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Abstract
Networked populations consist of inhomogeneous individuals connected via relational ties.
The individuals typically vary in multivariate attributes. In some cases primary interest
focuses on individual attributes and in others the understanding of the social structure of
the ties. In many circumstances both are of interest, as is their relationship. In this paper
we consider this last, most general, case. We model the joint distribution of social ties and
individual attributes when the population is only partially observed. Of central interest is
when the population is surveyed using a network sampling design. A second situation is
when data about a subset of the ties and/or the individual attributes is unintentionally miss-
ing. Exponential-family random network models (ERNM)s are capable of specifying a joint
statistical representation of both the ties of a network and individual attributes. This class of
models allow the nodal attributes to be modeled as stochastic processes, expanding the range
and realism of exponential-family approaches to network modeling. In this paper we develop
a theory of inference for ERNMs when only part of the network is observed, as well as
specific methodology for partially observed networks, including non-ignorable mechanisms
for network-based sampling designs. In particular, we consider data collected via contact
tracing, of considerable importance to infectious disease epidemiology and public health.

Keywords Survey methods · Social networks · Missing data · Network sampling ·
Exponential families · Contact tracing · Epidemic modeling

1 Introduction

It is not uncommon for researchers to collect data on a subset of a single network rather
than observing the full network. This partially observed case has been studied within the
framework of exponential-family random graph models (ERGM) by [11, 13]. However their
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formulation suffers from the limitation that any nodal attributes included in the model must
be fully observed, and only ties may be partially observed. This assumption is not met in
most sampling designs, where only some of the nodes are surveyed by the researcher, and
reduces the practical usage of ERGMs in the survey sampling and missing data setting.

By includingnodal attributes as stochastic variates rather thanfixedquantities, exponential-
family random network models [3, ERNM] can provide a convenient basis for inference in
cases where the data is partially unobserved, either due to designed, or out-of-design (e.g.,
survey non-response) mechanisms.

While our framework is applicable to all partial observation mechanisms we consider two
common mechanisms for partial observations in more detail, specifically:

Missing data: If the population is comprised of a large number of units/nodes, or the number
of ties is large, it is relatively common to find that the resources to observe a full network
are not available. Often nodal or tie variables are unavailable for sampling or do not
provide complete responses to a survey instrument. In this case, only some of the tie
variables and nodal attributes are collected. We treat missing data as a form of sampling
in which the sampling mechanism is unknown and outside the control of the researcher,
or an out-of-design missing data mechanism. A good example of this is the National
Longitudinal Study ofAdolescent Health (AddHealth), a school-based, longitudinal study
of the health-related behaviors of adolescents and their outcomes in young adulthood. The
study design sampled 80 high schools and 52 middle schools from the U.S., representative
with respect to region of country, urbanicity, school size, school type, and ethnicity [16].
In 1994–95 an in-school questionnaire was administered to a nationally representative
sample of students in grades 7 through 12. In addition to demographic and contextual
information, each respondent was asked to nominate up to five boys and five girls within
the school whom they regarded as their best friends. Thus each student could nominate up
to ten students within the school [26]. The nominations and contextual information were
not available for some of the adolescents, either due to absence from school while the
survey was being conducted, or refusal to participate. Thus, both the tie and nodal variates
contained missing values.

Network sampling designs: Many studies in hard-to-reach populations use study designs that
trace the linkages of an underlying social network. The designs lead to partial observation
of the attributes and ties of the networked population. Note that the tie variables are often
of secondary interest, although they are what makes it possible to conduct the survey. Such
sampling designs have been exploited to estimate population disease rates and population
sizes [8–10, 14, 15].

