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Abstract
Gaussian processes occupy one of the leading places in modern statistics and probability
theory due to their importance and a wealth of strong results. The common use of Gaussian
processes is in connectionwith problems related to estimation, detection, andmany statistical
or machine learning models. In this paper, we propose a precise definition of multivariate
Gaussian processes based on Gaussian measures on vector-valued function spaces, and pro-
vide an existence proof. In addition, several fundamental properties of multivariate Gaussian
processes, such as stationarity and independence, are introduced. We further derive two spe-
cial cases of multivariate Gaussian processes, including multivariate Gaussian white noise
and multivariate Brownian motion, and present a brief introduction to multivariate Gaus-
sian process regression as a useful statistical learning method for multi-output prediction
problems.

Keywords Gaussian measure · Gaussian process · Multivariate Gaussian process ·
Multivariate Gaussian distribution · Matrix-variate Gaussian distribution · Brownian motion

1 Introduction

In probability theory and statistics, Gaussian processes are used in connection with problems
such as estimation, detection, stochastic analysis, evenmodern statistical ormachine learning.
These problems are often effectively formulated in terms ofGaussianmeasures on appropriate
real-valued function space.As an important extension, vector-valuedGaussian processes have
not been adequately explained in the literature so that the real-valued function spacemay limit
applications of classical Gaussian processes since the correlation between multiple random
values is difficult to be considered inmanyproblems.Therefore, this paper is to consolidate the
fundamentals of vector-valued stochastic processes, especially extending classical Gaussian
process to multivariate Gaussian process by introducing Gaussian measures on vector-valued
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function spaces. Themain contribution of this paper is to provide a concise proof and a proper
explanation of themultivariate Gaussian process followed by examples and applications such
as the multivariate Brownian motion and multivariate Gaussian process regression.

The paper is organised as follows. Section 2 introduces some preliminaries, including
classical Gaussian measures, matrix-variate Gaussian distribution, stationary process, and
classical Gaussian process. Section 3 presents some theoretical definitions of multivariate
Gaussian process with the proof of existence. Two examples and one application of multi-
variate Gaussian processes which show their usefulness is presented in Sect. 4 and Sect. 5.
Conclusions and a discussion are given in Sect. 6.

2 Preliminary

2.1 Gaussianmeasure

Definition 1 (Gaussian measure on R [1]) Let B(R) denote the completion of the Borel σ -
algebra on R. Let λ : B(R) �→ [0,+∞] denote the usual Lebesgue measure. Then the Borel
probability measure γ : B(R) �→ [0, 1] is Gaussian with mean μ ∈ R and variance σ 2 > 0,

γ (A) =
∫
A

1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)
dλ(x),

for any measurable set A ∈ B(R).

A random variable X on a probability space (�,B,P) is Gaussian with mean μ and
variance σ 2 if its distribution measure is Gaussian, i.e.

P(X ∈ A) = γ (A).

In terms of random variable, we have a definition of Gaussian random variable.

Definition 2 An n-dimensional random vector X = (X1, · · · , Xn) is Gaussian if and only if
〈a, X〉 := aTX = ∑

ai Xi is a Gaussian random variable for all a = (a1, · · · , an) ∈ R
n .

In terms of measure, we can naturally have the definition of Gaussian measure on Rn .

Definition 3 (Gaussian measure onRn [1]) Let γ be a Borel probability measure onRn . For
each a ∈ R

n , denote a random variable Y (x), x ∈ R
n as a mapping x �→ 〈a, x〉 ∈ R on the

probability space (Rn,B(Rn), γ ). The Borel probability measure γ is a Gaussian measure
on R

n if and only if the random variable Y is Gaussian for each a.

2.2 Matrix-variate Gaussian distribution

In statistics, the matrix-variate Gaussian distribution is a probability distribution that is a
generalization of the multivariate normal distribution to matrix-valued random variables.

Definition 4 (Matrix-variate Gaussian distribution [2]) The random matrix is said to be
Gaussian:

X ∼ MN n,d(M,U , V ),
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if and only if

vec(X) ∼ Nnd(vec(M), V ⊗U ),

where ⊗ denotes the Kronecker products and vec(X) denotes the vectorisation of X .

