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Abstract
We discuss a bivariate beta distribution that can model arbitrary beta-distributed marginals
with a positive correlation. The distribution is constructed from six independent gamma-
distributed random variates. While previous work used an approximate and sometimes
inaccurate method to compute the distribution’s covariance and estimate its parameters, here,
we derive all productmoments and the exact covariance, which can be computed numerically.
Based on this analysis we present an algorithm for estimating the parameters of the distribu-
tion using moment matching. We evaluate this inference method in a simulation study and
demonstrate its practical use on a data set consisting of predictions from two correlated fore-
casters. Furthermore, we generalize the bivariate beta distribution to a correlated Dirichlet
distribution, for which the proposed parameter estimation method can be used analogously.

Keywords Bivariate beta distribution · Correlated beta distribution · Covariance · Moment
matching

1 Introduction

Probabilistic forecasts are important in many domains, among them finance and economics,
business and marketing, politics, public health, engineering, and meteorological, ecological,

Constantin A. Rothkopf and Frank Jäkel contributed equally to this work

B Susanne Trick
susanne.trick@tu-darmstadt.de

Constantin A. Rothkopf
constantin.rothkopf@cogsci.tu-darmstadt.de

Frank Jäkel
jaekel@psychologie.tu-darmstadt.de

1 Centre for Cognitive Science, Technical University of Darmstadt, Alexanderstr. 10,
64283 Darmstadt, Germany

2 Institute of Psychology, Technical University of Darmstadt, Alexanderstr. 10, 64283 Darmstadt,
Germany

3 Frankfurt Institute for Advanced Studies, Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40300-023-00247-2&domain=pdf
http://orcid.org/0000-0001-5790-5060


164 S. Trick et al.

and environmental science. For binary events these forecasts take the form of probability
estimates that are either provided by humans or machine learning algorithms. In order to
model these probability estimates one can use an arbitrary distribution on the interval [0, 1],
such as the beta distribution, beta-generated distributions, the Kumaraswamy distribution, or
any distribution on the real numbers transformed through the logistic function. In many cases
the probabilities will be correlated, e.g. if different experts forecast the outcome of an election
or the probability of rain. In order to be able to model such correlated probabilities, therefore,
a bivariate distribution is needed. For example, one can use bivariate generalizations of the
Kumaraswamy distribution [1], bivariate beta-generated distributions [2], or a multivariate
Gaussian with logistic transformations [3]. However, the most common choice for modeling
such probabilities is the beta distribution, since it is the standard distribution for probabilities
in Bayesian statistics and is simply more familiar to practitioners than the other distributions
[4, 5]. Therefore, in this paper we focus on bivariate beta distributions.

While amultitude of constructions for bivariate beta distributions have been proposed, they
have different constraints and properties, which limit their applicability. We will first review
previous constructions of bivariate beta distributions together with their respective properties
and then examine the most promising construction that can model arbitrary beta marginals
with a positive correlation [5]. For this construction of modeling arbitrary beta marginals
with positive correlation, so far, there has not been an exact method for parameter inference
and it has thus rarely been used. Here, we therefore introduce a new estimation method for
this bivariate beta distribution with arbitrary beta marginals and positive correlation.

Many bivariate beta distributions have been proposed in the literature [1, 2, 5–21]. Among
them, some approaches have been derived from general families of bivariate distributions,
such as the Farlie-Gumbel-Morgenstern family of distributions [e.g. 7] and the Sarmanov
family of distributions [e.g. 8]. Others derived a bivariate beta distribution from a bivariate
extension of the F distribution [9, 13], whereas Nadarajah and Kotz [11] proposed different
bivariate beta distributions constructed from products of univariate beta-distributed random
variables. In general, using different copulas one can construct different bivariate distributions
with the samebetamarginals [2, 20].However, as beta-distributed randomvariables can easily
be constructed from normalized gamma-distributed random variables, it is natural to try and
generalize this construction to the bivariate case. In this vein, several authors have introduced
correlations through shared gamma-distributed random variables [1, 5, 10, 14, 18]. The most
straightforward case of this construction has been studied by Olkin and Liu [10], building on
the work of Libby and Novick [6]. They use three independent gamma-distributed random
variables U1,U2,U3 with respective shape parameters υ1, υ2, υ3 and same scale parameter
to construct

X ′ = U1

U1 +U3
and Y ′ = U2

U2 +U3
. (1)

Using the standard construction of beta variates from gamma variates, the joint distribution
of the random variables X ′ and Y ′ is a bivariate beta distribution with marginal distributions
Beta(υ1, υ3) for X ′ and Beta(υ2, υ3) for Y ′. The correlation between X ′ and Y ′, which is
obtained through the shared latent variable U3 and its parameter υ3, is in the range [0,1].
For high values of υ3, the correlation tends to 0 whereas for low values of υ3, it tends to
1. However, if υ3 is high, the values of X ′ and Y ′ also tend to 0 and if υ3 is low they tend
to 1 accordingly. This behavior severely limits the usefulness of the distribution for most
applications. A further limitation is the constraint that the marginal distributions share the
same second parameter υ3. Thus, the bivariate beta distribution proposed by Olkin and Liu
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does not allow for arbitrary betamarginals, which limits its flexibility inmodeling probability
forecasts.