In this paper we develop approaches for each of these scenarios in the context of ERNMs.
Sections2 through 4 introduce ERNMand extend the theory to incorporate partially observed
populations. Section5 develops methodology for each of the scenarios. Section 5.1 looks at
the effect of random non-response on a real data-set. Section 5.2 considers sampling designs
where the seeds are not chosen at random from the population, but are some form of conve-
nience sample chosen by an at least partially unknownprocess. Section 5.3 develops estimates
based on contact tracing designs, which is of vital importance to the public health community.
To our knowledge, themethods outlined in this paper represent the first statistically justifiable
approach to inference from contract tracing data.
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2 Exponential-family random networkmodels

Exponential-family random network models [3] are a generalization of the exponential-
family random graph model [7, 18], where both tie variables and nodal attributes are treated
as random variates. Formally, in a population of n units, let Yi, j indicate that unit i has a
tie to unit j . Let Y be an n × n matrix [Yi, j ] and X be a an n × K matrix [Xik] of unit
attributes. We define a network Z as the union of the nodal attributes and the graph structure
(i.e. Z = {X , Y }). An exponential-family model of Z is expressed as

p(Z = z | η) = 1

c(η,Z)
eη·g(z) t ∈ Z, (1)

where η ∈ Rq is a vector of parameters, g is a q−vector valued function defining a set of
sufficient statistics, Z is the sample space of networks and c(η,Z) = ∫

z∈Z eη·g(z) is the
normalizing constant. This model is developed in [3]. We focus on the case where the rela-
tional ties are binary and the sample space of each covariate is countable. The case of valued
ERGM and ERNM is a straight-forward extension, and we focus on the binary/countable
case to explicate the partial observational aspects and their impacts on inference.

2.1 The simple homophily model

Though any set of network statistics can be represented by g in Eq. (1) [3], the analysis in this
paper will focus on a particularly parsimonious, but powerful, network model. Suppose that
X = (X1, . . . , Xn) is a univariate categorical variable with m levels, labeled 0, . . . ,m − 1.
If Xi = l we say that unit i is in group l. A joint model for X and Y is

p(Z = (y, x) | η) = 1

c(η,Z)
eη0

∑
i, j yi, j+η2h(y,x)+∑m−2

l=0 η j+3
∑n

i=1 I (xi=l)
(y, x) ∈ Z.

The first term of this model is the number of ties, and controls the density of the graph.
The last term represents the number of nodes in each category of x , except for the last level,
which is dropped tomaintain identifiability of themodel. The second term h is the regularized
sample homophily of x , as introduced by [3], and is defined as

h(y, x) =
m−1∑

k=0

∑

i :xi=k

√
di,k(y, x) − E⊥⊥

(√
di,k(y, x)

)

,

where di,k(y, x) is the number of ties between node i and nodes in group k, and E⊥⊥( f (Y , X))

is the expectation of the statistic f (Y , X), conditional upon Y = y and the category counts
(that is, the number of nodes in each category of x , n(x) = {nk(x)}Kk=1), assuming that X and
Y are independent. Thus, each term in the sum is the square root of the number of neighbors
of a node which share the same category, minus what would be expected by chance. Using
this form of homophily avoids the degeneracy problems found in other formulations. For a
more thorough justification, see [3].

While the examples in this paper focus on applications of the simple homophilymodel, the
framework presented here applies to any arbitrary set of network statistics g. For example, in
many applications the nodal attributes aremultivariate, and their relationships are of interest to
the researcher. Fellows andHandcock [3] developed a network statistic that can be interpreted
as a conditional logistic regression term which, if included, can model the relationship of
several categorical variates.
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3 Likelihood-based inference from partially observed networks

In this section we develop likelihood-based inference for network models based on partial
observation of the networks. The approach allows non-ignorable sampling mechanisms for
the networks, including some common network-based sampling designs.

References [11, 13] developed a theory of partially observed networks for ERGMs, and the
specification for ERNMs proceeds similarly, though our formulation supports a more general
class of partial observation processes known as amenable [13] ormissing not at random [22,
MNAR; see]. Let Zobs and Zmiss represent, respectively, the observed and unobserved part
of the complete network Z . We write Z = (Zobs, Zmiss), with realizations z = (zobs, zmiss).
Let W be a random variable representing the sampling process with realization w. The
probabilistic distribution ofW is the sampling mechanism, and must fully specify the sample
selection process, including the partition of Z into Zobs and Zmiss . Typically,W will consist
of an n by n matrix, [Wi j ], indicating whether the (i, j)th dyad was sampled, and an n by K
matrix indicating which nodal attributes are missing, not sampled or otherwise not observed.
However, W may contain additional information about the partial observation process, such
as the order of observation.

