
METRON (2022) 80:175–185
https://doi.org/10.1007/s40300-021-00198-6

Aweighted distance metric for assessing ranking
dissimilarity and inter-group heterogeneity

Amalia Vanacore 1 ·Maria Sole Pellegrino 1

Received: 30 September 2020 / Accepted: 15 January 2021 / Published online: 24 February 2021
© The Author(s) 2021

Abstract
In this paper, a weighted variant of the normalized pairwise angular distance metric is pro-
posed. The inclusion of position weights aims at penalizing inversions in the top of the
ranking more than inversions in the tail of the ranking. The performance of the proposed
weighted distance metric for assessing ranking dissimilarity and its impact on a procedure
for testing inter-group heterogeneity have been investigated via a Monte Carlo simulation
study under several scenarios—differing for group size, number of ranked alternatives and
system of hypotheses—and compared against those obtained for the unweighted variant.

Keywords Ranking dissimilarity · Weighted distance metric · Inter-group heterogeneity ·
Power analysis

1 Introduction

Analyzing consumer satisfaction by listening to their needs is fundamental in any private and
public sector since it represents a useful tool for improving the efficacy of management and
policy actions [5]; it becomes critical when the consumers cannot switch to other providers,
deny or reduce the service [8].

Satisfaction data are usually collected through opinion survey questionnaires where each
respondent is asked to value a set of attributes independently of one another and rate them
accordingly, in such a way that no direct comparison is made between attributes. The
widespread adoption of ordered categorical response scales is due to two factors: they are
ease to manage and low time-consuming [1,12,16,17]. Despite these practical advantages,
this evaluation method requires a specific expertise that some respondents may lack produc-
ing two main criticisms: response biases like agreement response style (tendency to always
agree with every statement irrespective of its content) and non-differentiation (tendency to
not really differentiate between the statements irrespective of their content) [1,12].
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A valid alternative solution stands in elicitation methods based on ranking according
which each respondent is asked to sort a set of alternatives with respect to some criteria
(e.g. liking, satisfaction, agreement, importance). Such elicitation methods give high quality
and informative data, high test–retest and cross-sectional reliability and high discriminate
and correlation validity [11,17,20]; nevertheless, their widespread adoption is limited by the
higher availability of suitable statistical methods for handling ordered categorical response
data.

When dealing with ranking data, two typical issues of interest are to assess the diversity
between two subjects expressing their preferences over the same set of alternatives and
compare two ormore groups of subjects (e.g.men andwomen, young and elderly, people from
different countries) in order to investigate concordance, agreement or homogeneity among
them and identify the significant factors impacting on subject preferences and, possibly,
cluster the subjects [15].

Different proximity and distance measures have been proposed in the literature over the
years for assessing the similarity between two rankings. A widespread approach in ranking
data analysis uses similarity measures based on correlation coefficients and derives distance
measures via linear transformations. Among these methods, Kendall’s τ rank correlation
coefficient [9,10], Pearson correlation coefficient and Spearman’s ρ are the most widely
used. Other typical examples of distances are Kendall, Spearman and Cayley’s distances.
See Mallows [14], Critchlow et al. [2] and Diaconis [4] for more details; moreover, an
extensive listing of such measures classified according to the main field of application or
scientific area of interest is available in Deza and Deza [3].

A different approach tomeasure distances between rankings stems frommultidimensional
geometry, according which each ranking is a vector in the multidimensional Euclidean space
and the distance between two of them is measured via the pairwise angular distance. Fol-
lowing the multidimensional geometry approach, in this paper the rankings are analyzed and
interpreted using a simple distance metric based on cosine similarity, that is the normalized
pairwise angular distance metric [21].