2.3 Stationary process

Definition 5 (Stationary process [3]) Let X = {Xn(ω)} be a stochastic process on a proba-
bility space (�,B,P). If for any integers n and h, two random vectors

(Xn, Xn+1, . . . , Xn+k−1) and(Xn+h, Xn+h+1, . . . , Xn+h+k−1)

have the same probability distribution, then X is said to be a stationary process.

2.4 Gaussian process

LetRT be function space of allR-valued functions on T 1. Consider the product topology on
RT , which is defined as the smallest topology that makes the projection maps �t1,...,tn ( f ) =
[ f (t1) , . . . , f (tn)] from RT to Rn measurable, and define F as the Borel σ -algebra of this
topology.

Definition 6 (Gaussianmeasure on (RT ,F)) Ameasure γ on (RT ,F) is called as aGaussian
measure if for any n ≥ 1 and t1, · · · , tn ∈ T , the push-forward measure γ ◦ �−1

t1,··· ,tn on R
n

is a Gaussian measure.

Briefly speaking, (multivariate) Gaussian distributions are Gaussian measures onRn , and
Gaussian processes areGaussianmeasures on the function space (RT ,F) due to the following
theorem.

Theorem 1 (Relationship between Gaussian process and Gaussian measure) If X = (Xt )t∈T
is a Gaussian process, then the push-forward measure γ = P ◦ X−1 with X : � �→ RT

is Gaussian on RT , namely, γ is a Gaussian measure on (RT ,F). Conversely, if γ is a
Gaussian measure on (RT ,F), then on the probability space (RT ,F, γ ), the co-ordinate
random variable � = (�t )t∈T is from a Gaussian process.

The proof of the relationship between Gaussian process and Gaussian measure can be found
in [4]. Motivated by the relationship between Gaussian measures and Gaussian processes,
we properly define multivariate Gaussian processes by extending Gaussian measures on
real-valued function space to vector-valued function space.

3 Multivariate Gaussian process

Gaussian processes (GPs) have been proven to be an effective statistical learning method for
nonlinear problems due to many desirable properties, such as a clear structure with Bayesian
interpretation, a simple integrated approach of obtaining and expressing uncertainty in pre-
dictions and the capability of capturing a wide variety of data feature by hyper-parameters

1 Usually, T is a time space, however it could be considered as any arbitrary space (both one-dimensional and
multi-dimensional, both discrete and continuous space) other than time.
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[5, 6]. With the development of Gaussian processes related to machine learning algorithms,
Gaussian process applications face a conspicuous limitation. The classical GP models can be
only used to deal with a single output or single response problem because the process itself
is defined on R, and as a result the correlation between multiple tasks or responses cannot
be taken into consideration [6, 7]. In order to overcome the drawback above, [8] proposed a
framework to perform multi-output prediction using multivariate Gaussian processes (MV-
GPs). Although [8] showed the usefulness of the proposedmethods via data-driven examples,
some theoretical issues of multivariate Gaussian processes, such as existence, independence
condition, and stationary condition, are still not clear.

3.1 Definitions

Following the classical theory ofGaussianmeasure,matrix-variateGaussian distribution, and
Gaussian process, we introduce Gaussian measure on matrix space and Gaussian measure
on R

d -valued function space, and finally define the multivariate Gaussian process.
According to Definition 3 (equivalence between Gaussian measure on R

n and random
variable on Rn) and Definition 4 (equivalence between random variable on Rnd and random
matrix on Rn×d ), we can have a definition of Gaussian measure on Rn×d .

Definition 7 (Gaussianmeasure onRn×d ) Let γ be aBorel probabilitymeasure onRn×d . For
each a ∈ R

nd , denote a randomvariable Y (x), x ∈ R
n×d as amapping x �→ 〈a, vec(x)〉 ∈ R

on the probability space (Rn×d ,B(Rn×d), γ ). The Borel probability measure γ is a Gaussian
measure on Rn×d if and only if the random variable Y is Gaussian for each a.

