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Abstract
We discuss robust estimation of INARCHmodels for count time series, where each observa-
tion conditionally on its past follows a negative binomial distribution with a constant scale
parameter, and the conditional mean depends linearly on previous observations. We develop
several robust estimators, some of them being computationally fast modifications of meth-
ods of moments, and some rather efficient modifications of conditional maximum likelihood.
These estimators are compared to related recent proposals using simulations. The usefulness
of the proposed methods is illustrated by a real data example.

Keywords Count time series · Negative binomial distribution · Overdispersion ·
Generalized linear models · Rank autocorrelation · Tukey M-estimator · Additive outliers

Mathematics Subject Classification 62F35 · 60G10

1 Introduction

Let Y1, . . . , Yn be a time series of counts like the weekly number of people falling ill in
epidemiology, the number of transactions per minute in finance, or jobs sent to a server
during an hour. Zhu [28] extends the Poisson integer valued GARCH (more briefly called
INGARCH)model, which has been put forward by [12,14], among others, to scenarios where
the conditional distribution of Yt given the past of the process exhibits overdispersion. In the
arisingNBINGARCHmodel this conditional distribution is assumed to belong to the negative
binomial family,
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Yt |Ft−1 ∼ NB(r , pt ).

Here, Ft−1 is the σ -algebra describing the information provided by the past of the pro-
cess up to time t − 1, r ∈ N is the constant number of successes, and pt is the
time-varying probability of success. He assumes a linear model for the inverse odds
λt = (1 − pt )/pt , which is regressed on past values Yt−1, . . . , Yt−p, λt−1, . . . , λt−q . The
negative binomial is a natural extension of the Poisson and covers a broad variety of overdis-
persed unimodal distributions. Zhu [28] studies Yule–Walker estimators for the parameter
θ = (α0, . . . , αp)

′ of NBINGARCH(p, 0) models, also called NBINARCH(p) models, and
conditional least squares and conditional maximum likelihood estimators for the parameter
of NBINGARCH(p, q) models for given values of r .

A first approach for robust fitting of NBINGARCH(p, q) models has been published by
[27]. Like these authors we parameterize the negative binomial distribution in terms of the
conditional meanμt ≥ 0 and the parameter κ = 1/r ≥ 0. The conditional mean and variance
of Yt are

μt = E(Yt |Ft−1) = rλt = r
1 − pt
pt

and σ 2
t = Var(Yt |Ft−1) = rλt + rλ2t = μt + κμ2

t ,

respectively, i.e., κ measures the amount of overdispersion. The conditional Poisson model
corresponds to the limiting special case κ = 0. An analogous parametrization has also been
used by [1] in the context of generalized linear models for independent observations because
of its greater numerical stability. While κ can take any positive value, r is usually restricted
to be an integer. The linear model of [28] mentioned above can be expressed equivalently in
terms of μt as

μt = α0 +
p∑

i=1

αi Yt−i +
q∑

j=1

β jμt− j ,

with α0, . . . , αp, β1, . . . , βq being positive parameters.
The interest of [27] is in transaction counts, where very large numbers of observations

are available for model fitting. Accordingly, they focus on scenarios with at least n = 1000
observations. Moreover, they usually fix the dispersion parameter κ at the true value in their
simulations. Our interest is also in scenarios with only a few hundred observations, where
robust joint estimation of the shape parameter κ and the regression parameters β1, . . . , βq

measuring the effects of unobserved past conditional means becomes very difficult. We avoid
the latter and focus on the simpler class of NBINARCH(p) models, where we regress on
past observations, only. NBINARCH models offer the advantage that the observed process
(Yt : t ∈ N0) forms a p-th order Markov chain, which implies some simplifications in
practice. Furthermore, Xiong and Zhu recommend the MCD [24] for dealing with outlying
past observations, although the MCD has been designed for multivariate elliptically sym-
metric continuous measurements [17]. This may eliminate observations from the estimating
equations although just a single preceding value is spurious. We instead shrink outlying past
values towards an estimate of the marginal mean to avoid unnecessary eliminations.

The rest of the paper is organized as follows. In Sect. 2, we investigate robust versions
of method of moment estimators, which are useful to get a first idea about a suitable model
and its order p. In Sect. 3, we discuss robustifications of conditional maximum likelihood
estimators for NBINARCH models. Section 4 illustrates the methods by a data example and
Sect. 5 concludes.
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On robust estimation of negative… 139

2 Estimation derived frommethod of moments

Moment type estimators are computationally tractable even in case of highmodel orders if the
moments are estimated individually without the need of multidimensional optimization. A
possible drawback arises if the parameters of interest are nonlinear transforms of themoments
used, since estimation errors can increase a lot in this transformation then. Nevertheless,
moment type estimators are convenient for getting a first idea about suitable model orders
and for initialization of more complex estimators like those discussed in the next section.

Here and in the following, we make use of popularψ-functions as proposed by Huber and
by Tukey. The Huber ψ-function compromises least squares and least absolute deviations,

ψc(x) = x min
(
1,

c

|x |
)
. (1)

Tukey’s biweight ψ-function is

ψc(x) = x
(
c2 − x2

)2
I[−c,c] (x) , (2)

where IA is the indicator function of a set A. The ψ-functions are applied to standardized
values (y − μ)/σ . The tuning constant c regulates the robustness and the efficiency of the
estimators. For both these ψ-functions, larger values of c increase the efficiency but reduce
the robustness to outliers. The Poisson and the negative binomial distributions do not form
location-scale families and the tail behaviour depends on the parameters, so that suitable
choices of the tuning constant in principle depend on the parameters.

For our calculations we need the formula for the conditional probabilities corresponding
to the negative binomial distribution in terms of μt and κ , which is

P(Yt = yt |Ft−1) = Γ (yt + 1/κ)

yt ! Γ (1/κ)
(κμt + 1)−1/κ

(
κμt

κμt + 1

)yt
, yt ∈ N0.