It is noteworthy that, as recently pointed out byKumar andVassilvitskii [13], the traditional
similarity and distancemeasures between rankings do not care about two crucial concepts: (1)
some alternatives could be more important than others, so that swapping equally important
alternatives should be less penalizing than swapping not equally important alternatives; (2)
swapping alternatives belonging to the top of the ranking could be more relevant than swap-
ping alternatives belonging to the tail of the ranking. In order to overcome the two criticisms,
Kumar and Vassilvitskii [13] defined the element weights and position weights for handling
the first and second criticism, respectively.

The aim of this paper is to propose a variant of the normalized pairwise angular distance
metric [21,23] suitable for position weighted rankings that penalizes inversions in the top of
the ranking more than inversions in the tail of the ranking. The proposed weighted distance
metric will be adopted for testing preference heterogeneity across groups of subjects via an
inferential procedure based on the index of segregation power ISP introduced by Gadrich et
al. [6] for numerical and categorical variables and further specialized by Vanacore et al. [23]
to complete rankings.

The performance of the testing procedure based on ISP with the weighted normalized
angular distance metric is investigated via a Monte Carlo simulation study under different
scenarios, differing for group size, number of ranked alternatives and system of hypotheses.
The results of the Monte Carlo simulation study are compared against those obtained for the
normalized angular distance metric discussed in Vanacore and Pellegrino [22].
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The paper is organized as follows: theweighted version of the normalized pairwise angular
distancemetric togetherwith the testing procedure are introduced in Sect. 2; the design and the
main results of theMonte Carlo simulation study are described in Sect. 3; finally, conclusions
are summarized in Sect. 4.

2 Weighted normalized pairwise angular distancemetric

Let M subjects rank a finite set A = {A1, A2, . . . , An} of n alternatives. Each ranking can be
represented as an antisymmetric square alternative-to-alternative matrix (alm)n×n of order
n. The generic element alm of the (l,m) cell represents the preference relation between the
ranked alternatives Al and Am and thus it assumes the following values:

alm =

⎧
⎪⎨

⎪⎩

−1 if the alternative Al preceeds the alternative Am

0 if Al and Am are indistinguishable alternatives

1 if the alternative Al follows the alternative Am

A suitable distance measure between two rankings comes from multidimensional geom-
etry, according which each ranking, and thus matrix (alm)n×n , can be considered as a vector
in a multidimensional Euclidean space. A measure of dissimilarity between two rankings is
the normalized pairwise angular distance metric [21]. Specifically, let a and b be two such
vectors, the normalized pairwise angular distance metric Lab is expressed as follows:

Lab = 1

π
· arccos

[ ∑n−1
l=1

∑n
m=l+1 almblm

√
∑n−1

l=1
∑n

m=l+1 a
2
lm

√
∑n−1

l=1
∑n

m=l+1 b
2
lm

]

= θ̂a,b

π
. (1)

where π is the straight angle against which the angular distance θ̂a,b is normalized.
Position weighted distances are built to enhance the reactiveness to the role of the position

of each alternative, that is swaps at the top of the ranking are costlier than those at the tail of
the ranking. The weighted variant of the normalized pairwise angular distance metric can be
formulated as follows:

Labw = 1

π
· arccos

[ ∑n−1
l=1

∑n
m=l+1 almw blmw

√∑n−1
l=1

∑n
m=l+1 a

2
lmw

√∑n−1
l=1

∑n
m=l+1 b

2
lmw

]

= θ̂aw,bw

π
(2)

where almw (with l = 1, . . . , n−1;m = l+1, . . . , n) is the position weighted version of the
generic element alm of the antisymmetric square alternative-to-alternative matrix (alm)n×n .
Specifically, let w = (w1, w2, . . . , wn) be the vector of non-increasing weights for each
ranking position, the generic elements almw and blmw are given by:

almw = alm · wl ; blmw = blm · wl (3)

It is worth to pinpoint that the square alternative-to-alternative matrix (alm)n×n is antisym-
metric so that, in order to reduce the computational burden, Eqs. 1 and 2 are applied only on the
elements of the strictly upper triangular matrix. Anyway, the weighted square alternative-to-
alternative matrix can be easily obtained by filling in the empty cells with their antisymmetric
value.