We write the full data likelihood as

p(Z = z,W = w | η, θ) = p(W = w | Z = z, θ)
1

c(η,Z)
eη·g(z),

and we wish to draw inferences about η from the observed data likelihood, defined as

p(Zobs = zobs,W = w | η, θ)

=
∑

zmiss

p(W = w | z = (zobs, zmiss), θ)
1

c(η,Z)
eη·g((zobs ,zmiss )). (2)

This probability model jointly represents the distribution of the network Z , and the sam-
pling process W . The functional form of p(W = w | Z = z, θ) is dependent on the form of
partial observation, and will differ depending on how Zobs was obtained. Section5.2 illus-
trates a design of particular interest known as biased seed link tracing. When the sampling
probabilities only depend on the observed data, the sampling design is amenable to the model
[13], and is ignorable in the sense of [22]. In this case, the observed data likelihood simplifies
to

p(Zobs = zobs,W = w | η, θ)

=
∑

zmiss

p(W = w | Zobs = zobs, θ)
1

c(η,Z)
eη·g((zobs ,zmiss ))

= p(W = w | Zobs = zobs, θ)
∑

zmiss

1

c(η,Z)
eη·g((zobs ,zmiss ))

∝
∑

zmiss

1

c(η,Z)
eη·g((zobs ,zmiss )). (3)

Thus, when the sampling process is ignorable, inferences on η are not affected by p(W =
w | Zobs = zobs, θ), and so knowledge of the sampling process is not essential for the process
of likelihood-based inference.
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Having defined the full and observed data likelihood, it is also useful to define the com-
plementary missing data likelihood:

p(Zmiss = zmiss | W = w, Zobs = zobs, η, θ) (4)

= p(W = w | Z = (zobs, zmiss), θ)eη·g((zobs ,zmiss ))

c(zobs, w, η, θ)

where

c(zobs, w, η, θ) =
∑

zmiss

p(W = w | Z = (zobs, zmiss), θ)eη·g((zobs ,zmiss )).

The (observed data) likelihood can then be rewritten as the ratio of two normalizing
constants

p(Zobs = zobs,W = w | η, θ)

= 1

c(η,Z)

∑

zmiss

p(W = w | Z = (zobs, zmiss), θ)eη·g((zobs ,zmiss ))

= c(zobs, w, η, θ)

c(η,Z)
,

and using this, we may write the observed data log-likelihood ratio of (η, θ) versus (η0, θ0)

as

�(η, θ) − �(η0, θ0) = log

(
c(zobs , w, η, θ)

c(zobs , w, η0, θ0)

)

− log

(
c(η,Z)

c(η0,Z)

)

= log

(∑

zmiss

p(W = w | Z = z, θ)

p(W = w | Z = z, θ0)
e(η−η0)·g(z) p(W = w | Z = z, θ0)eη0·g(z)

c(zobs , w, η0, θ0)

)

− log

(∑

zmiss

e(η−η0)·g(z) e
η0·g(z)

c(η,Z)

)

= log

(

Eη0,θ0 (
p(W = w | Z , θ)

p(W = w | Z , θ0)
e(η−η0)·g(Z)) | W = w, Zobs = zobs

)

− log

(

Eη0 (e
(η−η0)·g(Z))

)

= log

(

Eη0,θ0 (e
(η−η0)·g(Z) | Zobs = zobs)

)

− log

(

Eη0 (e
(η−η0)·g(Z))

)

+ log

(
Eη,θ (p(W = w | Z , θ ) | Zobs = zobs)

Eη0,θ0 (p(W = w | Z , θ0) | Zobs = zobs)

)

. (5)

Both Eqs. (4) and (5) motivate algorithms to draw inferences about η and θ . Section4
describes the algorithm motivated by Eq. (4), and Appendix A.1 outlines an algorithm using
Eq. (5).

