = 1, 2, 3 with parameters αk =
(1, 2, 3) and βk = (7, 2.69, 3) when a non-linear relation between ȳi and ψi is assumed and smoothed
sampling variances ψGV F

i are applied

Measure k = 1 k = 2 k = 3

AARBI AS % 50.4469 5.4701 3.3453

AARMSE % 57.6269 5.6678 3.3496

ARMSE 0.0929 0.5454 0.5901

ε 0.4106 0.2343 0.1973

from a skewness tend to a quasi-symmetric shape. For the estimated mse of the predictor the
behaviour is opposite.

Table 2 shows the results of Simulation 1 when the sampling variances are smoothed by a
Generalized Variance Function approach (GVF) [4]. Given the i-th area parameter estimate
ȳi , the GVF applied gives the smoothed variances ψGV F

i = α̂0 ȳ2i + α̂1 ȳi by the ordinary

least squares regression cv2(ȳi ) = ψi

ȳ2i
= α0 + α1

ȳi
.

In Fig. 1 are reported the histograms of the distributions in the three scenarios from

asymmetry to quasi-symmetry for the
√

ψ
(k)
i .

4.2 Simulation 2

Denoting with
√

ψi ∼ Beta(α, β) the standard error of the sampling variances distributed
as a Beta with parameters α and β. In order to simulate a real data situation where there is
a proportional relation between the parameter of interest and the sampling variances, here
the population parameter of the mean is set in a linear relation with the standard error of the
sampling variances as follows: ȳi = δ1 + δ2

√
ψi , with known coefficients δ1 and δ2.

Simulation 2 has the following steps:

1. For k = 1, 2, 3 set the following combination of parameters αk = (1, 1, 3), βk =
(7, 3.1, 3) to have different scenarios of skewness.

2. Denoting the domain of interest as i = 1, . . . ,m with m = 200. Define the sampling

variances as
√

ψ
(k)
i ∼ a+ (b−a)Beta(αk, βk) in the range [a = 0, b = 1] and generate

random samples for the sampling variances ψ
(k)
i for each scenario k of skewness.

3. Calculate the population parameter ȳ(k)
i = δ1 + δ2

√

ψ
(k)
i with δ1 = 1, δ2 = 3.

4. Repeat L = 103 times (l = 1, . . . , L):

4.1 Calculate ψ
∗(k,l)
i ∼ N (ψ

(k)
i , 0.0001).
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Table 3 Performance measures
of ỹ(k) in each scenario of
skewness k = 1, 2, 3 with
parameters αk = (1, 2, 3) and
βk = (7, 2.69, 3), when a linear
relation between ȳi and ψi is
assumed

Measure k = 1 k = 2 k=3

AARBI AS % 7.4167 9.7350 10.3938

AARMSE % 7.5622 9.7435 10.3939

ARMSE 0.0788 0.2914 0.2973

ε 0.4976 0.6029 0.7489

4.2 Calculate the sampling parameter of the mean as ȳ(k,l)
i = δ1 + δ2

√

ψ
∗(k)
i .

4.3 Fit the ANOVA model to the data and obtain the empirical predictor ỹ(k,l)
i .

4.4 Calculate the mse
(

ỹ(k,l)
i

)

.

5. Calculate the performance measures BIAS and RMSE, the corresponding relative per-
formance measures in % AARBIAS and AARRMSE with Average Root MSE of the
predictor and the efficiency measure ε following the expressions in Simulation 1 (steps
from 5 to 8).

Table 3 presents the results of Simulation 2 for different scenarios on the distribution of the
sampling variances. For the considered k scenarios of skewness the corresponding variances

of the Beta distribution of
√

ψ
(k)
i are respectively: 0.01, 0.04 and 0.04. Note that between

scenario k = 2 and k = 3 we have no difference in the variability for the distribution of
√

ψi .
As the variance of the distribution of the sampling variances increases when we pass from
scenario k = 1 to scenario k = 2 or k = 3, the relative measures of MSE and BIAS, as well
as the estimated mse of the predictor, tend to increase consequently, and it is the same for
the efficiency measure ε.

4.3 Simulation 3

In this simulation no relation is assumed between the population parameter of the mean and
the standard error of the sampling variances, as this often happens in practice. Denoting with√

ψi ∼ Beta(α, β) the standard error of the sampling variances distributed as a Beta with
parameters α and β. With known parameters μȳ = 3 and σ 2

ȳ = 0.01, the population mean is

set as ȳi ∼ N (μȳ, σ
2
ȳ ).