Arnold and Ng [14] proposed a more flexible construction for a bivariate beta distribu-
tion. They use five independent gamma-distributed random variablesU1, . . . ,U5 with shape
parameters υ1, . . . , υ5 and scale parameter 1 to define two correlated random variables

X = U1 +U3

U1 +U3 +U4 +U5
and Y = U2 +U4

U2 +U3 +U4 +U5
(2)

with marginal distributions Beta(υ1 + υ3, υ4 + υ5) for X and Beta(υ2 + υ4, υ3 + υ5) for Y .
Compared toOlkin and Liu [10], this construction of a bivariate beta distribution can generate
all correlations in the range [-1,1] andmarginal distributionswith differing secondparameters.
Nevertheless, because of how the two marginals share parameters, not all combinations
of parameters of the marginal beta distributions are possible. For example, the marginals
Beta(10, 4) for X and Beta(1, 1) for Y cannot be obtained.

Olkin and Trikalinos [18] base their construction of a bivariate beta distribution on the
Dirichlet distribution. U = (U00,U01,U10,U11) is drawn from a 4-dimensional Dirichlet
distributionwith parametersυ1, . . . , υ4. By just using three of its components,U00,U01,U10,
new random variables

X = U00 +U10 and Y = U01 +U10 (3)

are constructed, with marginal distributions Beta(υ1 + υ3, υ2 + υ4) for X and Beta(υ2 +
υ3, υ1 + υ4) for Y . As Dirichlet-distributed random variables can also be constructed from
gamma random variables, we can equivalently construct X and Y in Eq. (3) from four inde-
pendent gamma-distributed random variablesU1, . . . ,U4 with shape parameters υ1, . . . , υ4
and equal scale parameter 1, with

X = U1 +U3

U1 +U2 +U3 +U4
and Y = U2 +U3

U1 +U2 +U3 +U4
. (4)

As can easily be seen from this construction, all correlations in the range [-1,1] can be
generated. In particular, the correlation tends to -1 if υ3 and υ4 tend to 0 and U3 and U4

will be negligible compared to U1 and U2. In this case X ≈ U1
U1+U2

≈ 1 − Y . Similarly,
the higher the values of υ3 and υ4 relative to υ1 and υ2, the more negligible U1 and U2 will
be and the correlation increases to 1 until X ≈ U3

U3+U4
≈ Y . Less obviously, a correlation

of 0 is obtained in case υ1 · υ2 = υ3 · υ4 [18]. Still, this construction of a bivariate beta
distribution does not allow arbitrary beta marginal distributions. Since all υi are constrained
to be positive, for some combinations of marginal distributions the resulting system of linear
equations for the parameters υi has no solution. For example, the two marginals Beta(2, 2)
for X and Beta(1, 1) for Y cannot be generated, regardless of their correlation.

Magnussen [5] introduced yet another construction based on six gamma variates. While
all the constructions thus far constrain the parameters of the marginal beta distributions, this
construction does allow for arbitrary beta marginals with positive correlation, thus providing
the necessary flexibility to model probability forecasts. Magnussen’s distribution is a special
case of a more general 8-parameter bivariate beta distribution introduced by Arnold and Ng
[14] and reviewed in Arnold and Ghosh [1], which even allows for positive and negative
correlations. However, in many applications, it is enough to model positive correlations, for
which the less complex 6-parameter distribution is sufficient. For example, if X and Y are
probability estimates elicited from two skilled forecasters, we do not expect negative correla-
tions. But we do want to allow for the possibility that their marginal forecasts have different
distributions that should not be tied together by parameter constraints on the marginals.
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Hence, the bivariate beta distribution proposed by Magnussen [5], which can model arbi-
trary beta-distributed marginals with a positive correlation, is an appropriate distribution for
modeling correlated probability forecasts.

However, just like any other distribution, the bivariate beta distribution can only be used if
its parameters can be estimated correctly.WhileMagnussen [5] proposes amoment matching
approach for fitting the distribution’s parameters, this approach relies on a rough and some-
times inaccurate approximation for the covariance. Also, Magnussen [5] did not discuss the
fact that very similar data can be generated with different parameter values, which makes it
hard to statistically infer the parameters of the bivariate beta distribution from data without
constraining the distribution.

Therefore, in this work we introduce an alternative approach for estimating this bivariate
beta distribution’s parameters. First, wewill derive the full joint distribution, which ismissing
in the work of Magnussen [5], probably because it is intractable. We will then clarify the
relationship betweenMagnussen’s distribution and theOlkin-Liu distribution [10]. Using this
relationship with the Olkin-Liu distribution we derive all product moments and in particular
the exact covariance function (and in passing we correct a small mistake in the product
moments from Olkin and Liu [10]). For parameter inference, we propose to match moments
numerically using the exact covariance we derived. While other estimation methods such
as Bayesian inference could be used [22], here we focus on moment matching due to its
simplicity and efficiency. In order tomake parameter inference unambiguous, we additionally
show how to reasonably constrain the distribution’s parameters. We evaluate the proposed
parameter estimation method in a simulation study and demonstrate its practical use on a real
data set consisting of predictions from two correlated forecasters. We discuss the relationship
between the distribution’s parameters and the correlation and then extend the bivariate beta
distribution to a correlatedDirichlet distribution, forwhich the proposed parameter estimation
method can be used analogously.