4 Calculating theMLE withMCMC

For most models, Eq. (4) is not analytically solvable as the normalizing constant is com-
putationally intractable. However we may approximate it by Markov Chain Monte Carlo
(MCMC). Let z(k) and z(k)m where k ∈ (1, . . . , M) be samples from the full data likeli-
hood and missing data likelihood, respectively, with parameters η0, θ0. Then Eq. (4) may be
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approximated by

�(η, θ) − �(η0, θ0)

≈ log

(
1

M

M∑

k

p(w | z(k)m , θ)

p(w | z(k)m , θ0)
e(η−η0)·g(z(k)m )

)

− log

(
1

M

M∑

k

e(η−η0)·g(z(k))
)

(6)

For fixed M , as η, θ move away from η0, θ0 the variance of this approximation increases
(Note that it is essentially a Hájek estimator [24]). Because we will be optimizing Eq. (4), it
is useful to have both the first and second derivatives of the log-likelihood, which are

[
δ�

δη

]

i
= Eη,θ (gi (t) | Zobs = zobs,W = w) − Eη,θ (gi (Z))

[
δ2�

δηiδη j

]

i j
= −cov(gi (Z), g j (Z))

+cov(gi (Z), g j (Z) | Zobs = zobs,W = w) i, j ∈ {1, . . . , q}.
The expectations and covariances in these derivatives can be approximated using the condi-
tional and unconditional MCMC samples and thus we can then use the following algorithm
to approximate the maximum likelihood estimator (MLE).

1. Let l = 0 and choose initial parameter values η(0), θ0.
2. Use MCMC to generate Mmiss samples, z(k)miss from p(Zmiss = zmiss | ηl , Zobs =

zobs,W = w).
3. Use MCMC to generate Mfull samples z(k) from p(Z = z | ηl).
4. Using the samples fromSteps 2 and 3 inEq. (6), findηl+1, θ l+1 maximizing the likelihood

ratio, subject to the convergence condition
∥
∥ηl+1 − ηl

∥
∥ < ε and

∥
∥θ l+1 − θ l

∥
∥ < ε.

5. If the likelihood has not converged, set l = l + 1 and go to Step 2.
6. Let the MLE estimate be η̂ = ηl+1 and θ̂ = θ l+1

Asymptotic standard errors for η̂ may be obtained using an MCMC approximation to the
Fisher informationmatrix (i.e. the second derivative of the log-likelihood).While asymptotics
of the Fisher information matrix are not assured with respect to ERNM (or ERGM) models,
[3] show strong empirical agreement between the Fisher information-based standard errors
and parametric bootstrap simulations. Standard errors for the mean value parameters μ̂ =
E(g(Z) | η = η̂) can be approximated by MCMC sampling (as in Step 3).

5 Specific forms of partial observation

In this section we consider the three common forms of partial observation considered in the
introduction, each corresponding to a different mechanism of partial observation or concep-
tualization of that mechanism.

5.1 Missing data: unobserved relational information

It is common when surveying networked populations that there are insufficient resources to
conduct a census of the population and their relations. For efficiency reasons, a sampling
based survey is undertaken, or the full network is partially observed due to non-response.
In this sub-section, we give an illustration of the effect of non-response where the dyad
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Fig. 1 Relationships among monks within a monastery and their affiliations as identified by Sampson: Young
(T)urks, (L)oyal Opposition, and (O)utcasts

information is missing completely at random. We consider the relations of “liking” among
18 monks in a monastery [23]. The network analyzed has a directed tie between two monks
if the sender monk ranked the receiver monk in the top three monks for positive affection
in any of the three interviews given over a twelve month period [17]. The sociogram of this
data-set is shown in Fig. 1. One nodal attribute of interest is an indicator of attendance at the
minor “Cloisterville" seminary before coming to the monastery.