Simulation 3 has the following steps:

1. For k = 1, 2, 3 set the following combination of parameters αk = (1, 1, 3), βk =
(7, 3.1, 3) to have different scenarios of skewness.

2. Denoting the domain of interest as i = 1, . . . ,m with m = 200. Define the sampling

variances as
√

ψ
(k)
i ∼ a+ (b−a)Beta(αk, βk) in the range [a = 0, b = 1] and generate

random samples for the sampling variances ψ
(k)
i for each scenario k of skewness.

3. Calculate the population mean ȳ(k)
i ∼ N (μȳ, σ

2
ȳ ).

4. Repeat L = 103 times (l = 1, . . . , L):

4.1 Calculate ψ
∗(k,l)
i ∼ N (ψ

(k)
i , 0.0001).

4.2 Calculate the sampling replicates of the mean as ȳ(k,l)
i ∼ N (μȳ, 0.5).

4.3 Fit the ANOVA model to the sampling data and obtain the empirical predictor ỹ(k,l)
i .
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Table 4 Performance measures
of ỹ(k) in each scenario of
skewness k = 1, 2, 3 with
parameters αk = (1, 2, 3) and
βk = (7, 2.69, 3), when no
relation between ȳi and ψi is
assumed

Measure k = 1 k = 2 k = 3

AARBI AS % 0.4942 0.3662 0.3220

AARMSE % 15.2202 8.3338 6.5635

ARMSE 0.1122 0.2665 0.2694

ε 0.2329 0.6885 0.7713

4.4 Calculate the mse
(

ỹ(k,l)
i

)

.

5. Calculate the performance measures of BIAS and RMSE, the corresponding relative
performancemeasures in%,AARBIAS andAARRMSE, together with theAverage Root
estimated MSE of the predictor and the efficiency measure ε following the expressions
in Simulation 1 (steps from 5 to 8).

Table 4 presents the results of Simulation 3 for different scenarios on the distribution of
the sampling variances, when no relation is assumed with the parameter of interest. When
we pass from scenario k = 1 to scenario k = 2 or k = 3, the relative measures of BIAS
and MSE, as well as the estimated mse of the predictor, tend to decrease. For the efficiency
measure ε the behaviour is opposite.

4.4 Simulation results

The simulation experiments highlight different behaviors of bias, mean squared error, and
efficiency of the linear predictor, when the shape of the empirical distribution of the sam-
pling variances range from asymmetric to symmetric. And at the same time, is shown what
happens when different kind of relations may occur between the area parameters and the cor-
responding sampling variances. Three of these relations are studied, non-linear, linear, and
absence of a relation, that means that the sampling variances may vary randomly when given
the area parameters. Table 1 shows that in case of non-linear relationship between the sam-
pling variances and the area parameter estimates in the Simulation 4.1 both the AARBIAS
and the AARMSE decrease, while the prediction ARMSE increases. In this first simulation
experiment, because the non-linear relationship between the sampling variances and the area

parameters is based on a Beta distribution of the second kind, i.e.
√

ψi
1−√

ψi
∼ Beta∗(α, β),

with
√

ψi ∼ Beta(α, β) in the range (0, 1), in some cases we may observe that
√

ψi −→ 1,
bringing the correspondent generated area parameters to increase considerably. In particular,
the cases in which it could be observed that

√
ψi approaches 1 are those in which the sample

variances are more heterogeneous and more sparse (i.e. passing from scenario 1 to scenario
3). In these cases, also the variance component estimates of the FH model increase, leading
to a numerically relevant value of the leading g1 component of the prediction means squared

error. In fact, when σ̂ 2
u increases, the value of γ̂i = σ̂ 2

u
σ̂ 2
u +ψi

for the i-th area approaches 1, being

g1(i) = γ̂iψi = σ̂ 2
u ψi

σ̂ 2
u +ψi

, and the mean squared error tends to ψi . The efficiency index ε in the

Simulation 4.1 decreases, going from asymmetry to symmetry of the shape (Fig. 1). In this
scenario, the prediction mean squared error increases, so that cii = cov(rci , ei ) decreases,
together with the overall measure of the index ε. Table 2 shows the same experiment of the
Simulation 4.1, when the sampling variances are smoothed by a GVF approach. Even if we
apply the GVF approach in smoothing sampling variances, the behavior of the indexes under
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investigation remains approximately the same. The only difference is in terms of the mag-
nitude of the numerical outcomes. All the indexes are greater, for every level of asymmetry
considered, leading to consider that this type of GVF smoothing may worsen the estimation
of the linear predictor.