Let (Rd)T be all Rd -valued functions on T and consider the smallest topology on R
d

that makes the projection mappings 	t1,...,tn ( f ) = [ f (t1) , . . . , f (tn)] from (Rd)T to Rn×d

measurable, anddefineG as theBorelσ -algebra of this topology.Thuswe canhave a definition
of Gaussian measure on Rd -valued function space.

Definition 8 (Gaussian measure on ((Rd)T ,G)) A measure γ on ((Rd)T ,G) is called as a
Gaussianmeasure if for any n ≥ 1 and t1, · · · , tn ∈ T , the push-forwardmeasure γ ◦	−1

t1,··· ,tn
on R

n×d is a Gaussian measure.

Inspired by the relationship between Gaussian process and Gaussian measure in Theo-
rem 1, we can appropriately define multivariate Gaussian processes (MV-GPs).

Definition 9 (d-variate Gaussian process)Given a Gaussian measure on ((Rd)T ,G), d ≥ 1,
the co-ordinate random vector 	 = (	t )t∈T on the probability space ((Rd)T ,G, γ ) is said
to be from a d-variate Gaussian process 2.

Given the definition of MV-GPs, it is essential to show the existence before proceeding
with further research. Inspired by the fact that GPs can be specified by mean function and
covariance function (thus they can be denoted as GP(μ, k)), we present the proof of existence
of MV-GPs by applying Daniell-Kolmogorov theorem.

Theorem 2 (Existence of d-variate Gaussian process 3) For any index set T , any vector-
valued mean function u : T �→ R

1×d , any covariance function k : T × T �→ R and any

2 The co-ordinate random vector can be either column and row. For simplicity, we use row random vector
only in our discussions of the d-variate Gaussian process.
3 In order to clarify the shape of random vector, we use the notation, Rd for column vector only, and use the
notation, R1×d , for row vector only.
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positive semi-definite parameter matrix
 ∈ R
d×d , there exists a probability space (�,G,P)

and a d-variate Gaussian process f (t) ∈ R
1×d , t ∈ T on this space, whose mean function

is u, covariance function is k and parameter matrix is 
 , such that,

• E[ f (t)] = u(t), ∀t ∈ T ,
• E

[
( f (ts) − u(ts))( f (tl) − u(tl))T

] = tr(
)k(ts , tl), ∀ts, tl ∈ T ,
• E[(Ft1,··· ,tn − Mt1,··· ,tn )T(Ft1,··· ,tn − Mt1,··· ,tn )] = tr(Kt1,··· ,tn )
, ∀n ≥ 1, t1, · · · , tn ∈

T , where

Mt1,··· ,tn = [u(t1)
T, · · · , u(tn)

T]T
Ft1,··· ,tn = [ f (t1)T, · · · , f (tn)T]T

Kt1,··· ,tn =
⎡
⎢⎣
k(t1, t1) · · · k(t1, tn)

...
. . .

...

k(tn, t1) · · · k(tn, tn)

⎤
⎥⎦ .

We denote f ∼ MGPd(u, k,
).

Proof Given n > 1, for every t1, · · · , tn ∈ T , a Gaussian measure γt1,··· ,tn on Rn×d satisfies
the assumptions ofDaniell-Kolmogorov theorem because the projection of a matrix Gaussian

distribution on R
n×d with

[
u(t1)T, · · · , u(tn)T

]T ∈ R
n×d , n × n column covariance matrix

K = (ki, j ) ∈ R
n×n , and d × d row covariance matrix 
 ∈ R

d×d , to the first n − 1 co-

ordinates, is precisely the Gaussian distribution with
[
u(t1)T, · · · , u(tn−1)

T
]T ∈ R

(n−1)×d ,
(n−1)× (n−1) column covariance matrix K = (ki, j ) ∈ R

(n−1)×(n−1), and row covariance
matrix 
 ∈ R

d×d due to the conditional property of matrix Gaussian distribution [2, 8].
By the Daniell-Kolmogorov theorem, there exists a probability space (�,G,P) as well as a
d-variate Gaussian process X = (Xt )t∈T ∼ MGPd(u, k,
) defined on this space such that
any finite dimensional distribution of [Xt1 , · · · , Xtn ] is given by the measure γt1,··· ,tn . ��

3.2 Properties

Following the existence of d-variate GPs, we also achieve some properties as follow.

