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Abstract This paper deals with linear models for a time-dependent response and explana-
tory variables in a high-dimensional setting. We account for the time dependency in the data
by explicitly adding autoregressive terms to the response variable in the model together with
an autoregressive process for the residuals. We present a penalized likelihood approach for
parameter estimation and discuss its theoretical properties. Finally, we show the successful
application of the proposed methodology on simulated data and on two real applications,
where we model air pollution and stock market indices, respectively. We provide an imple-
mentation of themethod in the R packageDREGAR, freely available on CRAN, http://CRAN.
R-project.org/package=DREGAR.

Keywords Time series · High-dimensional models · Penalized likelihood

1 Introduction

This paper deals with fitting a time series-regression model using l1 regularized inference. In
the context of linear models, l1 penalized approaches have received great interest in recent
years as they allow performing variable selection and parameter estimation simultaneously
for any data, including high-dimensional datasets, where classical approaches for parameter
estimation break down, e.g. [9,13,19,21,25]. In [25], it is shown that a model where penalties
are adapted to each individual regressor enjoys oracle properties.Most of the advances in reg-
ularized regression models have been for the case of independent and identically distributed
data. A recent line of research has concentrated on regularized models in time dependent
frameworks. Amongst these, [22] showed the successful application of l1 penalised infer-
ence in the context of autocorrelated residuals for a fixed order, by proposing the model
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yt =
r∑

i=1

x ′
tiβi +

q∑

j=1

θ jεt− j + et

and studied its asymptotic properties. We refer later to this model as REGAR(q). Nardi and
Rinaldo [15] studied the theoretical properties of a regularized autoregressive process on
Yt for both low and high dimensional cases, whereas [1,14,20] studied the l1 estimation
of vector autoregressive models. Recently, [6] proposed an alternative to l1 penalisation
for vector autoregressive (VAR) models in the high-dimensional framework. In [1,6,15,
20], no exogenous variables are included in the model. In contrast to this, [12] studied the
asymptotic properties of adaptive lasso in high dimensional time series models when the
number of exogenous variables increases as a function of the number of observations and
[17] considered the case ofVARmodelswith exogenous variables.While bothmodels cover a
lagged regression in the presence of exogenous variables, they do not consider autocorrelated
residuals. Recently, [23] proposed an extension of the model in [22] by adding a moving
average term as follows

yt =
r∑

i=1

x ′
tiβi + εt , εt =

q∑

j=1

θ jεt− j + et +
q∑

j=1

φ j et− j .

We refer later to this model as REGARMA(p,q). Similar to [22], they proved the consistency
of the model in low-dimensional cases. Despite the generality of this model, considering an
ARMA process for the errors results in a complex model with a challenging implementation.

In this paper, we propose to account for the time dependency in the data by explicitly
adding autoregressive terms of the response variable in the linear model, as in [15], as well
as an autocorrelated process for residuals, as in [22], in order to capture complex dynamics
parsimoniously. In particular, given fixed orders p and q , we propose the model

yt = x ′
tβ +

p∑

j=1

φ j yt− j + εt , εt =
q∑

i=1

θiεt−i + et , (1)

Wename the resultingmodelDREGAR(p,q). Themodel is essentially a double autoregressive
model with unbalanced weights for response and explanatory variables. To show this, we
rewrite the model in (1), the REGARMAmodel of [23] and the REGARmodel of [22] using
the backward shift operator L:

DREGAR : L(θ)L(φ)yt = L(θ)x ′
tβ + et ,

REGARMA : L(θ)yt = L(θ)x ′
tβ + L(φ)et ,

REGAR : L(θ)yt = L(θ)x ′
tβ + et ,

where L(.) represents a stationary polynomial of L and L(θ )L(φ) represents a special case
of an AR(p + q) process. From these equations, one can see how REGAR and REGARMA
impose the same autoregressive structure on both response and covariates, whereasDREGAR
assumes different structures on each of them. We found this aspect to be particularly advan-
tageous on a number of analyses of real datasets, where DREGAR fits the data better than
competitive models, with two of these examples reported in Sect. 6. In contrast to REGAR
and DREGAR, REGARMA contains a moving average process on the errors. The MA com-
ponent, however, induces a higher level of complexity in the parameter estimation and in the
proofs of the theoretical results.