The position weights, modeling the cost of swapping two alternatives according to their
position in the ranking, can be arbitrary defined, constrained to

∑
l wl = 1. The posi-

tion weighting scheme here adopted, derived from the radical weighting scheme adopted in
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Table 1 Estimates of total
ranking variation and its
components

Variation Formula d f

V̂k
1
M2 · ∑M

i, j=1 Lik jk M − 1

V̂TOT
1

(MK )2
· ∑M

i, j=1
∑K

h,k=1 Lih jk MK − 1

V̂WG
1
K · ∑K

k=1 V̂k K (M − 1)

V̂BG V̂TOT − V̂WG M(K − 1)

agreement studies [7], is proportional to the distance between positions and is formulated as
follows:

wl = 1 −
√

l − 1

n − 1
. (4)

In order to compare several groups of subjects for testing ranking heterogeneity, the total
variation among the rankings provided by all subjects (i.e. K groups of M subjects) V̂TOT,
formulated as proposed in Vanacore et al. [23], is split—according to Rao’s apportionment
of diversity [19]—into within V̂WG and between group V̂BG components. The inter-group
ranking heterogeneity is measured through the index of segregation power ISP [6], defined
as the quotient of normalized between-group variation (V̂BG) to normalized total variation
(V̂TOT):

ISP = V̂BG/d fBG

V̂TOT/d fTOT
. (5)

Let Lih jk be the distance between the rankings provided by i
th subject belonging to group

h and j th subject belonging to group k, the total ranking variation and its components are
formulated as shown in Table 1. The readers can refer to [22] for more computational details.

It is worth noting that although V̂BG/V̂TOT is always less than 1, the ISP value could
exceed 1 since the ratio d fTOT/d fBG = (MK − 1)/(MK − M) ≥ 1 with M ≥ 2.

3 Monte Carlo simulation

TheMonte Carlo simulation study aims at investigating: (1) the performance of the weighted
normalized angular distance metric in discriminating dissimilarity between rankings; (2) the
impact of the position weights on the performance of the procedure for testing preference
heterogeneity. The results are compared against those obtained for the normalized angular
distance metric without position weights. The algorithm for Monte Carlo simulations have
been implemented using Mathematica (Version 11.0, Wolfram Research, Inc., Champaign,
IL, USA).

3.1 Discriminating performance of the weighted normalized angular distance
metric

Let us consider two subjects i and j expressing their preferences about n = 5, 6, 7, 8, 9, 10
alternatives; the n!×n! normalized pairwise angular distances Li j and Li jw are represented in
the box-plots of Fig. 1. It is evident that the introduction of position weights produces a wider
range of distance values, allowing to better discriminate dissimilarity between rankings.
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Fig. 1 Box-plot of weighted (in orange) and unweighted (in blue) normalized pairwise angular distance metric
for n alternatives

The discriminating performance of Li jw has been investigated and compared against that of
Li j focusing on rankings differing each other for only one swap. Specifically, two factors have
been considered: swap position with two levels (i.e. at the top and at the tail of the ranking)
and swap dimension with four levels (i.e. between adjacent, 1-step apart, 2-steps apart and
3-steps apart positions), for a total of 2× 4 = 8 simulated scenarios for n = 5, 6, 7, 8, 9, 10
alternatives. The distance values Li j and Li jw are plotted in Fig. 2 for all the investigated
scenarios.

The plotted curves show that both Li j and Li jw decrease with the number of ranked
alternatives and increase with the swap dimension; however, it is worth to note that only the
weighted normalized angular distance metric takes into account the position of the swap.
Indeed, for any swap dimension, Li jw is about three times higher if the swap is at the top
preferences rather than if it is at the tail; vice-versa, Li j does not depend on swap position,
being its value the same either the swap is at the top or at the tail of the ranking.