2.1 Conditions for mean and second-order stationarity

Many of [28] formulae simplify if the parametrization in terms of κ and the regression
parameters θ = (α0, . . . , αp)

′ for the conditional mean is used. The necessary and sufficient
condition for the NBINARCH(p) model to be stationary in the mean stated in his Theorem
1 then becomes that all roots of the equation

1 −
p∑

i=1

αi z
−1 = 0

lie inside the unit circle. Under this assumption, the marginal mean is

μ = E(Yt ) = α0

1 −
p∑

i=1

αi

, (3)

as in the limiting conditional Poisson case. The additional condition for second-order sta-
tionarity is that all roots of 1 − C1z−1 − · · · − Cpz−p = 0 lie inside the unit circle, where
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140 H. Elsaied, R. Fried

Cu = (1 + κ)

⎛

⎝α2
u − αu

p−1∑

v=1

∑

|i− j |=v

αiα j bvu

⎞

⎠ , u = 1, . . . , p − 1,

Cp = (1 + κ)α2
p,

with bvu being the elements of the inverse of the matrix (βvu)
p−1
v,u=1, βvv = ∑

|i−v|=v αi − 1
and βvu = ∑

|i−v|=u αi , v �= u. Like in the standard AR(p) model, the autocorrelation
function (ρY (h), h ∈ N) then satisfies

ρY (h) =
p∑

i=1

αiρY (|h − i |), h ≥ 1. (4)

The above conditions simplify if p is small. An NBINARCH(2) model is mean stationary iff
α1 + α2 < 1, and it is second-order stationary iff additionally

(1 + κ)

[
α2
1 + α2

2 + 2α2
1α2

1 − α2

]
< 1.

The restrictions for α1 and α2 to achieve second-order stationarity are thus more stringent
for larger values of κ .

In the simplest interesting case, the second-order stationary NBINARCH(1)-model, the
marginal mean, variance and the autocorrelations are

μ = E(Yt ) = α0

1 − α1
,

σ 2 = Var(Yt ) = μ + κμ2

1 − α2
1(1 + κ)

,

ρY (h) = αh−1
1 , h ≥ 1.

Note that the model is overdispersed in case of α1 > 0, E(Yt ) < Var(Yt ), even if κ = 0,
imposing a tendency to overestimate κ if autocorrelation is neglected.

2.2 Definition of the estimators

Zhu [28] studies Yule–Walker (YW) estimation of α1, . . . , αp based on the ordinary sample
autocovariances in NBINARCH(p) models. He suggests combining them with a method
of moments (MoM) estimator of α0 based on the formula (3) for the marginal mean μ. A
moment type estimator of κ [4,8,19] can be obtained solving

1

n − 2p − 1

n∑

t=p+1

(
yt − μt

σt

)2

= 1, (5)

where p + 1 is the dimension of θ . Remember that σ 2
t = μt + κμ2

t .
We can use the autocorrelation (ρY (h), h ∈ N) instead of the autocovariance func-

tion to write down the Yule–Walker estimators. We plug the sample autocorrelations
ρ̂Y (1), . . . , ρ̂Y (p) into the equations (4) for ρY (1),. . .,ρY (p) and solve for the unknown
parameters α1, . . . , αp , imposing the basic positivity restriction. A suitable model order p
can be identified from the partial autocorrelation function, as it is zero for all lags h > p.
The partial autocorrelations can be estimated from estimates of the ordinary autocorrelations
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On robust estimation of negative… 141

using the Durbin-Levinson algorithm, setting negative estimates to 0 because of the positivity
restrictions.

Fried et al. [15] find Spearman’s rank autocorrelation to work well in case of Poisson
INARCH models, being rather efficient but more robust than the sample autocorrelations.
We study YW estimation of NBINARCH models, applying Spearman’s rank correlation
to all pairs (Yt , Yt−h), t = h + 1, . . . , n, for h = 1, . . . , p, and plugging the resulting
autocorrelation estimates ρ̂R(h), h = 1, . . . , p, into (4).

Suitable score transforms can improve the asymptotical efficiencies of rank based auto-
correlation estimators in case of autoregressive models with continuous innovation densities;
see e.g. [16]. Let Rt be the rank of Yt and J a score function, which is often chosen as the
quantile function F−1 of a suitable distribution function F . Using this notation, the con-
cept of empirical autocorrelation can be applied to the transformed ranks J (Rt/(n + 1)),
t = 1, . . . , n. The negative binomial distribution functions Fμ,κ do not form a location-
scale family and there is no linear relationship between the quantiles of different negative
binomials. A suitable score function will thus depend on μ and κ , which will be unknown
in practice. We investigate rank estimators with negative binomial (NB) scores, applying a
stepwise approach: for initialization we calculate estimates μ̂, κ̂ of the negative binomial
parameters under the simplifying assumption of observing independent data. Then estimate
α1, . . . , αp from ranks transformed by the quantile function J = F−1

μ̂,κ̂
. Thereafter use these

NB scores estimators to estimate α0 and κ as described below. The process can be iterated
using the new estimates of μ and κ to improve on the estimates of α1, . . . , αp .

A robust method of moments type estimator of α0 can be derived by estimating the
marginal mean μ for a given value of κ modifying the Huber or the Tukey M-estimator for
the Poisson distribution investigated by [5,11], respectively. Setting σ 2 = μ + κμ2, we can
solve

1

n

n∑

t=1

ψc

(
yt − μ

σ

)
= a, (6)

where a = a(μ, κ) = Eψc ((Y1 − μ)/σ) is a bias correction to achieve Fisher consistency.
In our calculations, we fix the value of κ at an initial estimate and ignore the effects of
the temporal dependence in this part of the algorithm for simplicity. Elsaied and Fried [11]
suggest the tuning constants c = 1.8 for the Huber and c = 5.5 for the Tukey M-estimator in
case of independent Poisson data. Since negative binomial distributions aremore heavy-tailed
than the Poisson, we choose larger tuning constants c ≥ 2 and c ≥ 6, respectively.

Moreover, we suggest a robustification of the moment type estimator of κ based on equa-
tion (5), applying a robust ψ-function and solving

1

n − 2p − 1

n∑

t=p+1

ψ2
c

(
yt − μt

σt

)
= d, (7)

where d is the expectation of the term on the left hand side. Since our interest in this equation
is in a robust estimate of the amount of overdispersion κ , a rather large tuning constant like
c = 10 can be chosen for the Tukey ψ-function here to restrict the resulting negative bias,
setting d(n, p) = 1, which is its limiting value as c → ∞.

We combine the ideas presented above as follows, initializing with an a-priori guess of κ

(e.g.κ = 0) and estimatingα1, . . . , αp byplugging thefirst p Spearman rank autocorrelations
into the YW equations. In steps 1 and 3 we use the R (R Core Team [21]) function optimise
to minimize the squared difference between the terms on the left and the right hand side of
the corresponding estimation equation.
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142 H. Elsaied, R. Fried

0. Estimate α1, . . . , αp using the YW equations and the first p Spearman rank autocorre-
lations.

1. Estimate μ from (6) using the current estimate of κ .
2. Estimate α0 from (3) using the current estimates of μ and α1, . . . , αp .
3. Estimate κ from (7) using the current estimate of θ = (α0, . . . , αp)

′.
4. (Optional) Estimate α1, . . . , αp using the YW equations by plugging in the NB score

transforms of the first p Spearman rank autocorrelations based on the current estimates
of μ and κ .