Simulation 4.2 is conducted by considering the same asymmetry scenarios described by
Simulation 4.1, when the relation between sampling variances ad area level parameters esti-
mates is now linear, with the sampling variances that increase accordingly to the values of the
area parameter estimates. Table 3 shows the summary of the findings of the simulation exper-
iment. All the performance measures considered move increasing, going from asymmetry
(k = 1 scenario) to symmetry (k = 3 scenario) of the shape of the empirical distribution of
the sampling variances generated randomly, taking into consideration the linear relationship
described. While AARBIAS, AARMSE, and ARMSE increase, when moving toward sym-
metry, and highlight that when the sampling variances are very heterogeneous (proceeding
towards the symmetry of the shape, as in Fig. 1), the efficiency index ε increases on its own.
Despite that the values of the numerator of corr(rci , ei ), i.e., the value of

√
cii , decreases,

due to the values of the ARMSE passing from asymmetry to symmetry, these areas for which
this happens report a relatively small sampling variances (the denominator of the index ε).
Conversely, the linearity depicted by the experiment between the sampling variances and the
area parameter estimates may outperform the cov(rci , ei ) respect to the correspondent ψi ,
that explains the numerical increment of the efficiency index.

Simulation 4.3 reports the outcomes of the experiment in which the sampling variances
data are generated without any relation with the small area parameter estimates, following
a random normal distribution. The results are similar to the Simulation 4.1, because sam-
pling variances result a little bit concentrated, due to the shape of the normal distribution.
Moving towards the symmetry of the shape of the empirical distribution of the sampling
variances, AARBIAS and AARMSE decrease, while the ARMSE increases, following the
trend observed in the experiment of the Simulation 4.1, accordingly to the situation of rela-
tively concentrated values around the median of the sampling variances. This implies that,
according to the theoretical considerations above, when sampling variances are very similar,
and then the generalized least squares estimator converges to the ordinary least squares esti-
mator, both biases and average root mean squared errors would improve. The ARMSE index
increases, due to a similar behavior of the leading part of the prediction mean squared error,
i.e., the g1. Different is the behavior of the index of efficiency ε, respect to what happens
in the Simulation experiment 4.1. A tentative explanation, in our opinion, is that the ran-
dom and independent values of the sampling variances, whatever are the values of the area
parameters, the covariance between the model conditional residuals and the model errors
(16) (i.e., the sampling error in the FH model) results in general very high. This because the
model fitting procedure operates, assigning randomly, and independently of parameters, the
sampling variances to the observations with heterogeneous mean squared errors.

5 Discussion

The Fay-Herriot model is a widely used model in the SAE methodology. The main research
issue investigated by the present paper is related to the assessment of the impact of the
distribution of the sampling variances on the Best Linear Unbiased Predictor of the model.
Together with the mean squared prediction error, an efficiency measure of the predictor is
also introduced.
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The examination of the relation between the direct estimates at area level and their sam-
pling variances leads to some considerations. The first is that, as studied via simulations,
non-linear and linear relationships lead to two different situations. Linear relations between
area direct estimates confirm that the average absolute relative bias of the linear predic-
tor increases when the variability of the sampling variances increases. The contrary occurs
when the relationship is non-linear. In our opinion, this means that when exists linearity,
the departure of the GLS estimator from the OLS estimator respects the rule that large het-
eroscedasticity of the sampling variances can lead to imprecise estimates of the predictor.
In the case of non linearity, the precision of the linear predictor is connected mainly with
the asymmetry of the empirical distribution of the sampling variances, as well as with the
concentration of the sampling variances. This is because the rule based on the GLS-OLS joint
evaluation (see Proposition 2 in the paper) is no longer suitable and does not exist a linear
model to fit the data. The present paper proposes two different measures of the bias of the
REML estimates, both for the LME model with random intercepts and unbalanced data and
for the Fay-Herriot model. They are treated under the same behavior in terms of the departure
from the OLS fixed effects estimator. The first is based on the evaluation of the variance of
the GLS estimator, in terms of the variability of the sampling variances among the small
areas. The second is the employment of the likelihood displacement, measured starting from
the vector of equal sampling variances that leads to unbiased OLS estimates, evaluated in the
direction given by the actual set of sampling variances. The index of efficiency introduced in
the present work takes in account the capability of the linear predictor in reducing the mean
squared error of the small area estimates, given the area sampling variances. The index may
have, in our opinion, a general application. Despite the literature offers several extension of
the area-level small area estimationmodels, like spatial, data transformed, robust models (see
[3, 16, 20, 21]), a measure of the difference area by area between the sampling variance and
the mean squared error of the actual linear predictor is available. Then, it can become always
possible to form the index, and consequently, to evaluate the correlations that constitutes both
the analytical and aggregated measures of the performance of the linear predictor inside the
small areas, in terms of its mean squared error.

