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Abstract
In the first part of the paper, we trace the development of robust statistics through its main
contributions which have penetrated mainstream statistics. The goal of this paper is neither to
provide a full overviewof robust statistics, nor tomake a complete list of its tools andmethods,
but to focus on basic concepts that have become standard ideas and tools in modern statistics.
In the second partwe focus on the particular challenge provided by high-dimensional statistics
and discuss how robustness ideas can be used and adapted to this situation.

Keywords Data science · Statistical models · Neighborhoods of a model · Game theory ·
Minimax approach · Huber function · Statistical functionals · Gâteaux derivative · Fréchet
derivative · Influence function · Breakdown point · M-estimators · Generalized Method of
Moments · Generalized Estimating Equations · High-dimensional statistics · Saturated
models · Penalized methods · Oracle properties

1 Introduction

Robust statistics deals with deviations from ideal models and their dangers for correspond-
ing inference procedures. Its primary goal is the development of procedures which are still
reliable and reasonably efficient under small deviations from the model, i.e. when the under-
lying distribution lies in a neighborhood of the assumed model. Therefore, one can view
robust statistics as an extension of parametric statistics, taking into account that parametric
models are at best only approximations to reality.

If we consider the seminal papers [18,24,51] as the beginning of the systematic develop-
ment of the theory and applications of robust statistics, the field is about 60 years old. During
the period 1978− 2017 according to the Current Index to Statistics, we can find about 8000
papers about robust methods in core journals in statistics and related fields, 2000 of which in
the last period 2008−2017, i.e. 200 per year. Many more papers have been and are published
in journals in applications fields.Metron has had its share during its 100 years of existence.
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This shows not only that the field is still active, but more importantly that it has penetrated
mainstream statistics. In order to evaluate its impact to the general theory and practice of
statistics, we do not provide an extensive review of the field, but we focus on basic ideas, con-
cepts, and tools developed early which are the backbone of robust statistics and have become
standard tools in modern statistics and have had an important impact in its development.

The paper is organized as follows. In Sect. 2 we list and discuss the main contributions
of robust statistics which have penetrated mainstream statistics and have become standard
ideas and tools in modern statistics. Section 3 is devoted to the particular challenge provided
by high-dimensional statistics and discusses the role of robust statistics in this situation. In
the last section we draw some conclusions.

2 Main contributions of robust statistics

In this section we focus specifically on some key ideas developed in the framework of
robust statistics and analyze their impact on modern statistics and data science. This is not
a full review of robust statistics, but rather a list of basic ideas which originated within the
robustness literature and have become standard ideas in modern statistics.

A large and rich literature on robust statistics has been developed in the past decades. An
account of the basic general theory can be found in the classical books [27] (2nd edition
[28]), [20,38]. Additional general books include, [40,42,44,48,56] Ch. 5, [10,17,23,30], and
the quantile regression approach in [31]. A recent review is provided in [5].

2.1 Models as approximations

It is a basic tenet of science that models are only approximations to reality. However, perhaps
because of the great success of statistical theory and practice starting from Fisher and con-
tinuing in the forties and the fifties, the implications of the sometimes stringent assumptions
underlying the derivation of optimal statistical procedures have been somewhat neglected.

Tukey’s seminal paper [51] opened the eyes of the statistical community about the dramatic
loss of efficiency of optimal procedures in the presence of small deviations from the assumed
stochastic model. Of course, good data analysts had been aware in the past of this danger, but
Tukey’s paper called for a systematic and theoretical investigation of this problem with the
goal to develop procedures which are robust against such deviations. Perhaps this aspect is
becoming even more important nowadays with the flourishing of (new) procedures and tools
to analyze complex data.

2.2 Data analysis

Robustmethods provide oftenmultiple solutions to a given statistical (data-analysis) problem.
For instance and at the very least, the data analyst has to decide how much robustness and
efficiency s(he) would like to impose on a given procedure. This opens the door to possible
multiple analyses of a statistical (data analysis) problem, a point amongmany others, stressed
by Tukey in [52], a path-breaking paper on the future of data analysis. Almost 60 years later,
this is an important issue in the present discussion about the role of data science; for a general
discussion, see [11]. Incidentally, Tukey’s paper was unique also in its form: it was much
longer (67 pages) than a typical paper published in the Annals of Mathematical Statistics and
it contained almost no explicit mathematical development.
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Fig. 1 The Huber function (c = 1.34)

Sometimes the possibility to provide different analyses to a given data-analytic problem
is viewed as a negative point. Notice however, that the seemly uniqueness and optimality
of a classical statistical procedure such as the least squares estimator in the linear model, is
often obtained by paying a high price either in terms of stringent stochastic assumptions (e.g.
normality of the errors) or by heavy restrictions on the class of admissible procedures (e.g
restriction to linear estimators) as stated by the Gauss–Markov theorem.