Steps 1.–4. can be iterated until some convergence criterion is met. We found the changes
of the parameter estimates to be very small after the second iteration. We call the estimator
obtained after the first iteration the 1-step NB scores estimator.

The estimators of μ and κ corresponding to (6) and (7), respectively, can be shown to be
consistent at least for known values of the other parameters, using similar arguments as for the
joint estimator of all model parameters presented in the next section. In the next subsection
we will inspect the performance of the estimators presented here via simulations.

2.3 Simulations

We evaluate the performance of the estimators derived from methods of moments, applying
them to time series of length n = 200 and n = 500 from several NBINARCH(1) and
NBINARCH(2) models. We consider first order models with parameters

(α0, α1, κ) ∈ {(0.55, 0.3, 0.3), (0.55, 0.7, 0.0), (0.55, 0.7, 0.3), (0.55, 0.7, 0.7),
(1.5, 0.2, 0.0), (1.5, 0.8, 0.2), (1.5, 0.2, 0.8), (1.5, 0.6, 0.8)}.

The twomodels with κ = 0 correspond to Poisson INARCHmodels with low or high lag-one
autocorrelation, α1 = 0.2 or α1 = 0.7. Two other models with κ ∈ {0.2, 0.3} correspond to
moderate deviations from the Poisson case, again one of them with low and one with high
lag-one autocorrelation. Four other models with κ ∈ {0.7, 0.8} correspond to substantial
deviations from the Poisson case, two of them with low and two with high lag-one autocorre-
lation, combined with a small or a moderately large intercept α0 ∈ {0.55, 1.5}. Varying these
models, we also consider eight second order models with parameters (α0, α1, α2, κ) in

{(0.55, 0.7, 0.2, 0.0), (0.55, 0.7, 0.1, 0.3), (0.55, 0.6, 0.1, 0.7), (0.55, 0.3, 0.2, 0.3),
(1.5, 0.0, 0.2, 0.0), (1.5, 0.5, 0.3, 0.8), (1.5, 0.7, 0.1, 0.2), (1.5, 0.1, 0.2, 0.8)}.

We consider time series of length n ∈ {200, 500} and four different data scenarios for each of
these models, namely clean time series without outliers, time series with 5% additive outliers
of size either 4 marginal standard deviations or 8 marginal standard deviations, rounded to
the nearest integer, at time points chosen independently from a uniform distribution, and time
series with 5% additive outliers occurring as a block at the end of the time series. The latter
scenario resembles the onset of a level shift.

For each of these 128 combinations of an NBINARCH model, an outlier scenario and a
sample size, we generate 1000 time series and fit NBINARCH(2) models. From the derived
estimates we calculate the empirical mean square errors (MSE) for the estimation of each
of the parameters α0, α1, α2 and κ , and take the efficiency (as measured by the ratio of the
MSEs) relatively to the estimator with the smallest MSE for the respective scenario among
those considered here. Then we calculate summary measures like the average mean square
error or the median relative efficiency of an estimator over sets of data scenarios.
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On robust estimation of negative… 143

Table 1 summarizes the simulation results for the estimation of α1 and α2 by showing the
average root of the mean square error and the median relative efficiencies separately for the
scenarios without outliers, with isolated additive outliers of size 4σ or 8σ , or with a patch
of outliers. We set the tuning constant of the Tukey score function to c = 6 if not stated
otherwise. Results for c = 7 are quite similar and not shown here.

The YW estimators based on the ordinary sample autocorrelations offer little advantage
as compared to the rank based estimators considered here in terms of efficiency in clean data
scenarios, and they are usually inferior in the outlier scenarios. Transforming the ranks by
the NB scores improves the efficiency of the rank based YW estimators in case of clean data,
but reduces their robustness against outliers to some extent. Similarly, the 1-step NB scores
estimator shows somewhat better efficiencies in case of clean data but somewhat larger MSE
in case of outliers as compared to Spearman’s rank autocorrelation. This difference appears
to be smaller for the larger sample size n = 500.

The significance of the coefficients of the sample partial autocorrelation function is com-
monly checked by comparing their absolute values to the 97.5% percentile of the standard
normal distribution divided by the square root of the sample size. We apply this rule to the
different estimators of α2 and calculate the percentage of time series for which the estimate
of α2 is found to be significant separately for 1st and 2nd order models. This gives us an idea
of the size and the power of such tests based on the different estimators, see Table 1. The rank
based tests work similarly well as the one based on the ordinary sample autocorrelations in
case of clean data and better in the presence of outliers. Spearman’s rank autocorrelation can
be recommended as it works well in case of all outlier scenarios considered here if n = 200,
and it shows the least size distortions in case of n = 500 with outliers.

Table 2 shows the results for the estimation ofα0 and κ . Combining the TukeyM-estimator
of the marginal mean with Spearman’s rank autocorrelation leads to the most stable results
for α0 among the methods considered here, followed by the estimators based on the NB
scores transformed ranks. Increasing the tuning constant to c = 7 (not shown here) improved
the efficiency for α0 in case of clean data and patchy outliers, but increased the MSE in case
of isolated outliers. The iterated NB scores estimator gives the best results for the estimation
of κ . Starting the iterated estimator from Spearman’s rank autocorrelation (not shown here)
leads to rather similar results.

These findings indicate that the partial autocorrelation estimates arising from Spearman’s
rank autocorrelation can be used to get a first idea about a suitable NBINARCH model order
p even in the presence of some outlier contamination. Simple yet quite robust estimates
of the autoregressive parameters α1, . . . , αp can then be obtained by applying the Yule–
Walker equations to the first p Spearman rank autocorrelations, and of α0 by combining these
estimates α̂1, . . . , α̂p with Tukey’sM-estimator of the marginal mean using a tuning constant
c ≥ 6. Finally, estimate κ solvingEq. (7) using the estimates μ̂t = α̂0+α̂1yt−1+· · ·+α̂p yt−p

and σ̂t = μ̂t + κμ̂2
t .