The remainder of the paper is structured as follows. In Sect. 2 we discuss the bivariate
beta distribution with arbitrary beta marginals, including its joint distribution in Sect. 2.1,
its moments in Sect. 2.2, correlation and covariance in Sect. 2.3, and parameter inference in
Sect. 2.4. Section3 shows how to generalize the bivariate beta distribution to a correlated
Dirichlet distribution.

2 A bivariate beta distribution with arbitrary betamarginals

Magnussen [5] uses six independent gamma-distributed random variables A1, A2, B1, B2,
D1, D2 that are distributed according to

Ai ∼ Gamma(αi , 1) i = 1, 2

Bi ∼ Gamma(βi , 1) i = 1, 2

Di ∼ Gamma(δi , 1) i = 1, 2,

(5)

to construct two bivariate-beta-distributed random variables

X = A1 + D1

A1 + A2 + D1 + D2
and Y = B1 + D1

B1 + B2 + D1 + D2
. (6)

The resulting marginal distributions of X and Y are Beta(a1, a2) and Beta(b1, b2) with

a1 = α1 + δ1 a2 = α2 + δ2 b1 = β1 + δ1 b2 = β2 + δ2. (7)
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The marginals follow immediately from the definition because the sum of gamma random
variables of the same scale is gamma-distributed with the same scale but with the original
shape parameters summed. In contrast to other constructions that were discussed above [10,
14, 18], this construction allows for arbitrary marginal distributions. In particular, when δ1
and δ2 tend to zero, we can model arbitrary independent marginal distributions Beta(α1, α2)
and Beta(β1, β2).

Since all parameters α1, α2, β1, β2, δ1, δ2 need to be positive by definition, for fixed
marginal distributions Beta(a1, a2) for X and Beta(b1, b2) for Y it must hold that δ1 <

δmax
1 = min(a1, b1) and δ2 < δmax

2 = min(a2, b2). Therefore, for most marginal distribu-
tions the maximum correlation that can be generated is below 1. The higher the difference
between two marginal distributions, the lower the possible maximum correlation. A perfect
correlation approaching 1 can, of course, only be generated for equal marginal distributions,
i.e. if a1 = b1 and a2 = b2 and α1, α2, β1, and β2 tend to 0, as also noted by Magnussen [5].
Note that this limitation applies to other bivariate distributions that do not allow for arbitrary
marginal beta distributions as well [e.g. 18].

The construction of this bivariate beta distribution can also be seen as a pairwise com-
bination of three beta distributions. First transform the six independent gamma-distributed
random variables (5) into three independent gamma- and three independent beta-distributed
random variables,

U1 = A1 + A2, U1 ∼ Gamma(υ1, 1)

U2 = B1 + B2, U2 ∼ Gamma(υ2, 1)

U3 = D1 + D2, U3 ∼ Gamma(υ3, 1)

W1 = A1

A1 + A2
, W1 ∼ Beta(α1, α2)

W2 = B1

B1 + B2
, W2 ∼ Beta(β1, β2)

W3 = D1

D1 + D2
, W3 ∼ Beta(δ1, δ2)

(8)

with

υ1 = α1 + α2 υ2 = β1 + β2 υ3 = δ1 + δ2. (9)

With these definitions we can then rewrite construction (6) as

X = U1

U1 +U3
· W1 + U3

U1 +U3
· W3 = X ′W1 + (1 − X ′)W3

Y = U2

U2 +U3
· W2 + U3

U2 +U3
· W3 = Y ′W2 + (1 − Y ′)W3,

(10)

where X ′ and Y ′ are defined as in (1) but with υ1, υ2, and υ3 as in (9). Furthermore, X ′
and Y ′ are independent of W1,W2,W3. If parameters δ1 and δ2 and with them U3 tend to
0, X ≈ W1 and Y ≈ W2 are independent with marginal distributions Beta(α1, α2) for X
and Beta(β1, β2) for Y . Mixing in the shared component W3 by increasing the values of
parameters δ1 and δ2 increases the correlation between X and Y . IfU1 andU2 are negligible
compared to U3 because δ1 and δ2 dominate the parameters, the correlation will be close to
1 with X ≈ W3 ≈ Y and hence X and Y have the same marginal distribution Beta(δ1, δ2),
as mentioned before.
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2.1 Joint distribution

X and Y in (10) are linear transformations of X ′ and Y ′. Given W1,W2,W3 it is easy to
recover X ′ and Y ′ from observed X and Y ,

X ′ = X − W3

W1 − W3
= |X − W3|

|W1 − W3| = f1(X)

Y ′ = Y − W3

W2 − W3
= |Y − W3|

|W2 − W3| = f2(Y ).

(11)

Note that we can ignore the sign because according to (10) X is always between W1 and W3

and Y between W2 and W3, so that the numerator and denominator always have the same
sign.