All three models belong to the general framework of ARMAX [11], which is common
in the system identification and signal processing literature [16] where inference is typically
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Penalised inference for lagged dependent regression in the presence… 51

performed in the low-dimensional case. The focus of this paper is on statistical inference
for the DREGAR model, in particular for the high-dimensional case where maximum likeli-
hood estimation fails. In particular, we devise a penalised likelihood approach for parameter
estimation, in the same spirit to the REGAR and REGARMA contributions. In Sect. 2, we
formulate the model and present an l1 penalized likelihood approach for the estimation of
the parameters. In Sect. 3, we prove the asymptotic properties of the model DREGAR(p,0).
In Sect. 4, we discuss the implementation of DREGAR. A simulation study, given in Sect. 5,
will accompany the theoretical results. In Sect. 6 we apply the model to two real datasets,
one on air pollution and another on the stock market, and compare the fit of the model with
REGARMA and REGAR models. Finally, we draw some conclusions in Sect. 7.

2 L1 penalised estimation

The general form of DREGAR consists of a lagged response variable, covariates and auto-
correlated residuals. Consider the following Gaussian DREGAR model of order p and q ,

yt = x ′
tβ +

p∑

j=1

φ j yt− j + εt , εt =
q∑

i=1

θiεt−i + et , et
iid∼ N (0, σ 2), t = 1, 2, . . . , T

where x ′
t is the t th row of the design matrix containing r predictors, X ′

T×r ; {yt } and {εt }
follow stationary time series processes, that is all roots of the polynomials 1 − ∑p

i=0 φi Li

and 1−∑q
i=0 θi Li are unequal and outside the unit circle; et , t = 1, . . . , T are independent

and identically normally distributed noises with mean zero and known finite fourth moments,
and p + q < T . Moreover, we assume that the error and explanatory variables are mutually
independent for all time points. To remove the constants from the model we follow the
literature on regularized models, e.g. [7,21], and standardize the covariates to have zero
mean and unit variance and the response to zero mean.

Given thefirst T◦ = p+q observations,maximizing the l1 penalized conditional likelihood
of the model is equivalent to minimizing

Qn(Θ) =
T∑

t=T◦+1

⎛

⎝(yt − x ′
tβ) −

p∑

i=1

φi yt−i −
q∑

j=1

θ jεt− j

⎞

⎠
2

+
r∑

i=1

λ|βi |

+
p∑

j=1

γ |φ j | +
q∑

k=1

τ |θk | (2)

where λ, γ, τ are tuning parameters andΘ = (β, φ, θ) is the vector of unknown parameters.
Following the literature, and given the superior properties of adaptive lasso [25], we also
propose an adaptive version of the likelihood

Q∗
n(Θ) =

T∑

t=T◦+1

⎛

⎝(yt − x ′
tβ) −

p∑

i=1

φi yt−i −
q∑

j=1

θ jεt− j

⎞

⎠
2

+
r∑

i=1

λ∗
i |βi |

+
p∑

j=1

γ ∗
j |φ j | +

q∑

k=1

τ ∗
k |θk | (3)

where λ∗
i , γ

∗
j , τ

∗
k , i = 1, 2, . . . , r; j = 1, 2, . . . , p; k = 1, 2, . . . , q are tuning parameters.
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2.1 Matrix representation of the model

For convenience, we write the model in matrix representation. Let H ′ = (H(p), H(q), X ′) be
a n× (p+q + r) matrix including lags of response (H(p)), residuals (H(q)), and explanatory
variables (X ′). Let Θ = (φ, θ, β)′ denote the vector of corresponding parameters, e′ =
(eT0+1, eT◦+2, . . . , eT ) be the vector of errors, T◦ = p + q and n = T − T◦, as previously
defined. Then, in matrix form, the model can be written as Y = H ′Θ +e and the l1 penalized
conditional likelihood given the first T0 observations is equivalent to

Qn(Θ) = L(Θ) + λ′|β| + γ ′|φ| + τ ′|θ |,
where L(Θ) = e′e, λ′ = {λ}1×r , γ

′ = {γ }1×p, τ
′ = {τ }1×q . Similarly, the adaptive form of

the model is given by

Q∗
n(Θ) = L(Θ) + λ∗′ |β| + γ ∗′ |φ| + τ ∗′ |θ |, (4)

where the parameters are given by λ∗′ = (λ∗
1, λ

∗
2, . . . , λ

∗
r ), γ

∗′ = (γ ∗
1 , γ ∗

2 , . . . , γ ∗
p ), τ ∗′ =

(τ ∗
1 , τ ∗

2 , . . . , τ ∗
q ), Θ = (β, φ, θ)′.