We fit a simple homophily model on Cloisterville status using the full data. In this model
the three statistics are the count of the number of ties, the homophily statistic h(y, x) and
the count of the number of monks who attended the minor “Cloisterville" seminary before
coming to the monastery. The corresponding natural parameters are η1, η2 and η3, respec-
tively. The corresponding mean-value parameters are μ1, μ2 and μ3, respectively. We then
ran simulations on the effect of missingness by selecting tie variables, and Cloisterville status
variates, completely at random and setting them to missing. Figure2 shows one simulated
missingness pattern with 15% missing. We ran 100 simulations at each missingness percent-
age. We note that this amounts to 100 simulations times 60 conditions for a total of 6000
MLE fits being performed. Each MLE fit required a large number of MCMC chain updates
to be performed in order to ensure converge. Means and standard deviations of the ERNMs
fit to these simulated missingness patterns are displayed in Fig. 3.

We see that the standard deviations of the estimates increase as the amount of missingness
increases. At the higher missingness levels a small amount of bias is apparent relative to
the full data MLE, but not more than one standard deviation. Note that the estimates of
the mean value parameters are conditionally unbiased given the observed data, but can be
unconditionally biased. One possible explanation for this bias is that there were only six
monkswhoattendedCloisterville, and so at 50%missingness, a significant number of samples
will include no (or perhaps a single) Cloisterville monks. In this case there is no direct
information on homogeneity.

5.2 Network sampling: biased seed link-tracing

Network sampling is the general idea of using the social ties within a networked population
to help guide the selection of samples from that population [25]. Handcock and Gile [13]
explored the idea of sampling networks by tracing the ties. As a general concept, link tracing
involves selecting one or more seed nodes, and then observing the ties connected to those
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28 I. E. Fellows, M. S. Handcock

Fig. 2 A variant of Sampson’s monk’s with 15% missingness. The Cloisterville status variable is marked on
the right hand side. The cells with a present tie are indicated in red and those with absent ties are in pale yellow.
The NA represent “not available" values (that is, missing values) (color figure online)

Fig. 3 Means and standard deviations of model estimates of the natural and mean-value parameters. The
means are represented by the black points. The magnitudes of the standard deviations are represented by the
black lines. Red lines indicate fully observed MLE (color figure online)
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seeds. One or more of these ties are then followed to the neighboring node, whose ties are
observed, and the process is continued. Each iteration of this process is known as a wave.

Provided that the seed nodes are chosen at random, and themethod bywhich ties are chosen
to be followed depends only on the observed data, this missingness process is ignorable. To
be explicit, consider a link tracing process with k waves. Let wi be the ordered set of nodes
and ties sampled in the i th wave in the order in which they were sampled,w = {w0, . . . , wk},
and w−i = {w0, . . . , wi−1, wi+1, . . . , wk}. If the seeds are chosen at random, and the ties
followed by the sampling process are also chosen at random, then p(W = w | Z = z, θ) =
p(W = w | Zobs = zobs, θ), implying that the missingness is ignorable.

In many cases, however, the seeds are not chosen at random from the population, but
are some form of convenience sample chosen by an at least partially unknown process. For
example, in a population where some people have an infection and others do not, we may
start with a sample of sinf seeds picked at random from among the infected individuals, and
s−inf seeds picked from the non-infected individuals. These seeds are then used as a starting
point for standard link tracing. We may then write the sampling probability as

p(w | t, θ) = p(w0 | t, θ)p(w−0 | zobs, w0, θ)

= (ninf − sinf )!
ninf

(n−inf − s−inf )!
n−inf ! p(w−0 | zobs, w0, θ),

where ninf and n−inf are the number of infected and non-infected in the population, respec-
tively. Note that p(w−0 | zobs, w0, θ) does not depend on zmiss and may be factored out of
the likelihood in Eq. (2). Thus there is no need to calculate or model p(w−0 | zobs, w0, θ)

explicitly, as it makes no impact on the likelihood. Hence, in this case, we can compute the
likelihood without knowing the specific mechanism of seed selection.