As X ′ and Y ′ jointly follow the Olkin-Liu distribution [10],

p′(x ′, y′) =
(
x ′)υ1−1 (

1 − x ′)υ2+υ3−1 (
y′)υ2−1 (

1 − y′)υ1+υ3−1

B(υ1, υ2, υ3) (1 − x ′y′)υ1+υ2+υ3
, (12)

where B(υ1, υ2, υ3) = �(υ1)�(υ2)�(υ3)
�(υ1+υ2+υ3)

, the joint distribution of X and Y given W1,W2,W3

is

p(x, y | w1, w2, w3) =
∣∣∣∣
d f1(x)

dx

d f2(y)

dy

∣∣∣∣ p
′ ( f1(x), f2(y))

= 1

|w1 − w3||w2 − w3|
( |x−w3||w1−w3|

)υ1−1 (
1 − |x−w3||w1−w3|

)υ2+υ3−1 ( |y−w3|
|w2−w3|

)υ2−1 (
1 − |y−w3|

|w2−w3|
)υ1+υ3−1

B(υ1, υ2, υ3)
(
1 − |x−w3||w1−w3|

|y−w3|
|w2−w3|

)υ1+υ2+υ3

= |w1 − w3||w2 − w3|
B(υ1, υ2, υ3)

· |x − w3|υ1−1|x − w1|υ2+υ3−1|y − w3|υ2−1|y − w2|υ1+υ3−1

(|w1 − w3||w2 − w3| − |x − w3||y − w3|)υ1+υ2+υ3

(13)

with x betweenw1 andw3 and y betweenw2 andw3 according to (10).We have not been able
to integrate out w1, w2, w3 from their joint distribution with x and y. However, we suspect
that even if the joint density for X and Y could be expressed in terms of special functions,
computing those might not be efficient enough for parameter inference for which we will
resort to moment matching. Example plots with smoothed samples for the joint density are
shown in Fig. 1 for several parameter settings showing different marginal distributions for
X and Y and different correlations between X and Y . Sampling from the bivariate beta
distribution is realized with JAGS [23].

2.2 Moments

As the marginal distributions for X and Y are beta-distributed, their moments are read-
ily available, even in closed form. Computation of the product moments E(XkY l) is more
challenging but can be realized with help of the work of Olkin and Liu [10]. Looking at
construction (10), X and Y are a linear combination of independent beta-distributed random
variables W1,W2,W3 with weights X ′ and Y ′. Thus, we can express the product moments
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Fig. 1 Joint densities of bivariate beta distributions with selected parameter values. The plots were createdwith
kernel density estimation based on 10 million samples of the respective distributions. Note that the smoothing
is inaccurate at the borders and produces artifacts close to zero and one as a consequence of smoothing with
a symmetric kernel
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as

E
(
XkY l

)
= E

((
X ′W1 + (1 − X ′)W3

)k (
Y ′W2 + (1 − Y ′)W3

)l)
. (14)

Since X ′ and Y ′ are independent of W1,W2,W3, it is possible to compute the expectation
if the moments of W1,W2,W3, X ′, Y ′ and the product moments of X ′ and Y ′ are known.
W1,W2,W3 as well as the marginals of X ′ and Y ′ are beta-distributed, so their moments can
be computed straightforwardly in closed form. Furthermore, X ′ and Y ′ are jointly Olkin-
Liu distributed according to (12), and Olkin and Liu [10] have shown how to compute their
product moments. However, note that the derivation of E((X ′)k(Y ′)l) in equation (2.2) in the
work of Olkin and Liu [10] is incorrect and should read

E
(
(X ′)k(Y ′)l

)
=

∞∑

j=0

d A( j)
B(υ1+k + j, υ2+υ3)

B(υ1 + j, υ2 + υ3)

B(υ2 + l + j, υ1 + υ3)

B(υ2 + j, υ1 + υ3)
(15)

= �(υ1 + υ3)�(υ2 + υ3)�(υ1 + k)�(υ2 + l)�(ϒ)

�(υ1)�(υ2)�(υ3)�(ϒ + k)�(ϒ + l)
∞∑

j=0

(υ1 + k) j (υ2 + l) j (ϒ) j

(ϒ + k) j (ϒ + l) j

1

j ! (16)

= h · 3F2(υ1 + k, υ2 + l, ϒ;ϒ + k, ϒ + l; 1), (17)

with

d = �(υ1 + υ3)�(υ2 + υ3)

�(υ3)�(ϒ)
(18)

A( j) = �(υ1 + j)

�(υ1)

�(υ2 + j)

�(υ2)

�(ϒ)

�(ϒ + j)

1

j ! (19)

h = �(υ1 + υ3)�(υ2 + υ3)�(υ1 + k)�(υ2 + l)�(ϒ)

�(υ1)�(υ2)�(υ3)�(ϒ + k)�(ϒ + l)
, (20)

whereϒ = υ1+υ2+υ3 and pFq is the generalized hypergeometric function. Equations (15),
(18), and (19) are taken directly from Olkin and Liu [10] with a = υ1, b = υ2, c = υ3.
Equations (16), (17), and (20) are our corrections of their equations.

2.3 Correlation and covariance

The correlation r between X and Y is

r = Cov(X , Y )√
Var(X)Var(Y )

(21)

with the known variances of the beta marginals

Var(X) = a1a2
(a1 + a2)2(a1 + a2 + 1)

= (α1 + δ1)(α2 + δ2)

(α1 + δ1 + α2 + δ2)2(α1 + δ1 + α2 + δ2 + 1)

Var(Y ) = b1b2
(b1 + b2)2(b1 + b2 + 1)

= (β1 + δ1)(β2 + δ2)

(β1 + δ1 + β2 + δ2)2(β1 + δ1 + β2 + δ2 + 1)
.