2.3 Theminimax approach

[24] was a seminal paper and contains several important contributions. Among others,
Huber provided an elegant game theoretic solution in the location model, by formalizing the
robustness problem as a game between the Nature, which chooses a distribution G in the
neighborhood Fε(F) of the model F (see (2)) and the Statistician, who chooses an estimator
for the location parameter in the class {ψ} of M−estimators (see (1)), where the payoff is the
asymptotic variance V (ψ,G) of the estimator. This game has a saddlepoint (G̃, ψ̃), where
ψ̃ is the Maximum Likelihood Estimator under the least favorable distribution G̃, i.e. the
distribution minimizing the Fisher information in the neighborhood. Therefore, there exists
a minimax estimator ψ̃ , which solves the problem

inf
ψ

sup
G∈Fε

V (ψ,G),

i.e. it minimizes the worst possible asymptotic variance of an M−estimator in the neighbor-
hood Fε(F).

When F is the normal distribution, ψ̃ is the so-called Huber function

ψc(r) =
⎧
⎨

⎩

r |r | ≤ c

c · sign(r) |r | > c,

shown in Fig. 1 and the corresponding M−estimator is the Huber estimator.
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This formalization of the problem through minimax theory was further exploited in [25]
to formalize robust testing, with an elegant interpretation in the framework of capacities and
upper and lower probabilities; see [29].

2.4 Statistical functionals

Statistical functionals play a central role in Hampel’s approach to robustness; see [18,19].
The basic idea is to view statistical procedures as functionals of an underlying distribution
G and study their behavior in a neighborhood of a model distribution F .

Derivatives of functionals, such as Gâteaux and Fréchet derivatives, are used to linearize
a functional by means of the first term of a von Mises expansion ([54]) and to describe its
local stability. In particular, the influence function (the Gâteaux derivative in direction of a
point mass) is a key tool to investigate the robustness properties of a statistical procedure and
to construct new robust methods. Its boundedness is crucial to achieve local robustness. The
importance of the influence function goes beyond its role in robust statistics. For instance, it
has a strong connectionwith the jackknife and it appears as linearization of any asymptotically
normal estimator and therefore in its asymptotic variance. These ideas have been extended to
semiparametric and nonparametric models; see [8]. Statistical functionals are key concepts
in modern statistics, e.g. in nonparametric statistic and in the bootstrap and other resampling
methods.

2.5 M-estimators

M-estimators are solutions of estimating equations ([16]) defined at the population level by
orthogonality or moment conditions

EF [ψ(X;β)] = 0. (1)

Huber ([24,26,27]) defined M-estimators as the building blocks to construct new robust
estimators and investigated in detail their statistical properties. Noteworthy is his proof in
[26] of the consistency and asymptotic normality of multivariate M-estimators under very
weak assumptions. In this context appears the so-called sandwich estimator of the asymptotic
covariance matrix of an M-estimator; see [13,26,57].

Extensions and further developments of M-estimators include the Generalized Method of
Moments (when dim(ψ) > dim(β) in (1)) by Hansen ([21]), a backbone of modern econo-
metrics because (1) are often derived from economic theory to characterize economicmodels,
and Generalized Estimating Equations by Liang and Zeger([34]), an important technique for
the analysis of longitudinal data in biostatistics.

2.6 The breakdown point

The breakdown point ([18]) is a measure of global reliability for a statistical procedure and
gives the worst percentage of contamination that a procedure can tolerate before it becomes
arbitrarily biased. It provides a worst-case scenario and it can be obtained by a typical back-
of-the-envelope calculation.

This concept has opened up the search for procedures with high breakdown point, which
allow to separate the structure encompassing the bulk (or the majority) of data from that
possibly forming an important minority group. Therefore, these are useful exploratory tools
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that allow to discover patterns in the data. Their development has revisited old concepts such
as the depth of a data cloud ([35,43,53]) and has open up new research directions in different
areas with an important impact in data analysis and computational statistics; see e.g. the
forward search in [2,3].

2.7 Teaching

In viewof the pointsmentioned above, it seems important to include basic robustness concepts
both in undergraduate and graduate curricula in statistics and data science as well as in fields
of applications. This is more effective and natural than treating robust statistics as a special
(exotic) and advanced topic at the graduate level. The mathematical treatment can always
be adapted to the level of the course and shouldn’t represent an obstacle to convey the basic
ideas and tools.