3 Joint M-estimation

In Sect. 2 we have seen that rank based autocorrelation estimators perform similarly well as
ordinary sample autocorrelations in terms of efficiency in NBINARCH models, while being
more robust.Nowwe investigatewhether the efficiency and robustness of these simple estima-
tors can be improved further if we robustify the conditional maximum likelihood estimators
for a given model order p. We expect substantial improvements in particular concerning the
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Table 1 Results for Yule–Walker type estimators of α1 and α2 if n = 200 (left) or n = 500 (right): ordinary
sample acf (SC), rank-based Spearman acf (RC), NB scores based on Tukey M-estimation of (μ, κ) with
tuning constant c (NB0c) and after 1 iteration (NB1c)

SC RC NB06 NB16 SC RC NB06 NB16

Estimation of α1: ARMSE

Clean 11.8 13.6 12.0 11.1 8.8 11.8 9.5 8.1

AO4 32.7 20.9 24.7 25.9 29.6 19.4 23.0 23.9

AO8 44.0 21.1 26.5 28.0 42.3 19.9 25.4 26.8

PO8 31.3 11.0 11.5 13.3 33.5 9.3 11.1 13.7

Estimation of α1: MedEff

Clean 84.5 68.4 88.8 95.4 81.5 49.9 78.4 91.7

AO4 51.6 100.0 79.8 72.9 50.0 100.0 77.1 70.1

AO8 29.1 100.0 67.4 63.1 25.1 100.0 62.9 59.9

PO8 8.6 49.2 39.3 66.7 3.7 60.0 37.6 59.2

Estimation of α2: ARMSE

Clean 8.0 7.1 6.9 7.0 7.0 6.0 5.8 5.9

AO4 9.8 7.8 8.6 9.0 8.9 6.6 7.5 8.0

AO8 11.0 7.9 8.9 9.3 10.0 6.7 7.9 8.4

PO8 9.9 7.8 8.8 9.1 9.4 7.1 9.0 9.4

Estimation of α2: MedEff

Clean 78.6 86.8 92.5 90.8 77.2 83.6 89.9 90.1

AO4 68.1 100.0 88.7 81.4 55.5 100.0 83.0 75.8

AO8 58.7 100.0 79.7 75.9 55.0 100.0 71.4 66.0

PO8 100.0 76.3 54.1 48.5 82.3 66.0 42.7 37.5

Test of α2 = 0: size

Clean 1.3 1.0 0.8 0.8 1.9 1.3 1.4 1.1

AO4 13.6 5.1 9.7 11.3 36.3 15.6 30.4 34.2

AO8 10.0 5.1 11.1 12.7 23.1 16.6 31.3 35.1

PO8 1.3 4.3 9.6 10.3 25.1 16.7 38.8 37.6

Test of α2 = 0: power

Clean 33.6 34.2 35.9 34.8 52.3 58.1 58.6 56.5

AO4 39.2 40.9 45.2 44.2 79.0 83.4 87.0 85.9

AO8 24.3 41.5 45.8 44.6 49.4 83.8 84.7 83.5

PO8 22.1 43.2 45.1 42.0 41.2 62.8 65.1 61.3

Results for clean data (Clean), 5% additive outliers or 5% patchy outliers of size s marginal standard deviations
(AOs or POs). Average root of the mean square error (ARMSE, multiplied by 100), median relative efficiency
MedEff, empirical size and empirical power for the respective scenarios

estimation ofα0, as the simplemethod ofmoment type estimator μ̂/(1−α̂1−· · ·−α̂p) suffers
from the non-linear effects of estimation errors in α̂1, . . . , α̂p , especially if the sum of these
parameters is close to 1. This can possibly be improved by joint estimation of α0, α1, . . . , αp

as considered in the following but for the price of larger computational costs.We focus on first
order models for the reason of simplicity. After reviewing conditional maximum likelihood
estimation we summarize the estimation approach of [27], before explaining ours. Then we
compare the estimators in a simulation study, including also some of the estimators which
showed the best performance in Sect. 2.

123



On robust estimation of negative… 145

Table 2 Results for method of moments type estimators of α0 and κ if n = 200 (left) or n = 500 (right):
ordinary moments and sample autocorrelations (MoM), Tukey M-estimator with Spearman acf (TR), Tukey
M-estimator and NB scores estimation of (μ, κ) with tuning constant c (NB0c) and after 1 iteration (NB1c)

MoM TR NB06 NB16 MoM TR NB06 NB16

Estimation of α0: ARMSE

Clean 49.9 25.8 29.2 26.2 0.93 0.52 0.50 0.60

AO4 178.1 36.2 49.9 64.3 4.61 0.76 0.91 1.36

AO8 334.2 36.5 54.9 69.2 13.56 0.74 0.99 1.42

PO8 60.9 32.5 41.4 40.1 0.49 0.36 0.28 0.28

Estimation of α0: MedEff

Clean 58.7 96.3 75.1 80.3 59.5 94.1 99.4 91.6

AO4 7.5 100.0 66.2 28.2 22.5 100.0 94.4 56.7

AO8 2.0 100.0 62.2 35.6 6.4 100.0 85.0 58.3

PO8 33.7 76.5 43.8 43.7 97.3 75.7 89.0 86.6

Estimation of κ: ARMSE

Clean 41.0 49.9 48.8 16.2 0.34 0.46 0.44 0.28

AO4 53.3 49.9 49.6 20.2 0.38 0.46 0.45 0.27

AO8 66.3 49.9 49.4 17.4 0.45 0.46 0.45 0.27

PO8 66.2 49.9 70.2 14.0 0.45 0.46 0.45 0.27

Estimation of κ: MedEff

Clean 20.3 14.3 13.0 88.4 84.9 48.1 54.2 94.6

AO4 3.5 14.0 13.7 68.1 65.1 40.8 40.9 84.5

AO8 6.2 11.5 11.7 75.7 52.9 49.1 50.4 95.5

PO8 4.1 12.2 9.5 87.8 54.1 44.8 44.9 92.8

Results for clean data (Clean), 5% additive outliers or 5% patchy outliers of size s marginal standard deviations
(AOs or POs). Average root of the mean square error (ARMSE, multiplied by 100) and median relative
efficiency MedEff

3.1 Conditional maximum likelihood estimation

The score equations of the conditionalmaximum likelihood estimator (CMLE) for the param-
eter vector ω = (θ ′, κ)′, with θ = (α0, . . . , αp)

′, are

∂
(ω)

∂ω
=

(
n∑

t=1

S′
t,θ (ω),

n∑

t=1

St,κ (ω)

)′
= 0, where

St,θ (ω) = yt − μt

μt + κμ2
t

∂μt

∂θ
,

St,κ (ω) = −κ−2
(

∂ lnΓ (yt + 1/κ)

∂(yt + 1/κ)
− ∂ lnΓ (1/κ)

∂κ
− ln(κμt + 1) − κ(yt − μt )

κμt + 1

)

= − 1

κ2

(
G(yt + 1/κ) − G(1/κ) − ln(κμt + 1) − κ(yt − μt )

κμt + 1

)
,

∂μt

∂θ
= (

1, yt−1, . . . , yt−p
)′ = X̃t .
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Hereby, G(u) denotes the digamma function, G(u) = ∂ lnΓ (u)/∂u. Solving the score equa-
tions can be initialized using the Poisson quasi-likelihood estimator of θ , which corresponds
to the assumption κ = 0, and the moment estimator of κ defined in (5).