3 Theoretical properties of the model

In order to study the theoretical properties of DREGAR and adaptive-DREGAR, we define
the true coefficients by Θ◦ = (β◦, φ◦, θ◦)′ and assume that some of the coefficients are
zero. The indices of non-zero coefficients in each group of coefficients, β, φ and θ , are
denoted by s1, s2 and s3 respectively, whereas sc1, s

c
2, s

c
3 are the complementary sets and

contain the indices of zero coefficients. We also define β◦
s1 , φ

◦
s2 , θ

◦
s3 and their correspond-

ing (DREGAR) estimations by β̂s1 , φ̂s2 , θ̂s3 . Similarly, adaptive-DREGAR estimations are
denoted by β̂∗

s1 , φ̂
∗
s2 , θ̂

∗
s3 . Finally, different combinations of model parameters are going to

be used, with obvious meaning, in particular Θ◦
1 = (β◦

s1 , φ
◦
s2 , θ

◦
s3)

′, Θ◦
2 = (β◦

sc1
, φ◦

sc2
, θ◦

sc3
)′,

Θ̂1 = (β̂s1 , φ̂s2 , θ̂s3)
′, Θ̂2 = (β̂sc1

, φ̂sc2
, θ̂sc3

)′, Θ̂∗
1 = (β̂∗

s1 , φ̂
∗
s2 , θ̂

∗
s3)

′, Θ̂∗
2 = (β̂∗

sc1
, φ̂∗

sc2
, θ̂∗

sc3
)′.

3.1 Assumptions

To prove the theoretical properties of the estimators, in line with the literature, we make use
of the following assumptions:

(a) The response variable is assumed to be stationary and ergodic with finite second order
moment. Further, we assume that the two polynomials 1−∑p

i=1 φi Li and 1−∑q
i=1 θi Li

have all the roots unequal and outside the unit circle.
(b) Covariates are assumed to be mutually independent of each other and of the error term.

Additionally, we assume that x.s, s = 1, . . . , r are generated from stationary and ergodic
processes.

(c) et s are i.i.d Gaussian random variables with finite fourth moments.
(d) 1

n X
′X a.s→ E(X ′X) < ∞ and max1≤i≤r xi x ′

i < ∞.

The first three assumptions guarantee that the mean and variance of the whole system remain
unchanged over time. The last assumption guarantees the existence and convergence of the
sample moments.
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3.2 Theoretical properties of l1 penalized DREGAR(p,0)

In this section we focus on the theoretical properties of l1 penalized DREGAR estimators.
In particular, we concentrate on the theoretical properties of DREGAR(p,0) as we can prove
that there is asymptotically no bias in this model. This model differs from REGAR(p) [22] as
it imposes an autoregressive process on the response whereas REGAR(p) considers the case
of autocorrelated residuals (i.e. similar to a DREGAR(0,q) model). In the next two sections,
we distinguish the cases of DREGAR(p,0) and adaptive-DREGAR(p,0), respectively.

3.3 Asymptotic properties of DREGAR(p,0)

Theorem 1 Under assumptions [a−d] and assuming λn
√
n → λ◦, γn

√
n → γ◦, and

λ◦, γ◦ ≥ 0, it follows that
√
n(Θ̂ − Θ◦) d→ argmin k(δ) where

k(δ) = −2δ′W + δ′UBδ

+ λ◦
r∑

i=1

{(ui sign (β◦
i )I (β

◦
i �= 0)) + |ui |I (β◦

i = 0)}

+ γ◦
p∑

j=1

{(v j sign (φ◦
j )I (φ

◦
j �= 0)) + |vi |I (φ◦

j = 0)},

and δ = (u′, v′) is a vector of parameters in R
(r+p), W ∼ MVN (O, σ 2UB) and UB =

Cov(X, H(p)).