Proposition 3 (Stationary) A d-variate Gaussian processMGPd(u, k,
) is said to be sta-
tionary if

u(t) = u(t + h), k(ts + h, tl + h) = k(ts, kl),∀t, ts, tl , h ∈ T .

Proof Let f ∼ MGPd(u, k,
), then for ∀n ≥ 1, t1, · · · , tn ∈ T ,

[ f (t1)T, . . . , f (tn)T]T ∼ MN (ut1,··· ,tn , Kt1,··· ,tn ,
),

where MN (·, ·, ·) is matrix-variate Gaussian distribution,

ut1,··· ,tn =
⎡
⎢⎣
u(t1)

...

u(tn)

⎤
⎥⎦ , Kt1,··· ,tn =

⎡
⎢⎣
k(t1, t1) · · · k(t1, tn)

...
. . .

...

k(tn, t1) · · · k(tn, tn)

⎤
⎥⎦ .

Given any time increment h ∈ T , there also exists,

[ f (t1 + h)T, . . . , f (tn + h)T]T ∼ MN (ut1+h,··· ,tn+h, Kt1+h,··· ,tn+h,
),
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where

ut1+h,··· ,tn+h =
⎡
⎢⎣
u(t1 + h)

...

u(tn + h)

⎤
⎥⎦ ,

Kt1+h,··· ,tn+h =
⎡
⎢⎣
k(t1 + h, t1 + h) · · · k(t1 + h, tn + h)

...
. . .

...

k(tn + h, t1 + h) · · · k(tn + h, tn + h)

⎤
⎥⎦ .

Since u(t) = u(t + h), k(ts + h, tl + h) = k(ts, kl),∀t, ts, tl , h ∈ T ,

ut1+h,··· ,tn+h =
⎡
⎢⎣
u(t1 + h)

...

u(tn + h)

⎤
⎥⎦ =

⎡
⎢⎣
u(t1)

...

u(tn)

⎤
⎥⎦ = ut1,··· ,tn ,

Kt1+h,··· ,tn+h =
⎡
⎢⎣
k(t1 + h, t1 + h) · · · k(t1 + h, tn + h)

...
. . .

...

k(tn + h, t1 + h) · · · k(tn + h, tn + h)

⎤
⎥⎦ =

⎡
⎢⎣
k(t1, t1) · · · k(t1, tn)

...
. . .

...

k(tn, t1) · · · k(tn, tn)

⎤
⎥⎦

= Kt1,··· ,tn .

Therefore, [ f (t1+h)T, . . . , f (tn+h)T]T has the same probability distribution as [ f (t1)T, . . . ,
f (tn)T]T. Due to the arbitrary choice of n > 1 and t1, · · · , tn ∈ T , f ∼ MGPd(u, k,
) is
a stationary process according to Definition 5. ��
Proposition 4 (Independence) A d-collection of functions { f i }i=1,2,··· ,d identically indepen-
dently follows a Gaussian process GP(μ, k) if and only if

f = [ f 1, f 2, · · · , f d ] ∼ MGPd(u, k,
),

where u = [μ, · · · , μ] ∈ R
d and 
 is any diagonal positive semi-definite matrix.

Proof Necessity: if f ∼ MGPd(u, k,
), then for ∀n ≥ 1, t1, · · · , tn ∈ T ,

[ f (t1)T, . . . , f (tn)T]T ∼ MN (ut1,··· ,tn , Kt1,··· ,tn ,
),

where,

ut1,··· ,tn =
⎡
⎢⎣
u(t1)

...

u(tn)

⎤
⎥⎦ , Kt1,··· ,tn =

⎡
⎢⎣
k(t1, t1) · · · k(t1, tn)

...
. . .

...

k(tn, t1) · · · k(tn, tn)

⎤
⎥⎦ .

Rewrite the left, we obtain

[ξ1, ξ2, · · · , ξd ] ∼ MN (ut1,··· ,tn , Kt1,··· ,tn ,
),

where ξ i = [ fi (t1), fi (t2), · · · , fi (tn)]T. Since 
 is a diagonal matrix, for any i �= j

E[ξTi ξ j ] = tr(Kt1,··· ,tn )
i j = tr(Kt1,··· ,tn ) · 0 = 0.