3.2 Statistical power of the inter-group preference heterogeneity testing procedure

Let us consider M subjects expressing their preferences about n alternatives. In order to
simulate different levels of inter-group heterogeneity, preferences have been generated using
the distance-based model developed by Diaconis [4], which assumes that the probability of
each ranking depends on its distance to a chosen modal ranking, to which it is expected most
of rankings are close.

Different samples of rankings have been simulated by varying either the modal ranking
or the dispersion parameter λk for the kth group of subjects; specifically, λk controls the
probability of each ranking and higher differences among λk produce higher heterogeneity
among the rankings provided by different groups of subjects.
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Fig. 2 Weighted (in orange) and unweighted (in blue) normalized pairwise angular distance metric for 1 swap
of adjacent, 1-step apart, 2-steps apart and 3-steps apart positions at the top (solid lines) or at the tail (dashed
lines) of the ranking of n alternatives

The case of K = 3 groups of M subjects has been considered and 108 scenarios have been
simulated differing for group size, number of alternatives to rank and system of hypotheses.
The group sizes simulated for this study are M = 10, 20, 50 subjects and the number of
alternatives to rank are n = 5, 10; these values have been selected in order to represent a
range of values that might be seen in practice in a survey [18].

The groups have beenfirstly simulated having all the same dispersion parameterλk , chosen
in the range [1 ÷ 50], but different modal ranking with one swap at the top of the ranking
(i.e. first simulation setting). Specifically, 7 different λk values have been considered, that
is λk = 1, 3, 5, 10, 20, 35, 50, so as to represent as many alternative hypotheses of growing
levels of inter-group ranking heterogeneity.

Then, the groups have been simulated eachwith a different dispersion parameterλk chosen
in the range [1÷ 30] but having all the same modal ranking (i.e. second simulation setting).
Specifically, 11 combinations of different values of λk have been considered so as to represent
as many alternative hypotheses H1 (see Table 2) of growing levels of inter-group ranking
heterogeneity, obtained by choosing combinations of λk values characterized by increasing
values of maximum difference in ranking dispersion (Δλk).

For each scenario, R = 2000 data sets with K groups of M rankings have been gener-
ated, the distances between rankings have been measured via the weighted and unweighted
normalized pairwise angular distance metrics [21] and the ISP has been assessed.

The simulation procedure has been developed through the following steps:

1. set a modal ranking and the dispersion parameters λk for each of the K groups of size M
(M = 10, 20, 50);
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Table 2 Values of λk identifying the nine alternative hypotheses H1 of the second simulation setting

(λ1, λ2, λ3) (1,2,4) (1,5,6) (1,4,8) (1,5,10) (1,5,12) (5,10,18) (5,10,20) (1,5,18) (1,5,20) (5,10,30) (1,5,30)

Δλk 3 5 7 9 11 13 15 17 19 25 29

Table 3 Critical values Icr of the indicator ISP for the significance level 1 − α = 0.95, computed with and
without position weights considering K = 3 groups of M subjects ranking n alternatives

λ1 = λ2 = λ3 = 1 M = 10 M = 20 M = 50 M = 10 M = 20 M = 50

n = 5 1.63 1.67 1.70 1.53 1.53 1.53

n = 10 1.34 1.36 1.36 1.28 1.28 1.26

1 3 5 10 20 35 50
λk0.0

0.2

0.4

0.6

0.8

1.0
1- β

n = 5

1 3 5 10 20 35 50
λk0.0

0.2

0.4

0.6

0.8

1.0
1- β

n = 10

Fig. 3 Statistical power curves when testing alternative hypotheses H1 with increasing dispersion parameter
λk against the null hypothesis H0: λ1 = λ2 = λ3 = 1, for n = 5 and n = 10 alternatives, M = 10 (short-
dashed lines), M = 20 (long-dashed lines) and M = 50 (solid lines) subjects, with (in orange) and without (in
blue) position weights