Proof Let

kn(δ) = Qn(Θ
◦ + n−(1/2)δ) − Qn(Θ

◦). (5)

Note that kn reaches the minimum at
√
n(Θ̂ − Θ◦). From (2),

kn(δ) =
(
Ln

(
Θ◦ + δ√

n

)
− Ln(Θ

◦)
)

(6a)

+
(
nλ′

n

∣∣∣∣β
◦ + u√

n

∣∣∣∣ − nλ′
n |β◦|

)
(6b)

+
(
nγ ′

n

∣∣∣∣φ
◦ + v√

n

∣∣∣∣ − nγ ′
n |φ◦|

)
. (6c)

The last two terms have limits:

(6b) =
(√

nuλ′
n
|β◦ + u/

√
n| − |β◦|

u/
√
n

)

→
n→∞ λ◦

r∑

i=1

{(ui sign (β◦
i )I (β

◦
i �= 0)) + |ui |I (β◦

i = 0)}.

(6c) →
n→∞ γ◦

p∑

j=1

{(v j sign (φ◦
j )I (φ

◦
j �= 0)) + |v j |I (φ◦

j = 0)}.
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As for the first term:

(6a) = −e′e +
(

(y − H(p)φ
◦ − X ′β◦) − (X ′, H(p))

δ√
n

)

)′

×
(

(y − H(p)φ
◦ − X ′β◦) − (X ′, H(p))

δ√
n

)

)
.

Setting A = (X ′, H(p)) and e = y − H(p)φ
◦ − X ′β◦,

Qn

(
Θ◦ + δ√

n

)
− Qn(Θ

◦) =
(
e′ − δ′

√
n
A′

) (
e − A

δ√
n

)
− e′e + (6b) + (6c),

which is equivalent to

(
δ′A′
√
n

) (
Aδ√
n

)
−

(
δ′A′
√
n

)
e − e′

(
Aδ√
n

)
+ (6b) + (6c). (7)

From left to right, we prove that the first term in (7) is bounded and the next two terms follow
(asymptotically) normal distributions:

(
δ′A′
√
n

)(
Aδ√
n

)
→ O(1) (8)

e′
(
Aδ√
n

)
=

(
δ′A′
√
n

)
e → f1. (9)

Similar calculations to [5] show that (8) tends to δ′UBδ whereUB is the covariance matrix
of (X ′, H(p)), which is bounded (O(1)). Defining Sn as a function of n,

Sn =
(

δ′A′
√
n

)
e = 1√

n
(u′X + v′H ′

(p))e,

and using assumptions [a−d] and the central limit theorem for martingales result in

Sn
d→ δ′W,

where δ = (u′, v′) and W ∼ MVN (O, σ 2UB). Then

−(9)
d→ −2δ′W.

Substituting all results in Eq. (5),

kn(δ)
d→ −2δ′N (O, σ 2UB) + δ′UBδ + λ◦

r∑

i=1

{(ui sign (β◦
i )I (β

◦
i �= 0)) + |ui |I (β◦

i = 0)}.

+ γ◦
p∑

j=1

{(v j sign (φ◦
j )I (φ

◦
j �= 0)) + |vi |I (φ◦

j = 0)}.
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Up to now, we have proved kn(δ)
d→ k(δ). To show that argmin kn(δ) = √

n(Θ̂ −Θ◦) d→
argmin k(δ) it is enough to prove that argmin{kn(δ)} = Op(1) [8,9]. This follows from

kn(δ) =
(

δ′A′
√
n

) (
Aδ√
n

)
−

(
δ′A′
√
n

)
e − e′

(
Aδ√
n

)

+
(
nλ′

n

∣∣∣∣β
◦ + u√

n

∣∣∣∣ − nλ′
n |β◦|

)
+

(
nγ ′

n

∣∣∣∣φ
◦ + v√

n

∣∣∣∣ − nγ ′
n |φ◦|

)

≥
(

δ′A′
√
n

) (
Aδ√
n

)
−

(
δ′A′
√
n

)
e − e′

(
Aδ√
n

)
− (nλ′

n |un−1/2| − (nγ ′
n |vn−1/2|)

≥
(

δ′A′
√
n

) (
Aδ√
n

)
−

(
δ′A′
√
n

)
e − e′

(
Aδ√
n

)
− (λ′◦ + ε◦)|u| − (γ ′◦ + ε◦)|v|

= k∗
n(δ),

where ε◦ > 0 is a vector of positive constants. The fourth term in k∗
n(δ) for example, comes

from the fact that ∀ε◦ > 0, ∃N , if n ≥ N , |λ◦ − √
nλn | < ε◦. Then,

√
nλn < λ◦ + ε◦.