(22)

123



Parameter estimation for a bivariate... 171

For the covariance of X and Y Magnussen [5] gives an approximate solution, namely

Cov(X , Y ) ≈ a1a2δ2 + (1 + b1)(1 + b2)δ1
(a1 + b1)(a2 + b2)(1 + a1 + b1)(1 + a2 + b2)

, (23)

where a1, a2, b1, and b2 are defined based on α1, α2, β1, β2, δ1, δ2 as in (7). This approx-
imation is inaccurate for small values of these parameters, e.g. for a1 = a2 = b1 = b2 =
4, δ1 = δ2 = 3, the approximated covariance is Cov(X , Y ) = 0.024, while the true covari-
ance computed from 106 samples of the bivariate beta distribution is Cov(X , Y ) = 0.020.
This might seem like a small difference but it results in an overestimated correlation of
r = 0.854 as opposed to the true correlation of r = 0.730. Even more worryingly, for
a1 = a2 = b1 = b2 = 1, δ1 = δ2 = 4

5 , the approximated covariance is Cov(X , Y ) = 1
9 ,

which results in an estimated correlation of r = 4
3 , which is greater than 1 and therefore

wrong by definition.
Given the connection to the Olkin–Liu distribution [10], which we derived in Sect. 2.2,

we therefore proceed to compute the exact covariance between X and Y :

Cov(X , Y ) = E(XY ) − E(X)E(Y ) (24)

where

E(X) = a1
a1 + a2

= α1 + δ1

α1 + δ1 + α2 + δ2

E(Y ) = b1
b1 + b2

= β1 + δ1

β1 + δ1 + β2 + δ2

(25)

are readily available as the means of the beta marginals. We can compute E(XY ) from (14)
with k = l = 1, which results in

E(XY ) = E
(
(X ′W1 + (1 − X ′)W3)(Y

′W2 + (1 − Y ′)W3)
)

= E(X ′Y ′)E(W1)E(W2) + (
E(X ′) − E(X ′Y ′)

)
E(W1)E(W3)

+ (
E(Y ′) − E(X ′Y ′)

)
E(W2)E(W3)

+ (
1 − E(Y ′) − E(X ′) + E(X ′Y ′)

)
E(W 2

3 )

(26)

with the moments of the beta marginals from (8)

E(W1) = α1

α1 + α2

E(W2) = β1

β1 + β2

E(W3) = δ1

δ1 + δ2

E(W 2
3 ) = δ1(δ1 + 1)

(δ1 + δ2 + 1)(δ1 + δ2)

(27)

and (10)

E(X ′) = υ1

υ1 + υ3

E(Y ′) = υ2

υ2 + υ3

(28)
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with υ1, υ2, and υ3 as defined in (9). E(X ′Y ′) can be specialized from the moments (17)
above with k = l = 1:

E(X ′Y ′) = h 3F2(υ1 + 1, υ2 + 1, ϒ;ϒ + 1, ϒ + 1; 1) with

h = �(υ1 + υ3)�(υ2 + υ3)

�(υ3)�(ϒ + 1)
· υ1υ2

ϒ

(29)

and ϒ = υ1 + υ2 + υ3 as before. According to Olkin and Liu [10] there is no closed-
form solution for (17) and (29). However, using the generalized hypergeometric function the
productmoments and thus the covariance between X andY can be computed numerically (e.g.
by using the hyper function in sympy or the HypergeometricPFQ function in Mathematica).
Note that with Raabe’s test one can show that the generalized hypergeometric function 3F2
in (29) converges. According to Raabe’s test the series converges if

lim
j→∞ ρ j > 1 with ρ j = j

(
c j
c j+1

− 1

)
, (30)

where c j is the j-th element of the series described by the generalized hypergeometric
function 3F2 in (29), which is

c j = (υ1 + 1) j (υ2 + 1) j (ϒ) j

(ϒ + 1) j (ϒ + 1) j

1

j ! . (31)

Since lim j→∞ ρ j = 1 + υ3 > 1, the generalized hypergeometric function 3F2 in (29)
converges. However, this analysis also suggests that convergence of the series might be very
slow for small υ3 = δ1 + δ2.

2.4 Parameter inference

Magnussen [5] used the method of moments to infer the parameters a1, a2, b1, b2 for the
marginal distributions. Given these parameters he then matched the empirical correlation to
the correlation for the parameters δ1, δ2 (given marginal parameters a1, a2, b1, b2) using
the approximate solution for the covariance given in (23). However, as shown in Sect. 2.3
this approximation can lead to very inaccurate correlation estimates. An additional problem
with the distribution is that very similar data can be generated with different parameter
values, as one can see in Fig. 2(a) and (b). Increasing δ1 and simultaneously decreasing δ2 or
vice versa while keeping the marginal parameters a1, a2 and b1, b2 fixed, can result in very
similar correlations, which is shown in Fig. 2(c). Since two distributions with very different
parameters can lead to extremely similar data, it is hard to statistically infer the parameters
δ1 and δ2 from data: The empirical correlation alone does not provide enough constraints and
differences in higher moments can be subtle.