3.2 M-estimation usingmultivariate outlyingness

Xiong andZhu [27] robustify the first of the above score equations of theCMLestimator using
the Pearson residuals rt = (yt − μt )/σt and Mallow’s quasi-likelihood estimator proposed
by Cantoni and Ronchetti (2001),

n∑

t=p+1

[
ψ(rt )wt

σt

∂μt

∂θ
− at (θ)

]
= 0,

where at (θ) = E
[
ψ(rt )wt (σt )

−1∂μt/∂θ
∣∣Ft−1] is a bias correction to achieve Fisher con-

sistency. They consider weights wt = √
1 − ht,t based on the diagonal elements ht,t of the

hat matrix H = X(X ′X)−1X ′, with X = (X̃1, . . . , X̃n−p)
′, as well as hard rejection weights

wt = I (D2
t ≤ χ2

p(0.95)) based on the squared Mahalanobis distances D2
t measuring multi-

variate outlyingness.
For estimation of κ , they suggest the weighted maximum likelihood estimator proposed

by [1], using the estimation equation

0 =
n∑

t=p+1

[
ψ(rt )

rt
St,κ (ω)wt − bt (κ)

]

with another Fisher consistency correction bt (κ) = E(St,κwtψ(rt )/rt |Ft−1).
Xiong and Zhu [27] perform a simulation study for time series consisting of n = 1000

observations without, or with up to 40 isolated, or a patch of 52 subsequent outliers. Based
on this they recommend hard rejection weights using the minimum covariance determinant
(MCD) estimator [25] in combination with Tukey’s ψ-function for both, the estimation of θ

and κ , using constants c1 = 7 and c2 = 6, respectively.
Using multivariate outlyingness allows taking positive correlations among the regressors

into account, but it may downweight the contribution of many observations substantially
although just one of its regressor components looks suspicious; see the R-package cellWise
[22], and the references cited therein for related discussions. Moreover, the MCD has been
designed for (continuous) unimodal elliptically symmetric but not for discrete data, see e.g.
[17]. Indeed, methods based on subsets of the observations like theMCDmay have problems
with many identical values, as they can occur in count data; see Duerre et al. (2015) for a
discussion in the context of robust autocorrelation estimation. These are possible drawbacks
of the method by Xiong and Zhu.

3.3 M-estimation using componentwise shrinking

We propose another variant of robust M-estimation for NBINARCH(p) models, combining
theM-estimation approaches developed by [10] for the limiting Poisson INARCHmodel and
by [1] for the negative binomial regression model.
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We robustify the CML estimator along the same lines as in [10] in the Poisson case,
applying M-estimation to the Pearson residuals rt = (yt − μt )/σt ,

n∑

t=p+1

st,0(yt , ω) =
n∑

t=p+1

(
ψ (rt )

σt
− ct,0

)
= 0,

n∑

t=p+1

st,i (yt , ω) =
n∑

t=p+1

(
ψ (rt )

σt

[
σψ

(
yt−i − μ

σ

)
+ μ

]
− ct,i

)
= 0, i = 1, . . . , p.

Hereby, we use bias corrections ct,0 = ct,0(ω) = Eω(ψ((Yt − μt )/σt )/σt |Ft−1) and

ct,i = ct,i (ω) = Eω

(
ψ((Yt − μt )/σt )

[
σψ

(
Yt−i − μ

σ

)
+ μ

]
/σt

∣∣Ft−1

)
, i = 1, . . . , p.

While [27] downweight the whole vector St,θ (ω) in the score equation according to a mea-
sure of the multivariate outlyingness of the corresponding regressor values, including the
component for the intercept, we shrink each regressor towards the center of its distribution.
Note that replacing ct,i (ω) by its expectation ci (ω) = E(ct,i (ω)) is simpler and asymptoti-
cally equivalent because of the general ergodic theorem [18] and Slutsky’s Lemma.

For estimation of κ we also make use of the M-estimator of [1]. To obtain starting values
for an iterative scheme to solve these equations, [1] recommend plugging in the estimates
resulting from PoissonM-estimation into the equation for κ and then to iterate. Alternatively,
we can use the estimator of κ proposed in the previous section.

In the Appendix we prove the consistency of the joint estimator ω̂n = (θ̂ ′
n, κ̂n)

′ and
conjecture its asymptotic normality,

√
n(ω̂n − ω(0)) → N

(
0, A(ω(0))−1B(ω(0))A(ω(0))−1

)
,

with A(ω(0)) = E(∂st (Yt , ω)/∂ω)ω(0) , B(ω(0)) = E(st (Yt , ω(0))×st (Yt , ω(0))′), st (yt , ω) =
(st,0(yt , ω), . . . , st,p(yt , ω))′, and ω(0) = (θ(0)′, κ(0))′ being the true parameter vector. The
matrices A(ω(0)) and B(ω(0)) can be estimated using their empirical counterparts as in [10],
replacing the unknown parameters by their robust estimations and the expectations by the
corresponding averages across the realizations; the arising estimate inherits some robustness
when using a bounded ψ-function with a bounded derivative.

3.4 Simulations

We perform some simulations to compare the performance of the CML estimator, the robust
method of moments estimator based on Spearman’s rank autocorrelation combined with the
Tukey M-estimator of the marginal mean, the 1-step NB scores transformed rank estimator,
as well as our Tukey M-estimator and [27] M-estimators using the hat matrix or the MCD.
We consider the performance in scenarios without outliers as well as with an increasing
number of isolated or patchy additive outliers with the same size. We focus on scenarios
similar to those inspected by [27] with time series of length n = 1000. This is in part due
to problems when running their algorithms with the recommended MCD for shorter series
lengths n, presumably caused by the discreteness of the data. We applied several estimators
for initialization of our joint M-estimator, namely the estimators presented in Sect. 2, in
particular that using the ordinary Spearman rank autocorrelations, and the robust Poisson
INARCH estimator of [10] assuming κ = 0. We can combine these possibilities to check for
the possibility of multiple roots. The solutions obtained by the different initializations in the
following simulations can usually be regarded as identical.
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Fig. 1 Simulated efficiencies forα0 (left) andα1 (right) as a function of the tuning constant in case of n = 1000
data points from an NBINARCH(1) process with parameters α0 = 0.55, α1 = 0.4 and κ = 0.3

3.4.1 Scenarios without outliers

First we inspect the efficiency in case of data without outliers, generating 1000 time series
of length n = 1000 from an NBINARCH(1) model with parameter ω = (0.55, 0.4, 0.3), see
Fig. 1. The initial method of moments estimators achieve about 50% efficiency for α1 and
about 30% efficiency for α0. The 1-step NB scores rank estimator improves on this as its
efficiencies are about 90% for α1 and 60% for α0. The estimator of [27] with a recommended
tuning constant c about 6 or 7 achieves an efficiency of more than 70% using hard rejection
based on the MCD and even about 80% efficiency when using soft rejection based on the
hat matrix. Our estimator shows a stronger dependence on c. It achieves high efficiencies of
about 90% when using c = 10, like Xiong and Zhu’s method, while for c = 7 it is somewhat
less efficient than their estimator.