Because ξ i and ξ j are any finite number of realisations of f i and f j respectively from the
same Gaussian process, f i and f j are uncorrelated. Due to joint finite realisations of f i and
f j follow Gaussian, non-correlation implies independence.
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Fig. 1 The 50 random realisation sample points generated from of 2-variate Gaussian process. Left: A cen-
tred 2-variate Gaussian process with Gaussian covariance function k(ts , tl ) = 1.5 exp(−(ts − tl )

2/2/0.52).
Right: A 2-variate Gaussian white noise as a 2-variate Gaussian process with covariance function k(ts , tl ) =
1.5δ(ts , tl )

Sufficiency: if { f i }i=1,2,··· ,d ∼ GP(0, k) are independent, for ∀n ≥ 1, t1, · · · , tn ∈ T
and for any i �= j ,

0 = E[ξTi ξ j ] = tr(Kt1,··· ,tn )
i j .

Since tr(Kt1,··· ,tn ) is non-zero, 
i j must be 0. Due the arbitrary choices of i, j , 
 must be
diagonal. That is to say, ξ i = [ fi (t1), · · · , fi (tn)]T can be written as a matrix Gaussian distri-
butionMN (ut1,··· ,tn , Kt1,··· ,tn ,
)where
 is a diagonal positive semi-definite matrix. Since
for ∀n ≥ 1, t1, · · · , tn ∈ T the above result holds, { f i }i=1,··· ,d are identically independent
Gaussian processes GP(μ, k). ��

4 Example: special cases

Instinctively, a special case is centred multivariate Gaussian process where vector-valued
mean function μ = 0. The 50 realisation samples generated from a centred multivariate
Gaussian process are demonstrated in Fig. 1: Left. Furthermore,we can derive themultivariate
Gaussian white noise and the multivariate Brownian motion.

4.1 Multivariate Gaussian white noise

Let f = [ f 1, · · · , f d ] ∼ MGPd(0, σ 21(ts, tl),
), where 1(·) is an indicator function
that equals 1 if ts = tl , otherwise 0, thus

E[ f (t)] = 0, ∀t ∈ T ,

E

[
f (ts) f (tl)T

]
= tr(
)σ 21(ts, tl) =

{
0 if ts �= tl
σ 2tr(
) if ts = tl

, ∀ts, tl ∈ T .

Furthermore, ∀n ≥ 1, t1, · · · , tn ∈ T , there exists,

E[FT
t1,··· ,tnFt1,··· ,tn ] = tr(Kt1,··· ,tn )
 = tr(σ 2Id×d)
 = dσ 2
,

where Ft1,··· ,tn = [ f (t1)T, · · · , f (tn)T]T.
Therefore, it is nature to have a definition of the d-variate Gaussian white noise.
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Definition 10 (d-variateGaussianwhite noise)Ad-variateGaussianprocessMGPd(u, k,
)

is said to be a d-variate Gaussian white noise if u = 0 and k(ts, tl) = σ 21(ts, tl).

Remark 1 We observe that d-variate Gaussian white noise has independence property as
white noise along with T , but it has correlation along with d-variate dimension. Therefore,
d-variate Gaussian white noise is also called as variate-dependent Gaussian white noise or
variate-correlated Gaussian white noise, which is distinct from the traditional d-dimensional
independent Gaussian white noise. Here are 50 realisation samples generated from a multi-
variate Gaussian white noise shown in Fig. 1: Right.

4.2 Multivariate Brownianmotion

According to the Chapter 2 of the book [9], there is a definition of Brownian motion, which
is a Gaussian white noise whose intensity is Lebesgue measure. Since Brownian motion
is a special case of Gaussian process with continuous sample paths, mean function u = 0
and covariance function k(s, t) = min(s, t), we propose an example, d-variate Brownian
motion, as a special case of d-variate Gaussian process with vector-valued mean function
u = 0, covariance function k(s, t) = min(s, t) and parameter matrix 
. Based on the
Theorem 2, we derive some properties of the traditional Brownian motion to a more general
vector-valued case.