2. sample the rankings provided by the M subjects of the K groups over n alternatives
according to the framework of distance-based models;

3. compute the weighted normalized distance Li jw for each pair of subjects (Eq. 2);
4. assess the total ranking variation and its within and between components (see Table 1);
5. compute the ISP index (Eq. 5);
6. repeat R times steps 1–5;
7. for a significance level α, define the critical value Icr as the (1 − α) percentile of the

empirical sampling distribution of ISP built under the assumption of homogeneity;
8. compute the statistical power for each alternative hypothesis as:

1 − β = 1

R

R∑

r=1

I [ISPr > Icr |H1]; (6)

9. compute the unweighted normalized angular distance metric Li j for each pair of subjects
(Eq. 1) with the outputs of step 2;

10. repeat steps 4-8 adopting the weighted distance values Li jw .

For α = 0.05, the values of Icr for the null hypothesis H0: λ1 = λ2 = λ3 = 1 are reported
in Table 3; whereas the values of statistical power for the two testing procedures for each
tested hypothesis H1 are reported in Tables 4 and 5, respectively.
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Table 4 Statistical power when testing alternative hypotheses with increasing dispersion parameter λk for
different n and M values with (on the left) and without (on the right) position weights against the null
hypothesis H0: λ1 = λ2 = λ3 = 1

With position weights Without position weights

λk M = 10 M = 20 M = 50 M = 10 M = 20 M = 50

n = 5 1 0.136 0.189 0.421 0.064 0.080 0.144

3 0.697 0.956 1.000 0.225 0.472 0.969

5 0.991 1.000 1.000 0.650 0.942 1.000

10 1.000 1.000 1.000 1.000 1.000 1.000

20 1.000 1.000 1.000 1.000 1.000 1.000

35 1.000 1.000 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000 1.000 1.000

n = 10 1 0.067 0.076 0.151 0.048 0.063 0.073

3 0.235 0.416 0.865 0.061 0.089 0.192

5 0.575 0.885 0.999 0.103 0.171 0.491

10 0.994 1.000 1.000 0.349 0.708 1.000

20 1.000 1.000 1.000 0.978 1.000 1.000

35 1.000 1.000 1.000 1.000 1.000 1.000

50 1.000 1.000 1.000 1.000 1.000 1.000

3 5 7 9 13 15 19 25 29 k0.0

0.2

0.4

0.6

0.8

1.0
1- β

n = 5

3 5 7 9 13 15 19 25 29
Δλk0.0

0.2

0.4

0.6

0.8

1.0
1- β

n = 10

Δλ

Fig. 4 Statistical power curves when testing alternative hypotheses H1 with increasing difference in ranking
dispersion (i.e. Δλk ), for n = 5 and n = 10 alternatives, M = 10 (short-dashed lines), M = 20 (long-dashed
lines) and M = 50 (solid lines) subjects, with (in orange) and without (in blue) position weights

The results highlight that the adoption of position weights for assessing the dissimilarity
between rankings makes the statistical power of the testing procedure for inter-group hetero-
geneity increase. The improving power rate is more evident when the modal ranking changes
across groups (i.e. first simulation setting) rather than with groups having the same modal
ranking but different dispersion parameters (i.e. second simulation setting).

In the first simulation setting (see Fig. 3 and Table 4), for n = 5 a small difference in power
rates is observed between weighted and unweighted distances; in both cases the statistical
power is higher than 80% with small and homogeneous groups of subjects (i.e. starting from
a λk value equal to 3 for 10 < M < 20). The difference in power rates between weighted
and unweighted distances increases with the number of alternatives. For n = 10, when the
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Table 5 Statistical power when testing alternative hypotheses with increasing difference in ranking dispersion
(Δλk ) against the null hypothesis H0: λ1 = λ2 = λ3 = 1 for different values of n and M with (on the left)
and without (on the right) position weights