Therefore, in order to make parameter inference unambiguous, we decided to constrain
the 6-parameter bivariate beta distribution to five parameters: two for each marginal and one
parameter to control the correlation. A reasonable way to constrain δ1 and δ2 is to set

δ2 = δmax
2

δmax
1

δ1 (32)

with δmax
1 = min(a1, b1), δmax

2 = min(a2, b2), because this enables the maximum possible
correlation between X and Y when the maximum values for δ1 and δ2 are attained and the
shared component between X and Y is as big as it can be without violating the marginal
constraints.
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Fig. 2 Different parameters can generate similar data. (a) and (b) show samples generated from two bivariate
beta distributions with the same marginal parameters a = (8, 6), b = (6, 5) and correlation parameters
δ = (3.28, 2.73) for (a) and δ = (5, 1.6) for (b). Both, the data in (a) and (b) show a correlation of r = 0.47.
Correspondingly, (c) shows the correlations generated by different combinations of δ1 and δ2 given marginal
parameters a = (8, 6) and b = (6, 5). Different combinations of δ1 and δ2 can lead to very similar correlations

2.4.1 Moment matching

Using this constraint (32), the model-inherent constraints δ1 < δmax
1 , δ2 < δmax

2 , and the for-
mula for the correlation derived in Sect. 2.3, we can now optimize the parameters numerically
to match the empirical moments. First, the marginal parameters a1, a2, b1, b2 are obtained
using the standard procedure of moment matching for the beta distribution. Given the esti-
mated marginal parameters, an estimate of δ1 (and with it δ2) can be obtained numerically
by minimizing the quadratic deviation between the theoretical correlation and the empirical
correlation. To avoid the undefined cases δ1 ≤ 0 and δ1 ≥ δmax

1 we bound the optimization
between ε and δmax

1 − ε with ε = 0.001. Unless the empirical correlation is bigger than the
maximum correlation that can be attained with the matched marginals or smaller than 0, it
can be matched exactly for some δ1. Otherwise δ1 will take on its maximum value δmax

1 − ε

or its minimal value ε. We implement inference in Python using the package mpmath [24]
for the numerical computation of the generalized hypergeometric function and the package
scipy [25] for optimization.

As an example we used this numerical moment matching approach on 5000 data points
generated with parameters a1 = 8, a2 = 6, b1 = 6, b2 = 5, δ1 = 3.28, δ2 = 2.73,
equivalent to the data shown in Fig. 2(a). We inferred the parameter values â1 = 8.143, â2 =
6.193, b̂1 = 5.882, b̂2 = 4.931, δ̂1 = 3.286, δ̂2 = 2.754. Figure3(a) shows the correlations
implied by different values for parameter δ1 compared to the desired correlation of r̂ = 0.47.
As one can see, the difference between r and r̂ is zero for the inferred δ̂1 = 3.286. Due to our
constraint (32), δ̂2 = 2.754 can be computed from δ1. In this case there is an almost linear
relationship between δ1 and r but this is not true in general, especially for smaller parameter
values.

This can be seen in a second examplewherewe applied ourmomentmatching approach on
5000 data points generated with parameters a1 = 0.2, a2 = 0.9, b1 = 0.4, b2 = 1, δ1 = 0.1,
δ2 = 0.45 and received the inferred parameter values â1 = 0.197, â2 = 0.903, b̂1 =
0.403, b̂2 = 1.017, δ̂1 = 0.101, δ̂2 = 0.462. As seen in Fig. 3(b), for this second example
the relationship between δ1 and the correlation is not well approximated by a linear function,
in contrast to the first example in Fig. 3(a). Still, inference works as for the first example
shown above.
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Fig. 3 The correlations r implied by different values of correlation parameter δ1 compared to the desired
correlation r̂ given estimates of the marginal parameters a1, a2, b1, b2. δ2 is not displayed since it can be
computed from δ1 using constraint (32). rmax is the maximum correlation that can be reached for the given
marginal parameters. (a) shows the first inference example with a1 = 8.143, a2 = 6.193, b1 = 5.882, b2 =
4.931, r̂ = 0.47, and rmax = 0.864. The difference between r and r̂ is zero for δ1 = 3.286. In (b) we
show the second inference example with a1 = 0.197, a2 = 0.903, b1 = 0.403, b2 = 1.017, r̂ = 0.314,
and rmax = 0.707. The difference between r and r̂ is zero for δ1 = 0.101. The dotted linear reference line
additionally shows that the relationship between the correlation and δ1 is non-linear

2.4.2 Simulation study

The performance of the proposed approach for parameter inference was evaluated in a
simulation study. We generated data from a bivariate beta distribution using different
marginal parameters, correlation parameters, and different numbers of generated samples
N and inferred δ1 from these data using the proposed moment matching approach. For
half of all considered simulations, X and Y were chosen to have the same marginal
parameters to be able to generate the full range of correlations from 0 to 1, hence
a1 = b1, a2 = b2. All possible combinations of the values in [0.5, 1, 2, 3, 4, 5] for a1
and a2 were tested while omitting symmetric cases with a1 ≤ a2, resulting in 21 different
marginal distributions. For the remaining simulations we considered differing marginal dis-
tributions. We chose a subset of 7 marginal distributions from the set of marginals above
as [[0.5, 0.5], [1, 1], [1, 4], [2, 2], [2, 4], [3, 3], [4, 5]] and tested inference for all