5.3 Network sampling: positive contact tracing

As emerging epidemics develop, control measures (e.g., treatment, isolation and culling)
focus on those members of the population that are known to have the infection. Because
there are often many infected people who are unobserved, public health control can be
ineffective (e.g., HIV [20] and COVID-19 [6]). The alternative of applying control measures
to the entire population can be economically infeasible or ineffective (e.g., some instances of
safe sex education, early stage COVID-19) [19, 20]. Contact tracing is the hybrid approach
of treating both the known infected individuals and those who may have been infected by
them [19, 20]. In U.S. public health, health clinics are required by state law to notify those
at risk from infection due to their sexual relations with individuals tested, and found to be
infected, by the clinic. The process of locating, notifying and then testing partners that may
have been exposed to an infectious agent allows additional information about the partners
to be collected. While the primary purpose of contact tracing is disease control via partner
notification and partner services, it is also a form of data collection that is rarely utilized.
Such approaches are usedmost commonly for syphilis andHIV/AIDS, but also for other STIs
such as gonorrhea and chlamydia [12], as well as routinely for tuberculosis and infectious
disease outbreaks. Contact tracing has also been applied in many recent epidemics, including
COVID-19 [1, 4, 5, 27]. In positive contact tracing, we follow all ties from infected nodes,
but ties from uninfected nodes are not followed.

While the exact process varies with the public health situation, we consider the following
stylized biased seed link tracing process:
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Fig. 4 Degree distribution of the networked population

Fig. 5 Mixing statistics: Counts of the numbers of ties by the infection status of the incident nodes for the
networked population

1. Select s−inf seed subjects at random from among the non-infected population and observe
them.

2. Select sinf seeds subjects at random from among the infected population and observe
them.

3. Choose the next infected seed at random from among the infected seeds.
4. Observe all ties from the selected subject, and the infection status of these subjects.
5. For all infected neighbors of the selected subject, go to Step 4.
6. If all the seeds have not been chain sampled as part of Step 3, go to Step 3

We simulated a networked population of n = 1000 people from the simple homophily
model of Sect. 2.1 with natural parameters of η = (−5.8, .7,−1.95). The number of infected
nodes was fixed at 150. The generated network had a mean degree of 3.1, and its degree
distribution is displayed in Fig. 4. Figure5 displays the number of ties categorized by the
infection status of their incident nodes. For example, there were 296 infected to non-infected
ties. This indicates moderate homophily on tie status (via a permutation test, not shown here).

Starting with sinf = 40 infected seeds, we simulated 100 positive link tracing samples for
each of s−inf = (0, 45, 90, 135, 180, 225). Figure6 displays a histogram of the sizes of the
samples when there are no non-infected seeds (i.e., s−inf = 0).

To provide a comparison for our method we considered two estimators that could be
utilized. Neither of them uses a model for the networked population but is motivated by
approximations to the sampling design. The first treats the sample as a simple random sample:

Naive = n
ninf

ninf + n−inf
,
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Fig. 6 Sizes of the contact-traced
samples based on 40 seed
subjects (sinf = 40, s−inf = 0)

Fig. 7 Estimates via contact
tracing with sinf = 40 infected
seeds and varying numbers of
non-infected seeds

The second adjusts for the sampling of the seeds:

Naive (seed adj.) = (n − sinf − s−inf )
ninf − sinf

ninf − sinf + n−inf − s−inf
+ sinf .

Our approach is to fit an ERNM to the contact tracing data. In this situation the contact
tracing sampling design is clearly informative. For comparison, we compute two estimates
of the model. The first takes into account the informativeness of the contact tracing design
(MNAR) and the other assumes it is ignorable (MAR). These are based on the likelihoods
(2) and (5), respectively, and the algorithm in Sect. 4.