Figure 2 compares normal qq-plots of our joint M-estimator with c = 10 and of the
conditional maximum likelihood estimator in case of time series of length n = 200, n = 500
or n = 1000. The finite-sample distributions of both estimators are right-skewed for α0 if
n = 200 but reasonably close to normality for the larger sample sizes, with little difference
between the estimators.

3.4.2 Scenarios with an increasing number of isolated outliers

Nowwe analyze the behavior of the estimators in the presence of outliers. In a first experiment
we generate a time series of length n = 300 from an NBINARCH(1) model with parameters
α0 = 0.55, α1 = 0.4 and κ = 0.3 and include a single additive outlier of increasing size.
Figure 3 shows the arising sensitivity curves of several estimators for estimation of α0 and
α1, corresponding to the difference between the estimated value with and without this outlier,
multiplied by n. Except for the CMLE, the other estimators show bounded sensitivities, with
the effects being largest for the 1-step NB score estimator, followed by our joint M-estimator.

Next we include an increasing number of 4,8,…,40 isolated additive outliers of size 5
or 10 at positions chosen at random, analyzing 500 time series for each scenario. Figure 4
depicts the resulting biases as a function of the number of outliers. The lack of robustness of
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Fig. 2 Normal qq-plots for the CML (upper panel) and our joint Tukey M-estimator (lower panel) of α0
(top) and α1 (bottom) in case of n = 200 (left), n = 500 (middle) or n = 1000 (right) data points from an
NBINARCH(1) process with parameters α0 = 0.55, α1 = 0.4 and κ = 0.3

the CMLE and the Poisson quasi-likelihood estimator manifests itself in an increasingly large
positive (negative) bias for α0 (α1), particularly for the larger outlier size. Spearman’s rank
autocorrelation is negatively biased for α1, and the resulting estimator for α0 thus positively
biased, which explains its moderately large efficiency for large sample sizes observed before.
The 1-step NBscore transform estimator reduces this bias in case of clean data but is more
affected by the outliers. Our Tukey M-estimator shows some bias for the estimation of α1 in
case of the smaller outlier size considered here, but performs better than the other estimators
otherwise, except for M-estimator with hard-thresholding based on the MCD [27]. These
two estimators perform similarly well although we have chosen a larger tuning constant
c = 10 for our estimator to obtain a high efficiency in case of clean data, instead of the c = 6
recommended by Xiong and Zhu for their estimator. Qualitatively similar results have been
obtained for time series with parameters α0 = 1, α1 = 0.6 and κ = 0.3 (not shown here).
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Fig. 3 Sensitivities of the estimators of α0 (left) and α1 (right) against a single additive outlier of increasing
size in case of data generated from an NBINARCH(1) process with parameters α0 = 0.55, α1 = 0.4 and
κ = 0.3

3.5 Scenarios with a patch of additive outliers

We also investigate scenarios with a patch of consecutive additive outliers of the same size,
which can arise for instance because of a temporary disturbance or a temporary level shift.
Figure 5depicts the results obtained for an increasingnumber of 4, 8,…,52 additive outliers of
identical size 5 or 10 starting at time point 250 in NBINARCH(1) time series with parameters
α0 = 0.55, α1 = 0.4, κ = 0.3. A patch of consecutive outliers imposes a positive bias on
non-robust estimators of α1, which can then lead to a negative bias for the estimation of α0.
This can be seen for the 1-step NB scores rank estimator, which shows a similarly strong bias
for α1 as the QMLE and the CML here. Estimation using Spearman’s rank autocorrelation
performs better than this in terms of bias and similar to our Tukey M-estimator with a tuning
constant c = 10, which is large relatively to the height of the shift. Application of the latter
with a smaller tuning constant c = 6 resists these outliers better and similarly well as the M-
estimator with hard rejection proposed by [27] in the scenarios considered here. The version
of their estimator applying soft-thresholding based on the hat matrix shows considerable
problems for the estimation of the intercept here, and this also applies to the version using
the MCD in case of the smaller outlier size.

4 Data example

For illustration we analyze the number of campylobacterosis infections from January 1990
to the end of October 2000 in the north of the Province of Québek, Canada. There is one
observation every 4 weeks, that is 13 observations per year. [12] used this data set shown
in Fig. 6 to exemplify the INGARCH model with a conditional Poisson distribution. Under
the same basic model assumption, [13] found a possible level shift at time t = 84 and a so-
called spiky outlier at time t = 100 by applying an iterative procedure for the detection and
elimination of different types of intervention effects. Later on, [20] found evidence that the
conditional distribution might be better described by a negative binomial than by a Poisson
distribution, albeit their estimate of the overdispersion parameter was small (κ̂ ≈ 0.0297). In
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Fig. 4 Simulated biases for α0 (left) and α1 (right) in case of an increasing number of 4,8,…,20,24,…,36,40
isolated additive outliers of size 5 (top) or 10 (bottom) at randomly chosen positions in time series of length
n = 1000 generated from an NBINARCH(1) process with parameters α0 = 0.55, α1 = 0.4 and κ = 0.3

consequence, the findings of [13] might have been influenced by using the wrong conditional
distribution, and in turn the findings of [20] might be in part due to extraordinary effects in
these data, which might have been estimated incorrectly or even been missed. We re-analyze
these data using robust methods to get additional insights. Further work is needed to include
structural changes or covariate information into the methods presented in Sect. 3. We instead
concentrate on the methods presented in Sect. 2.2 as they can be modified easily to account
for a level shift:

1. First we want to get an idea about suitable model orders, taking a possible level shift
after observation number t = 84 into account, i.e., in the middle of the seventh year
of the observation period. For this we calculate Spearman’s rank autocorrelation and
also the ordinary sample autocorrelation from the first six years of data. Both types
of autocorrelation point at the suitability of an INARCH(1) model without a seasonal
effect, with the estimates of α1 being about 0.44 and thus substantially larger than their
asymptotical standard error under the assumption of white noise, which is about 0.11.
Calculating the ordinary sample autocorrelation at lag 1 or the conditional maximum
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Fig. 5 Simulated biases forα0 (left) andα1 (right) in case of an outlier patch consisting of an increasing number
of 4,8,…,52 additive outliers of size 5 (top) or 10 (bottom) in time series of length n = 1000 generated from
an NBINARCH(1) process with parameters α0 = 0.55, α1 = 0.4 and κ = 0.3 (top) or α0 = 1, α1 = 0.6 and
κ = 0.3 (bottom)

likelihood estimate of α1 from the full data set leads to a much larger value than this,
namely about 0.64, which is just within the range of a 95% confidence interval based on
the first six years.