Definition 11 (d-variate Brownian motion) A d-variate Gaussian process MGPd(u, k,
)

is said to be d-variate Brownian motion4 if all sample paths are continuous, u = 0 and
k(ts, tl) = min(ts, tl).

Let Bt be a d-variate Brownian motion, which means for all 0 ≤ t1 ≤ · · · ≤ tn the random
matrix Z = (BT

t1 , . . . , B
T
tn )

T ∈ R
n×d has a Gaussian distribution on the probability space

(�,G,P) mentioned in Theorem 2. There exists a matrix M ∈ R
n×d and two non-negative

definite matrices C = [c] jm ∈ R
n×n and 
 = [λ]ab ∈ R

d×d such that

E

⎡
⎣exp

⎛
⎝i

n∑
j=1

Wj,·ZT
j,·

⎞
⎠

⎤
⎦ = exp

⎛
⎝−1

2

∑
j,m

Wj,·c jmW T
m,· + i

∑
j

W j,·MT
j,·

⎞
⎠ ,

E

[
exp

(
i

d∑
a=1

W·,a ZT·,a

)]
= exp

⎛
⎝−1

2

∑
a,b

W·,aλabW T·,b + i
∑
a

W·,aMT·,a

⎞
⎠ ,

where W = [w] ja ∈ R
n×d and i is the imaginary unit. Moreover, we also have the mean

value M = E[Z ] and two covariance matrices

c jm = E[(Z j,· − Mj,·)(Zm,· − Mm,·)T],
λab = E[(Z ·,a − M·,a)T(Z ·,b − M·,b)].

Assume that the mean matrix M here is a zero matrix, i.e. E[Z ] = E[Z |t = 0] = 0, Id = 
,
and

C =

⎡
⎢⎢⎢⎣

t1 t1 · · · t1
t1 t2 · · · t2
...

...
...

t1 t2 · · · tn

⎤
⎥⎥⎥⎦ .

4 For clarification, we only use row random vector in our discussions of the d-variate Brownian motion.
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Multivariate Gaussian Processes: Definitions... 189

Hence, E[Bt ] = 0 for all t ≥ 0 and

E[Bt B
T
t ] = dt, E[Bt B

T
s ] = d min(s, t),

E[BT
t Bt ] = t
, E[BT

t Bs] = min(s, t)
.

Moreover, we have

E[(Bt − Bs)(Bt − Bs)
T] = E[Bt B

T
t − 2Bs B

T
t + Bs B

T
s ] = d|t − s|,

E[(Bt − Bs)
T(Bt − Bs)] = E[BT

t Bt − 2BT
s Bt + BT

s Bs] = |t − s|
.

Note that this d-variate Brownian motion Bt still has independent increments since
E[(Bti − Bti−1)(Bt j − Bt j−1)

T] = 0 and E[(Bti − Bti−1)
T(Bt j − Bt j−1)] = 0 when ti < t j

holds for all 0 < t1 < · · · < tn .

Remark 2 Similar to d-variate Gaussian white noise, d-variate Brownian motion also has
independence property along with T , but it has correlation along with d-variate dimension.
Therefore, d-variate Brownianmotion is also called as variate-dependent Brownianmotion or
variate-correlated Brownian motion, which is distinct from the "traditional" d-dimensional
Brownian motion. Actually, the "traditional" d-dimensional Brownian motion is a special
case of d-variate Brownian motion with diagonal matrix 
.

As a Brownian motion, we then introduce Itô lemma for the d-variate Brownian motion.
Let Bt = [B1(t), · · · , Bd(t)] be the d-variate Brownian motion derived in Section 4.2.

Then, we have the following lemma.

Lemma 5 (Itô lemma for the d-variate Brownian motion) Let F be a twice continuously
differentiable real function on R

d+1 and let 
 = [λ]i, j ∈ R
d×d be the covariance matrix

for the d-variate dimension. Then,

F(t, B1(t), · · · , Bd (t)) = F(0, B1(0), · · · , Bd (0)) +
d∑

i=1

∫ t

0

∂F

∂Bi
(s, B1(s), · · · , Bd (s))dBi (s)

+
∫ t

0

⎧⎨
⎩

∂F

∂s
(s, B1(s), · · · , Bd (s)) + 1

2

d∑
i, j=1

∂2F

∂Bi∂Bj
(s, B1(s), · · · , Bd (s))λi, j

⎫⎬
⎭ ds.