(7
2

) = 21
combinations of different marginals in this set. Thus, in total we inferred parameters for 42
combinations of marginals. The correlation parameters δ1 were chosen as p · δmax

1 with
p = 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 respectively, in order to show how inference
works for data with different correlations between 0 and the maximum possible correla-
tion for the respective marginals. δ2 was obtained using the constraint in (32). To test the
effect of the number of samples N on the accuracy of parameter inference we evaluated with
N = 100, 500, 1000. For each of the 42 ·7 ·3 = 882 parameter settings, we repeated the data
simulation and inference process 50 times, resulting in 44100 inference results. These results
are displayed in Fig. 4, for N = 100, 500, 1000 in (a), (b), (c) respectively. We can see that
the inferred δ̂1 match the true value of δ1, the better the higher the number of available data
samples N . The average standard deviations of all inferred δ̂1 are 0.171 for N = 100, 0.078
for N = 500, and 0.055 for N = 1000. Note that although the generalized hypergeometric
function 3F2 in (29) is guaranteed to converge, as we showed in Sect. 2.3, it can happen that
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Fig. 4 Results of a simulation study for evaluating the proposed moment matching approach for parameter
inference. We generated data from a bivariate beta distribution using different marginal distributions with
different correlations and different numbers of generated samples N and inferred δ1 from these data. We show
inferred δ̂1 against true δ1 for N = 100 samples (a), N = 500 samples (b), and N = 1000 samples (c). δ̂1
matches δ1, the better the higher the number of available data samples N

its numerical computation fails due to very slow convergence. In our simulation study, this
error occurred for 2.5% of all inference computations, only for low values of δ1.

2.4.3 Application on a real data set of correlated forecasts

The bivariate beta distribution has broad applicability in many fields as diverse as Bayesian
analysis, where it can model the correlation among priors for Binomial distributions [14], the
modeling of proportions of hardwood forests over time, where it serves to estimate decadal
changes in the relative land use of a region [5], the modeling of proportions of electorate vot-
ing in a two candidate election, proportions of substances in mixtures, or brand shares [16],
and utility assessment [6]. Furthermore, the bivariate beta distribution can be used for mod-
eling probabilities produced by two correlated forecasters. Correlations between forecasters
are quite common, e.g. two bookmakers who base their odds on common information will
produce correlated odds. For the same reason experts in risk assessment will often produce
correlated forecasts. Similarly, different machine classifiers produce correlated predictions
when trained on the same data [26]. These correlations should be taken into account when
their predictions are combined, e.g. in different techniques for classifier fusion [27], since
combining correlated classifiers can otherwise lead to overconfidence and high generalization
error [28]. Here, we use such a data set consisting of the predictions of two classifiers as an
illustrative example for the application of the proposed inference method. Two classifiers, a
Bayes Net and a Random Forest, were trained on Alen Shapiro’s chess (King-Rook vs. King-
Pawn) data set [29, 30].1 The task is to predict if King+Pawn will win a chess match against
King+Rook based on 36 categorical features of a chess position. For training both classifiers,
we used 10-fold cross-validation. The two classifiers’ predictions on the respective 10 test
sets form the data set we evaluate on. We only considered the predicted probabilities of win-
ning King+Pawn for all 1527 match instances actually won by King+Pawn. The predicted
probabilities of winning King+Rook for the matches actually won by King+Rook might
follow a different distribution and are therefore excluded in our example. With the bivariate
beta distribution we now model the winning probabilities the two classifiers predicted for
King+Pawn.

1 https://archive.ics.uci.edu/ml/datasets/Chess+%28King-Rook+vs.+King-Pawn%29.
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Fig. 5 The predicted winning probabilities from the chess classifier data set. (a) and (b) show the marginal
distributions of X representing classifier 1 (Bayes Net), and Y representing classifier 2 (Random Forest). For
both marginal distributions we show the relative frequencies of the predictions as well as the beta densities
inferredwithmomentmatching. (c) jointly shows X andY , which are correlatedwith approximately r̂ = 0.483.
(d) shows a simulated data set consisting of 1527 samples of a bivariate beta distribution with the parameters
inferred for the chess classifier data set

Figure5shows the data and the inferred distribution. X is the predicted probability for
King+Pawn winning of classifier 1, a Bayes Net, and Y the predicted probability of clas-
sifier 2, a Random Forest. In Fig. 5(a) and (b) we show histograms of the predictions of
X and Y together with marginal beta densities that were inferred with moment match-
ing: the parameters are â1 = 2.094, â2 = 0.64 for (a) and b̂1 = 4.44, b̂2 = 0.288 for
(b). Figure5(c) jointly shows X and Y with a correlation of approximately r̂ = 0.483.
Matching this correlation, too, as described in Sect. 2.4.1, we obtain δ̂1 = 1.723 and
δ̂2 = 0.237. The corresponding correlation is r = 0.483, which matches the data’s empirical
correlation up to numerical precision. Figure5(d) shows a simulated data set consisting
of 1527 samples drawn from a bivariate beta distribution with the inferred parameters,
â1 = 2.094, â2 = 0.64, b̂1 = 4.44, b̂2 = 0.288, δ̂1 = 1.723 and δ̂2 = 0.237. As can
be seen, the generated data set is similar to the real data set in Fig. 5(c) and the classifiers’
predictions can thus be modeled reasonably well with this bivariate beta distribution.
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Fig. 6 The exact correlation
computed as in Sect. 2.3
compared to the approximate
correlation computed with
Eq. (33) for all parameter
configurations used in the
simulation study in Sect. 2.4.2