2. Second we fit an INARCH(1) model with a level shift after t = 84 to the data, i.e., we
allow for a change of the intercept α0. In order to make use of the full data set in spite of
a possible level shift, we split the time series into several non-overlapping subsequences
and estimate the parameters of interest from each of them separately. This approach has
been analysed by [23] for estimation of the Hurst parameter and by [3] for estimation
of the variance. Here, we split the time series into five subsequences of length 28 each,
which fits well to the total sample size of 140 and also to a possible level shift right at
the end of the third subsequence. Due to the robustness properties of ranks we expect
the effect of a single spiky outlier on the estimate to be small and take the average of
the estimates obtained from the five subsequences as our final estimate. The average lag
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Fig. 6 Number of campylobacterosis infections (dots), conditional mean fitted by robustified method of
moments (bold solid line), and 95% as well as 99% percentiles of the conditional negative binomial dis-
tributions (solid line and dashed line)

one Spearman rank autocorrelation is α̂1 = 0.368, which is again large as compared to
the asymptotic standard error 0.085 under white noise and very close to the value 0.369
obtained by [20] using an iterative procedure for detecting and modelling different types
of intervention effects. The robust Tukey type method of moments estimate of α0 derived
from the first three subsequences is 5.27, and the estimate of the change in intercept
because of a level shift, derived from the difference with the estimate calculated from the
fourth and fifth subsequence, is 4.20. A parametric bootstrap confidence interval for the
height of the shift is [3.04, 6.69].

3. It remains to estimate κ , taking the conditional mean function μt = 5.27 + 4.20I (t >

84)+ 0.368yt−1 derived in step 2 into account. The robustified method of moments type
estimate with the tuning constant c = 10 is κ̃ = 0.0179. Application of a parametric
bootstrap, generating 200 time series from a Poisson INARCH model with the same
conditional mean function, leads to a bootstrap p-value of 0.01, so that this estimate
is small but significantly different from 0. In another parametric bootstrap we generate
1000 time series for each of several INARCH(1) models, all with the conditional mean
function estimated for the real data but different values of κ = 0.001, . . . , 0.1. In a
bootstrap confidence interval we include all values of κ for which the estimate κ̃ =
0.0179 lies between the 2.5% and the 97.5% percentile of the estimates obtained from
the corresponding simulated data sets, resulting in the interval [0.006, 0.093]. For a larger
tuning constant c = 12 we get a larger estimate κ̃ = 0.0303, which is very close to the
estimate 0.0297 obtained by [20] applying a sequential outlier detection and modelling
procedure.
Our robust method of moment type estimator κ̃ of κ is obviously biased, with a bias
which is larger for smaller tuning constants c. The smaller estimate obtained for c = 10
might thus be due to a negative bias, but the difference to the less robust estimates could
also be due to outlier effects. To correct the bias of κ̃ we can multiply it with a correction
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factor fc(θ, κ), which will likely depend on the true parameters θ = (α0, α1) and κ as
well. To derive suitable finite sample correction factors we generate 1000NBINARCH(1)
time series with the same length n = 140, the same parameters and the same level shift
as found for the real data, and estimate the value of κ for each of them. Then we set
fc(θ̃ , κ̃) to the ratio between the value of κ , from which these artificial data sets have
been generated, and the average of these estimates. Multiplication of κ̃ with this factor
gives a new bias-reduced estimate. Since fc(θ̃ , κ̃) only approximates the factor fc(θ, κ)

needed, we can iterate this process until it stabilizes after a few steps. This leads us to
an estimate of about 0.04, a little larger than those reported before but well within the
bootstrap CI.

Overall our analysis confirms that a NBINGARCHmodel describes this data set well after
taking a possible level shift at observation 84 and an outlier at time 100 into account. Figure
6 illustrates that all observations except for a few ones at or right after time point 100 are
below or at least close to the respective 95% percentile of the fitted 1-step ahead predictive
distribution. The observations at t = 100 and t = 101 are far outlying as compared even to
the 99% percentile. Note that the differences between these percentiles and those obtained
by a Poisson INARCH(1) model with the same conditional mean sequence is at most 2 in
case of the 95% and at most 3 in case of the 99% percentile, so that a Poisson model suits
most purposes here.

5 Conclusions

We have proposed robustifications of method of moments and ML-estimation for fitting
INARCH models with conditional negative binomial distributions. The former avoid multi-
dimensional optimizations and are useful for getting information about a suitable model and
as initial estimates for calculation of the more efficient and robust joint M-estimators of the
autoregressive parameters.

Our proposal of negative binomial scores increases the efficiency of rank based autocor-
relation and partial autocorrelation estimators in the NBINARCH model substantially but
reduces its robustness. Similar findings are known for van der Waerden scores under Gaus-
sian model assumptions. If robustness against outliers is important, we prefer the ordinary
Spearman’s rank (partial) autocorrelation. Our joint M-estimation approach is an alternative
to the one suggested by [27]. Our method seems to be computationally simpler, so that it can
be applied to moderately large data sets, where we encountered problems for the Xiong and
Zhu’s algorithm. A drawback of our approach is that the choice of tuning constants to achieve
both high efficiency and high robustness against different outlier scenarios (like isolated and
patchy outliers) seems to be more difficult. Nevertheless, in our experiments it achieves
better efficiency and robustness than the Yule–Walker estimates based on Spearman’s rank
autocorrelation if the model order is known.