Proof By Itô lemma and the definition of the d-variate Brownian motion, we obtain

F(t, B1(t), · · · , Bd(t)) = F(0, B1(0), · · · , Bd(0)) +
∫ t

0

∂F

∂s
(s, B1(s), · · · , Bd(s))ds

+
d∑

i=1

∫ t

0

∂F

∂Bi
(s, B1(s), · · · , Bd(s))dBi (s)

+ 1

2

d∑
i, j=1

∫ t

0

∂2F

∂Bi∂Bj
(s, B1(s), · · · , Bd(s))d〈Bi , Bj 〉(s).

The proof is complete by d〈Bi , Bj 〉(s) = λi, jds. ��

5 Application: multivariate Gaussian process regression

Multi-output prediction is a good example of a practical application of multivariate Gaussian
processes. Multivariate Gaussian process modelling provides a solid and unified framework
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for predicting multiple responses or tasks by exploiting their correlations. As a regression
problem, multivariate Gaussian process As a regression problem, multivariate Gaussian
process regression (MV-GPR) has closed-form expressions for marginal likelihoods and pre-
dictive distributions, so parameter estimations can employ the same optimization techniques
as conventional Gaussian process modelling [8].

As a summary of MV-GPR in [8], the noise-free multi-output regression model is consid-
ered and the noise term is incorporated into the kernel function. Given n pairs of observations
{(xi , yi )}ni=1, xi ∈ R

p, yi ∈ R
d , we assume the following model

f ∼ MGPd(0, k′,
), yi = f (xi ), for i = 1, · · · , n,

where 
 is an undetermined covariance matrix (the relationship between different outputs),
k′ = k(xi , x j ) + δi jσ

2
n , and δi j is Kronecker delta. According to multivariate Gaussian

process, it yields that the collection of functions [ f (x1), . . . , f (xn)] follows a matrix-variate
Gaussian distribution

[ f (x1)T, . . . , f (xn)T]T ∼ MN (0, K ′,
),

where K ′ is the n × n covariance matrix of which the (i, j)-th element [K ′]i j = k′(xi , x j ).
Therefore, the predictive targets f ∗ = [ f∗1, . . . , f∗m]T at the test locations X∗ =
[xn+1, . . . , xn+m]T is given by

p( f ∗ | X , Y , X∗) = MN (M̂, ̂, 
̂),

where

M̂ = K ′(X∗, X)TK ′(X , X)−1Y ,

̂ = K ′(X∗, X∗) − K ′(X∗, X)TK ′(X , X)−1K ′(X∗, X),

and


̂ = 
.

Here K ′(X , X) is an n × n matrix of which the (i, j)-th element [K ′(X , X)]i j = k′(xi , x j ),
K ′(X∗, X) is an m × n matrix of which the (i, j)-th element [K ′(X∗, X)]i j = k′(xn+i , x j ),
and K ′(X∗, X∗) is an m × m matrix with the (i, j)-th element [K ′(X∗, X∗)]i j =
k′(xn+i , xn+ j ). In addition, the expectation and the covariance are obtained,

E[ f ∗] = M̂ = K ′(X∗, X)TK ′(X , X)−1Y ,

cov(vec( f T∗)) = ̂ ⊗ 
̂ = [K ′(X∗, X∗) − K ′(X∗, X)TK ′(X , X)−1K ′(X∗, X)] ⊗ 
.

From a data science perspective, the hyperparameters involved in the covariance function
(kernel) k′(·, ·) and the row covariance matrix of MV-GPR needs to be estimated from the
training data using a variety of methods [10], including maximum likelihood estimation,
maximum a posteriori and Markov Chain Monte Carlo [11].

6 Conclusion

In this paper, we provide a formal definition of the multivariate Gaussian process as well as
several of its related properties, including existence, stationarity and independence. Addition-
ally, we present some special cases and examples of multivariate Gaussian processes, such
as multivariate Brownian motion and multivariate Gaussian white noise. Finally, we present
an useful application of multivariate Gaussian process regression in statistical learning.
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