Figure 7 shows the results for each of the estimators over the samples. The median of the
MNAR estimator is centered around the true value of 150 in all sampling scenarios, while
the MAR estimator performs poorly with all infected seeds (s−inf = 0) and increasingly well
as the number of non-infected seeds increases to s−inf = 225. This is somewhat expected as
the proportion of infected in the seeds approximately matches that of the population when
s−inf = 225. The two naive estimators are significantly biased across all samples. This is
especially true for the sample mean which is biased both by the seed selection and by the
link-tracing design. The adjusted sample mean corrects somewhat for the seed bias but does
not represent the link-tracing.

This application illustrates the advantage of themodel-based approach over the ad hoc esti-
mators. By representing the structure of the networked population, themodel-based approach
can leverage the information in the data more efficiently.
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6 Discussion

In this paper we have given a concise and systematic statistical framework for dealing with
partially observed network data when some knowledge is available on the sampling design.
The framework includes, but is not restricted to, ignorable sampling designs. We have also
shown that likelihood-based inference is practical under partial observation for ERNMs, and
that the likelihood framework naturally accommodates standard network sampling designs.

We developed and implemented algorithms to compute Monte Carlo approximations to
the likelihood, and showed how these can be used in practice. Three important special cases
of these designs were demonstrated in Sect. 5. In Sect. 5.1 we consider a missingness process
which randomly selected tie variables and nodal attributes to be missing. In Sect. 5.2 we
consider sampling designs where the seeds are not chosen at random from the population,
but are some form of convenience sample chosen by an, at least partially, unknown process.
We show that there are cases where we can compute the observed data likelihood without
knowing the specific mechanism of seed selection. For example, it shows that this is true
when the mechanism for selecting seeds from the uninfected population is unknown, as
long as the seeds from the infected population are chosen by a known design. In Sect. 5.3
we consider non-ignorable sampling in the context of contact tracing data, a case of vital
importance to public health. It considers a sampling design where all ties from infected
nodes are followed/sampled, but ties from uninfected nodes are not followed/sampled. At
present, this is the first statistically defensible approach to inference in this form of data.
The example presented here shows that the MLE estimation task is robust, in that it can be
applied successfully tomoderately large networks (1000 nodes), with significant missingness
(greater than 70% of nodes unobserved).

Themethods developed in this paper have been implemented in an open-source R package
[2, 21]. It was used to do the simulation studies and analyze the case-studies, and is available
for general use.
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Appendix: Algorithmic and computational details

A.1 Alternate MLE formulation

While the algorithm outlined in Sect. 4 works well, there are some situations where an alter-
nate formulation using Eq. (5) may be useful. First let us consider the case where θ = θ0,
then the likelihood is

�(η) − �(η0) = log

(

Eη0(e
(η−η0)·g(Z) | zobs)

)

− log

(

Eη0(e
(η−η0)·g(Z))

)

(1)

+ log

(
Eη(p(W = w | Z , θ) | Zobs = zobs)

Eη0(p(W = w | Z , θ) | Zobs = zobs)

)

The first expectation, and the expectation in the denominator of the third term, can be
calculated using an MCMC sample from p(z | zobs, η0). The second can be approximated
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with anMCMC sample from p(z | η0). The numerator of the third term can be approximated
by importance sampling.

Eη(p(W = w | Z , θ) | Zobs = zobs) ≈ 1

M

M∑

k=1

p(w | z(k), θ)ω(k)

where z(k) ∼ p(z | zobs, η0) and

ω(k) = e(η−η0)·g(z(k))
∑M

j=1 e
(η−η0)·g(z( j))

If the sampling process is ignorable, then the third term drops out of the likelihood ratio.
The first and second derivatives of the likelihood are useful in the maximization process. For
notational convenience, let �i (t) = gi (t) − E(gi (Z)).
[

δ�

δη

]

i
= δ

δηi
log

(∑

zmiss

p(W = w | Z = z)p(Zmiss = zmiss | η, Zobs = zobs)p(Zobs = zobs | η)

)

=
∑

zmiss
p(W = w | Z = z)�i (t)p(Zmiss = zmiss | η, Zobs = zobs)p(Zobs = zobs | η)