With position weights Without position weights
Δλk M = 10 M = 20 M = 50 M = 10 M = 20 M = 50

n = 5 3 0.167 0.310 0.742 0.070 0.128 0.168

5 0.439 0.766 0.995 0.165 0.363 0.695

7 0.572 0.919 1.000 0.334 0.706 0.986

9 0.752 0.981 1.000 0.631 0.953 1.000

11 0.857 1.000 1.000 0.881 0.998 1.000

13 0.901 1.000 1.000 0.975 1.000 1.000

15 0.949 1.000 1.000 0.992 1.000 1.000

17 0.983 1.000 1.000 0.995 1.000 1.000

19 0.991 1.000 1.000 0.999 1.000 1.000

25 0.997 1.000 1.000 1.000 1.000 1.000

29 1.000 1.000 1.000 1.000 1.000 1.000

n = 10 3 0.089 0.127 0.312 0.046 0.064 0.130

5 0.169 0.326 0.746 0.054 0.092 0.215

7 0.264 0.505 0.933 0.073 0.142 0.370

9 0.399 0.715 0.994 0.093 0.209 0.586

11 0.530 0.874 0.999 0.136 0.334 0.790

13 0.443 0.842 1.000 0.182 0.443 0.935

15 0.555 0.931 1.000 0.248 0.598 0.986

17 0.861 0.998 1.000 0.353 0.792 0.995

19 0.919 0.999 1.000 0.484 0.893 1.000

25 0.953 1.000 1.000 0.815 0.997 1.000

29 0.999 1.000 1.000 0.955 1.000 1.000

position weights are included the statistical power is higher than 80% with homogeneous
groups of subjects (i.e. starting from λk = 3 for M = 50 or λk = 5 for 10 < M < 20);
whereas, when the weights are not included, the statistical power reaches 80% only with
more heterogeneous groups of subjects (i.e. λk ≥ 10).

The results obtained under the second simulation setting (see Fig. 4 and Table 5) reveal
that in the case of n = 5 alternatives the increase in statistical power due to the inclusion
of position weights is more evident with groups of M > 10 subjects; whereas in the case of
n = 10 alternatives the increase in statistical power is evident for any group size.

For n = 5 alternatives, the adoption of position weights makes the testing procedure
adequately powered in detecting inter-group ranking heterogeneity even for small group
size (i.e. M = 10) with Δλk ≈ 10. In scenarios with a fairly large set of alternatives, like
n = 10, the statistical power of the testing procedure slightly worsens and with small groups
of M = 10 subjects it reaches 80% when Δλk ≈ 17. Nevertheless, the statistical power
can be improved by increasing the group dimension, reaching 80% with groups of M = 50
subjects with Δλk ≈ 4 for n = 5 or with Δλk ≈ 6 for n = 10.
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4 Conclusions

In this paper a position weighted variant of the normalized pairwise angular distance metric
has been proposed.

The performance of the proposedmetric in assessing ranking dissimilarity and inter-group
heterogeneity has been investigated by an extensive Monte Carlo simulation study. The crit-
ical values of the ISP index under the null hypothesis of inter-group ranking homogeneity
have been obtained for different scenarios and the statistical power has been computed for
increasing level of heterogeneity by varying either themodal ranking or the dispersion param-
eter.

The simulation results have been compared against those obtained for the unweighted
distance metric. Li j and Li jw decrease with the number of alternatives to rank and are both
positively related to swap dimension; only Li jw accounts for the position of the swap taking
on higher values if the swaps are at the top of the ranking. Whatever the adopted metric, the
statistical power of the testing procedure improves for increasing group size and decreasing
number of alternatives to rank and it reaches 80%evenwith as fewasM = 10 subjects ranking
n = 5 alternatives. The inclusion of position weights makes the performance of the inter-
group heterogeneity testing procedure improve; the difference in statistical power is more
evident when the groups have different modal ranking and the same dispersion parameter
rather than when the groups have the same modal ranking but differ for the dispersion
parameter.
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