For illustration we have analyzed a famous data set from the literature, the campylobac-
terosis data studied e.g. by [12]. In doing so we have modified the robust method of moment
estimators such that patterns of change like a level shift found in these data by several authors
(e.g. [13]) can be incorporated in the estimation. The results obtained agree well with those
obtained by [20] applying sophisticated stepwise detection and correction procedures.
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Appendix

In the following we establish consistency and asymptotic normality of our joint M-estimator.
For consistency we check the assumptions of Theorem 4.1.2 in [2], for asymptotic normality
we additionally use the second part of Theorem 3.2.23 in [26].We use the following notation,
setting Y = (Y1, . . . , Yn)′, y = (y1, . . . , yn)′ and rt = (yt − μt )/σt :

Qn( y, ω) = −Sn( y, ω)′Sn( y, ω)/n,

Sn( y, ω) =
n∑

t=p+1

st ( y, ω),

st ( y, ω) = (st,0( y, ω), . . . , st,p( y, ω), ut ( y, ω))′,

st,0( y, ω) = ψ (rt )

σt
− ct,0(ω),

st,i ( y, ω) = ψ (rt )

σt

[
σψ

(
yt−i − μ

σ

)
+ μ

]
− ct,i (ω), i = 1, . . . , p,

ut ( y, ω) = ψ(rt )

rt
St,κ (ω)wt − bt (ω)

with ct,i (ω) being the conditional expectation of the term before with respect to the σ -field
Ft−1 of the respective past, calculated assuming that ω is the true parameter value. Note that
a value ω̂n with Sn( y, ω̂n) = 0 is a global maximizer of Qn( y, ω).

For weak consistency of a sequence of solutions (ω̂n : n ∈ N), we assume for the true
parameter value ω(0) = (α

(0)
0 , . . . , α

(0)
p , κ(0))′ ∈ Θ , which is an open bounded subset of

R
p+1
+ with a strictly positive lower bound for the first coordinate to keep the mean and the

variance away from zero. Qn( y, ω) is a measurable function of y, and its gradient vector
∂Qn( y, ω)/∂ω exists and is continuous in case of differentiable ψ-functions like the one
of Tukey. In case of the Huber function, we can use Theorem 4.1.1 of [2] because of the
uniqueness of the solution, avoiding the need of a continuous derivative.
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Part a) of the following Lemma 1 and the continuous mapping theorem imply that
Qn(Y , ω)/n converges to a nonstochastic limit Q(ω) = −E(st (Y , ω)′st (Y , ω)) in prob-
ability. Uniformity of the convergence of Qn(Y , ω)/n − Q(ω) to 0 can be seen applying
Theorem 4.2.1 of [2] to

g(Y ;ω) = st (Y , ω)′st (Y , ω) − E(st (Y , ω)′st (Y , ω)).

The condition E supω∈Θ |g(Y ;ω)| < ∞ is obviously fulfilled,

E sup
ω∈Θ

|g(Y ;ω)| ≤ 2E sup
ω∈Θ

|st (Y , ω)′st (Y , ω)| < ∞,

because |st (Y , ω)′st (Y , ω)| is bounded with probability 1 in view of the boundedness of the
ψ-function and the parameter space.

Since Q(ω) ≤ 0 = Q(ω(0)) by construction, there is a global maximum at ω(0), so that
ω̂n is consistent if it is initialized by a consistent estimator.

For asymptotic normality, note that ∂Sn( y, ω)/∂ω exists and is continuous in an open con-
vex neighborhood ofω(0) if we use a differentiableψ-function, since the other termsμt , σt , μ

and σ involved in the construction of Sn( y, ω) are also differentiable. The condition that
n−1∂Sn( y, ω)/∂ω converges to a finite nonsingular matrix A(ω(0)) = E(∂st (Yt , ω)/∂ω)ω(0)

in probability can be deduced by applying the general ergodic theorem [18] to the Markov
chain (Yt , . . . , Yt−p)

′, t ∈ N.
The condition limn→∞ supδ↘0(nδ)−1|Tn( y, ω�)| < ∞ a.s., where Tn( y, ω�)

= (∂Sn( y, ω)/∂ω)ω� − (∂Sn( y, ω)/∂ω)ω(0) , can be verified along the same lines as in the
proof of Lemma 3 of [27], albeit the handling of the derivatives is much more cumbersome
in our case.

For the final condition Sn(Y , ω(0))/
√
n → N (0, B(ω(0))), where B(ω(0))

= E(st (Y , ω(0)) × st (Y , ω(0))′), we use Lemma 1b). Altogether this results in
√
n(ω̂n − ω(0)) → N

(
0, A(ω(0))−1B(ω(0))A(ω(0))−1

)
.

Lemma 1 We have as n → ∞
a) Sn(Y , ω)/n

a.s.−→ E(st (Y , ω))

b) Sn(Y , ω(0))/
√
n

d−→ N (0, B(ω(0))), with B(ω(0)) = E(Var(st (Y , θ(0))|Ft−1)).

Proof By construction (st (Y , ω) − E(st (Y , ω)|Ft−1)) is a martingale difference sequence
and (Sn(Y , ω)−∑n

t=p+1 E(st (Y , ω)|Ft−1)) is a martingale. We thus make use of the strong
law of large numbers [7] and the central limit theorem for martingales.

For a) it suffices that st (Y , ω) − E(st (Y , ω)|Ft−1)) is square integrable, E ||st (Y , ω) −
E(st (Y , ω)|Ft−1))||2 < ∞, for the true set of parameter values. Because of E ||E(Z |Ft−1)||2
≤ E ||Z ||2 for any random variable Z we have

E ||st (Y , ω) − E(st (Y , ω)|Ft−1)||2 ≤ 2E ||st,0(Y , ω)||2 + · · ·
+ 2E ||st,p(Y , ω)||2 + 2E ||ut (Y , ω)||2.

The boundedness of E ||ut (Y , ω)||2 has already been verified by [27]. For the other terms
E ||st,i ||2, i = 0, . . . , p, this is obvious due to the boundedness of the ψ-function, as long as
σ and σt are bounded away from 0. This is guaranteed since α0 > 0.

For b) we show the conditional Lindeberg condition using

1

n

n∑

t=p+1

E

⎡

⎣||st ||2 I (||st || >
√
nε|Ft−1) ≤ 1

n2ε2

n∑

t=p+1

E[||st ||4|Ft−1

⎤

⎦ .
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It is hence sufficient to show E ||st ||4 < ∞. This follows using

||st ||4=[||st,0||2 + · · · + ||st,p||2 + ||ut ||2]2]≤[(p+1)max{||st,0||2, . . . , ||st,p||2, ||ut ||2}]2,
i.e., it is sufficient that E ||st,i ||4, i = 0, . . . , p, and E ||ut ||4 are all finite. For E ||ut ||4 see
[27], and for E ||st,i ||4, i = 0, . . . , p, this is again obvious because of the boundedness of
ψc and α0 > 0. Moreover,

1

n

n∑

t=p+1

Var(st |Ft−1)
p−→ E[Var(st s

′
t |Ft−1)] = B(ω(0)).

Application of the central limit theorem for martingales [26, Theorem 1.1.13] proves

1√
n

n∑

t=1

st
d−→ N (0, B(ω(0))).


�
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