For instance the influence function and the breakdown point can be viewed as familiar
concepts of calculus, where the former is a derivative that can be used to linearize complicated
functions, whereas the latter describes a pole of a function.

3 A challenge: high-dimensional statistics

Large and complex data sets are increasingly common in science and we face the challenge
to provide suitable procedures for analyzing these data and to investigate their statistical
properties. In this framework (e.g. when the number of variables diverges with the sample
size) deviations from the assumptions can be expected to have a larger impact on statistical
procedures and robust statistics is likely to play an important role; see the discussion about
stability in [58].

3.1 Robustifying penalizedmethods

Let us first focus on penalized methods, which have been proved useful in particular for esti-
mation andmodel selection in high-dimensional problems and have been studied extensively.
Good reviews on the topic are provided by [15,50], and [22] and a more detailed discussion
can be found in [9]. In particular, many results concerning e.g. oracle properties are available
in linear regression assuming gaussian or sub-gaussian errors.

From the experience with methods without penalization, it is intuitively clear that penal-
ized estimators based on classical likelihoods (such as Lasso based on a square loss function
in linear regression) will be affected by outlying points and will suffer robustness problems.
It is then natural to try and robustify these methods by modifying their loss function. Along
these lines, several authors proposed robust versions of Lasso in linear models: [1] proposed
a trimmed version, [33] provided screening method based on rank correlations, [7] proposed
the Lasso penalty for quantile regression, [14] extended the latter by proposing an adaptive
penalized estimator, and [37] and [36] used a redescending loss. All these papers include
simulation studies that indicate that these robustified versions, are indeed robust under some
type of deviations from the stochastic assumptions. However, there is not much work on the
theoretical characterization of robustness for these and more general methods. Some excep-
tions are [1,55], where the authors study the breakdown point of some penalized methods
for linear models, [4], where a rigorous definition of the influence function of penalized
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M−estimators is provided, and [49], where the theoretical properties of an adaptive version
of the Huber regression estimator is investigated.

From a theoretical point of view, it is important to investigate the behavior of penalized
methods not only when the errors follow the distribution of the classical model F , but when
it lies in a ε-neighborhood of it:

Fε(F) = {G = (1 − ε)F + εH , H an arbitrary distribution}. (2)

Under appropriate conditions for the penalized M−estimator (including the boundedness
of its score function and its derivative), if this bias is not too large and the minimum signal
is large enough, we obtain correct support recovery and bounded bias, i.e. a robust penalized
M−estimator behaves as well as a robust oracle by providing

– sparsity: β̂2 = 0, for large n with high probability, where β2 is the zero component of
the parameter β;

– bounded bias: in �∞-norm: ‖β̂1 − β1‖∞ = O(n−ζ log n + ε), where β1 is the non-zero
component of the parameter β;

see [6]. Notice that the score function of classical penalized methods such as Lasso is
unbounded. Thus, their bias in �∞-norm in the neighborhood is infinity.

3.2 Saturation in linear models

A complementary perspective between robustness and sparsity in linear models is provided
by the so-called saturated regression model (or mean-shift outlier model):

yi =
d∑

j=1

xi jβ j + γi + εi , i = 1, . . . , n

where d < n and the γi are nonzero when observation i is an outlier.
It turns out that minimizing

n∑

i=1

⎛

⎝yi −
d∑

j=1

xi jβ j − γi

⎞

⎠

2

+
n∑

i=1

pλ(|γi |)

over β and γ for a given penalty pλ(·), we obtain an estimator of β matching the one obtained
by minimizing

n∑

i=1

ρ

⎛

⎝yi −
d∑

j=1

xi jβ j

⎞

⎠

for some loss function ρ(·). This is an M−estimator for β with score function ψ(·), the
derivative of ρ(·). For instance, the Huber estimator is obtained by using the Lasso penalty.

This idea goes back to [45] (in the case of the Huber estimator), [12,39,46,47] (in the
context of approximate message passing). It has been also successfully exploited by David
Hendry and coauthors in the econometrics literature (Autometrics) as a variable selection
tool and more recently as an outlier detection technique.

In the past few years this approach has become a popular tool in the Machine Learning
community to enforce robustness in available algorithms. We believe that its connection to
M−estimation opens the door to a beneficial cross-fertilization between the sparse modeling
literature and robust statistics.
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4 Conclusion

Robust statistics has contributed in an important way to the development of modern statistics
by providingmany ideas, concepts, and tools that are now part of mainstream statistics. There
is no doubt that robustness will follow the present development of statistics and data analysis
and face the samemultiple challenges. A typical case is the development of robust procedures
for high-dimensional and complex problems bymachine learning algorithms; see the method
of median-of-means by [32] and the method of robust gradient estimation by [41].
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