The Fay-Herriot model is regarded as the basic area-level model, whose peculiarity is
to consider the small areas sampling variances as known. However, it may happen that,
due to small sample sizes, sampling variances can vary considerably. The issue of stabilize
the small area variances is a very heartfelt issue for statisticians that work in the field of
sampling surveys. A standard method for smoothing the sample variances is the Generalized
Variance Function approach. Oneway to overcome the problems exposed in the present work,
concerning the bias and the mean squared error of the linear predictor of the Fay-Herriot
model, may be given by this method. As proved via empirical simulation experiments, the
more concentrated and similar in their values are the sampling variances, the less biased is the
linear predictor (see Simulations 4.1 and 4.2). In fact, with less unstable sampling variances,
the Generalized Variance Function approach predicts variances by smoothing, forcing the
original sampling variances to be more similar. This may guarantee that in certain cases, i.e.
when there is a linear relation between the sampling variances and the area parameters, the
smoothing of the sampling variances reduces biases and mean squared errors. This is if the
set of the predicted variances result finally less heterogeneous, after applying the Generalized
Variance Function smoothing procedures. Simulation 4.1 (Table 2) shows, on the contrary,
that when there is non-linearity between the sampling variances and the area parameters, the
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smoothing may not achieve the desired result. Or it may be very harmful when searching for
reducing bias and mean squared error of the linear predictor.
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Appendix A Proof of Proposition 2

Proof Given C = C(η) = �m
i=1(X

′
iXi − η2σ 2

u
1+ησ 2

u
xix′

i ), and dC
dη

= −2�m
i=1ηxix

′
i ,

max(S2(η)) = μ2(η)(m − 1) = η2(m − 1), the estimator in (8) is:
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The value of S2(̂β(η) − ̂βOLS), as a function of η, is the square p × p matrix
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.

Finally, the index δ1 is given by a coefficient of variation, i.e. the ratio between the actual
total variance tr

[

λ(p) × S2(̂β(η) − ̂βOLS)
]

and the sum of the components of the ̂βOLS

estimator:
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Appendix B Proof of Proposition 3

Proof The elements of the likelihood displacement LD(η) in (10) are:

[

l∗R(β, g)
]
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]
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The LD(ω) = LD(η + bη) in (10) is as follows:

LD(ω) = 2[l∗R(̂βOLS(η), ĝR) − l∗R(̂β(ω), ĝR)],
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Appendix C Proof of Proposition 4

Proof The GLS estimator in 14 is analogous to the estimator in 8, with ηi = ηi ′ = 1,

Xi = x′
i , xi = xi , and di = α2

i σ
2
u

1+αiσ
2
u
. For the relation in 15, in case of normality the sum of

squares of the model residuals follows a χ2
m−p distribution, i.e. (yi − x′

iβ)′(yi − x′
iβ)V−1 =

(yi − x′
iβ)2/(σ 2

u + ψ) ∼ χ2
m−p . Then, because 1 − (σ 2

u + ψi )
−1 = d , we get 15.

The GLS estimator in 14 is equivalent to the estimator described in Proposition 2. This
means that we can apply the index in 9 to measure the departure of the GLS estimator respect
to the OLS estimator, as a measure of the bias of the REML estimates. In particular, this
is the focus of the simulations in the next section. If we deal with a large variability of the
sampling variances ψ1, . . . , ψm , this leads to a large bias of the linear predictor by the LME
model. ��
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