∑
zmiss

p(W = w | Z = z)p(Zmiss = zmiss | η, Zobs = zobs)p(Zobs = zobs | η)

= E(p(W = w | Z)�i (Z) | Zobs = zobs)

E(p(W = w | Z) | Zobs = zobs)

[
δ2�

δηi δη j

]

i j

= δ

δη j

∑
zmiss

p(W = w | Z = z)�i (t)p(Zmiss = zmiss | η, Zobs = zobs)p(Zobs = zobs | η)
∑

zmiss
p(W = w | Z = z)p(Zmiss = zmiss | η, Zobs = zobs)p(Zobs = zobs | η)

= −cov(gi (Z), h j (Z)) + E(p(W = w | Z)�i (Z)� j (Z) | Zobs = zobs)

E(p(W = w | Z) | Zobs = zobs)

− E(p(W = w | Z)�i (Z) | Zobs = zobs)E(p(W = w | Z)� j (Z) | Zobs = zobs)

E(p(W = w | Z) | Zobs = zobs)2
(2)

If the missingness process is ignorable, these equations simplify to
[

δ�

δη

]

i
= E(�i (Z) | Zobs = zobs)

[
δ2�

δηiδη j

]

i j
= −cov(gi (Z), g j (Z)) + cov(gi (Z), g j (Z) | Zobs = zobs)

If we fix η, then the observed data likelihood of θ

L(θ | zobs, w, η) ∝ p(zobs | η)E(p(W = w | Z , θ) | Zobs = zobs)

= E(p(W = w | Z , θ) | Zobs = zobs, η)

can be maximized to find the MLE of θ .
This motivates the following algorithm for maximizing the observed data likelihood.

1. Let l = 0 and choose initial parameter values η(0), θ0.
2. Use MCMC to generate Mmiss samples, z(k)miss , from p(zmiss | ηl , zobs).
3. Use MCMC to generate Mfull samples, z(k), from p(z | ηl).
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4. Set θ l+1 = argmaxθ (E(p(w | Z , θ) | Zobs = zobs, η)), with samples from Step 2 used
to approximate the expectation.

5. Using the samples from Steps 2 and 3 to approximate the relevant expectations, find ηl+1

maximizing Eq. (1) subject to the convergence condition
∥
∥ηl+1 − ηl

∥
∥ < ε.

6. If the likelihood has not converged, set l = l + 1 and go to Step 2.
7. Set l = l + 1, and go to Step 2.

The disadvantage of this method is that if the networks generated by the MNAR process
are very different from those generated assuming MAR, the estimates of the last expectation
in Eq. (1) can have high variance. The benefit of using this method is that the sampling
probability, p(W = w | Z = z, θ), only needs to be calculated for networks included
in the sample, and not at every MCMC step as is required by the algorithm in Sect. 4, so
if the sampling probability is computationally expensive to calculate, this method can be
significantly faster than the one outlined in Sect. 4

A.2 Estimating network statistics

We can use MCMC samples from p(zmiss | zobs, η) to estimate the (complete) network
statistics of the sampled network. Suppose that we have used MCMC to draw M samples
z(k)miss from the distribution p(zmiss | zobs, η), and z(k) = (zobs, z

(k)
miss). Then we can estimate

the expectation of a set of network statistics g as

E(g(Z) | zobs, η) ≈ 1

M

M∑

k=1

g(z(k)).

However, this equation ignores the possible bias introduced by our sampling process w. The
distribution that we should be sampling from is the full conditional distribution of zmiss ,

p(Zmiss = zmiss | Zob = zobs,W = w, η)

∝ p(Zmiss = zmiss | Zobs = zobs, η)p(W = w | Z = z, θ).

We then use importance sampling to estimate the relevant quantity

E(g(Z) | zobs, w, η, θ) ≈
∑M

k=1 g(z
(k))p(W = w | Z = z(k), θ)

∑M
k=1 p(W = w | Z = z(k), θ)

.
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