2.4.4 Relationship between ı1 and the correlation

We found empirically that over a large range of parameters the following approximate
relationship holds:

r ≈ δ1

δmax
1

rmax, (33)

while δmax
1 = min(a1, b1) and rmax is the maximum possible correlation for the given

marginals. While this relationship could be used for approximate inference of δ1, we still
recommend the moment matching approach proposed in Sect. 2.4.1 that gives exact results.
However, the shown relationship allows interpreting the correlation parameter δ1. Particu-
larly for equal marginal distribution with a1 = b1 and a2 = b2, for which rmax = 1, this
interpretation of δ1 is very simple: The fraction of δ1

δmax
1

approximately matches the generated

correlation. For example, if a1 = b1 = 2 and a2 = b2 = 4, for δ1 = 1 we generate a
correlation of r = 0.468 ≈ 1

2rmax = 0.5 with rmax = 1. For differing marginal distributions,
interpreting δ1 is more difficult because rmax must be computed numerically using the for-
mulas given above. If, e.g., a1 = a2 = 2 and b1 = 1, b2 = 4, with δ1 = 0.5, we generate a
correlation of 0.3 ≈ 0.5

1 rmax = 0.313 with rmax = 0.627. In Fig. 6, we plot the exact corre-
lation and the approximated correlation computed with (33) for all parameter configurations
used in the simulation study in Sect. 2.4.2. As can be seen, the relationship in (33) holds for
all parameter values. The plateaus seen for approximate correlations of 0.25, 0.5, and 0.75
are a consequence of choosing δ1 = p ·δmax

1 with p = 0.25, 0.5, 0.75 in the simulation study
(Sect. 2.4.2) leading to approximate correlations of 0.25, 0.5, 0.75 for all simulations with
equal marginals. We leave it as an open problem to show when approximation (33) holds to
what accuracy.

3 Generalization to the correlated Dirichlet distribution

The bivariate beta distribution can be generalized to a correlated Dirichlet distribution
[27] in order to model two positively correlated random vectors X = (X1, . . . , Xk) and
Y = (Y1, . . . , Yk)with the twomarginal vectors beingDirichlet-distributed. A k-dimensional
correlated Dirichlet distribution can be constructed from 3k gamma-distributed random
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variables A1, . . . , Ak , B1, . . . , Bk , D1, . . . , Dk with 3k parameters α1, . . . , αk , β1, . . . βk ,
δ1, . . . δk distributed according to

Ai ∼ Gamma(αi , 1) i = 1, . . . , k

Bi ∼ Gamma(βi , 1) i = 1, . . . , k

Di ∼ Gamma(δi , 1) i = 1, . . . , k.

(34)

These random variables are used to construct the correlated Dirichlet-distributed random
variables X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) with

Xi = Ai + Di
∑k

i=1 Ai + ∑k
i=1 Di

and Yi = Bi + Di
∑k

i=1 Bi + ∑k
i=1 Di

. (35)

The two resulting marginal distributions are Dirichlet(X;α1 + δ1, . . . , αk + δk) and
Dirichlet(Y ;β1 + δ1, . . . , βk + δk).

Analogous to the example for the bivariate beta distribution in Sect. 2.4.3, this corre-
lated Dirichlet distribution can be used for modeling non-binary probabilistic predictions of
experts, sensors, or classifiers. This is particularly useful for Bayesian approaches to clas-
sifier or expert fusion, which are the reason why we started working on this distribution
in the first place. For example, in a companion paper we apply it to classifier fusion, but
instead of using moment matching—as developed here—we use rather inefficient Markov-
chain methods to sample from the posterior distribution over the parameters [27]. Being able
to explicitly model the correlation between probabilistic classifiers or probability estimates
given by human experts with the correlatedDirichlet distribution allowsBayes optimal fusion
of classifiers or experts, avoids overconfidence of the ensemble and thereby improves its per-
formance. Applications of classifier fusion are widespread. Popular examples are intrusion
detection, fake news detection, detection of diseases in medicine, or recognition of human
states such as emotions [31]. Another application of the correlated Dirichlet distribution
is the generation of stochastic matrices with individual rows or columns being Dirichlet-
distributed and correlated, which can be beneficial for Markov processes, in optimal control,
or reinforcement learning.

The derivations of the productmoments and the exact covariance of the correlatedDirichlet
distribution are analogous to the derivations for the bivariate beta distribution shown in this
work. Thus, the parameters of the correlated Dirichlet distribution can also be estimated
using the proposed moment matching approach, extended to the higher dimensionality of the
Dirichlet distribution.
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