In addition, kn(0) = k∗
n(0) and fn(δ) = op(1). As a result argmin{k∗

n(δ)} = Op(1) and
argmin{kn(δ)} = Op(1). The proof of the theorem is completed. ��

This theorem shows that the DREGAR estimator has the Knight and Fu [9] asymptotic
property and it implies that the tuning parameters in Qn(Θ) do not shrink to zero at the speed
faster than n−1/2. In the proof of Theorem 1, the errors must be independent and identically
distributed and we do not make a specific assumption about the type of distribution. In other
words, the central limit theorem for martingale guarantees the convergence to the normal
distribution.

As shown in [9], minimizing l1 penalized likelihood in the linear model leads to unavoid-
able bias in the estimates of the non-zero parameters. In the following remark, we show this
also in the context of the DREGAR model.

Theorem 2 Taking a special case where β◦
i > 0, 1 ≤ (∀i ∈ N) ≤ r and φ◦

i2
= 0 for

1 ≤ j1 ≤ q, 1 ≤ j2 ≤ p, j1, j2 ∈ N, assuming that there are enough observations and
that the minimizer k(δ) correctly identifies the coefficients, that is, u �= 0 and v = 0, then,
k(δ) must satisfy

∂k(δ)

∂u
= ∂k(u, 0)

∂u

= ∂

∂u
(−2(u′, 0)W + (u′, 0)′UB(u′, 0) + (6b) + (6c))

= −2W1:r + 2u′UB1:r + λ◦1r×1 = 0

→ u′ = 1

2
(2W1:r − λ◦1r×1)U

−1
B1:r .

Using Theorem (1) : √
n(β̂ − β◦) d→ argmin k(δ = u′)

= MVN
(
E(u′) �= 0, U−1

B1:r

)
,

whereUB1:r is the first r rows ofUB corresponding to the r covariates. From the final equation,
DREGAR(p,0) suffers an asymptotic bias, provided the tuning parameter is positive. In other
words, lasso regularization of DREGAR(p,0) is not asymptotically consistent. In the next
section we discuss the adaptive-DREGAR(p,0) where a fixed level penalty term is replaced
by aweighted (adaptive) one.We show that under certain conditions adaptive-DREGAR(p,0)
is consistent and enjoys the oracle property.
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3.3.1 Adaptive DREGAR(p,0) model

Recall from Eq. (3) that parameter estimation in adaptive-DREGAR(p,q) involves the mini-
mization of

Q∗
n(Θ) =

T∑

t=T◦+1

⎛

⎝(yt − x ′
tβ) −

p∑

i=1

φi yt−i −
q∑

j=1

θ jεt− j

⎞

⎠
2

+
r∑

i=1

λ∗
i |βi |

+
p∑

j=1

γ ∗
j |φ j | +

q∑

k=1

τ ∗
k |θk |

where λ∗
i , γ

∗
j , τ

∗
k are tuning parameters and Θ = (β, φ, θ)′ is parameter space.

To prove the asymptotic property of adaptive-DREGAR(p,0) we follow [9,22] and define,

an = max
(
λ∗
i1 , γ

∗
i2 ; i1 ∈ s1, i2 ∈ s2

)

bn = min
(
λ∗
i c1

, γ ∗
i c2

; i c1 ∈ sc1, i
c
2 ∈ sc2

)
,

where an and bn are maximum and minimum penalties for significant and insignificant
coefficients respectively.

Theorem 3 Let an = o(1) as n → ∞. Then under assumptions [a−d] there is a local
minimiser Θ̂∗ of Q∗

n(Θ) such that

(Θ̂∗ − Θ◦) = Op(n
−1/2 + an).

Proof Let αn = n−1/2 + an , and {Θ◦ + αnδ : ‖δ‖ ≤ d, δ = (u, v)′} be a ball around Θ◦.
Then for ‖δ‖ = d we have

Rn(δ) = Q∗
n(Θ

◦ + αnδ) − Q∗(Θ◦)
≥ Ln(Θ

◦ + αnδ) − Ln(Θ
◦) + K1

≥ Ln(Θ
◦ + αnδ) − Ln(Θ

◦) + K2

≥ Ln(Θ
◦ + αnδ) − Ln(Θ

◦) + K3

where

K1 = n
∑

i∈s1
λ∗
i (|β◦

i + αnui | − |β◦
i |) + n

∑

j∈s2
γ ∗
j (|φ◦

j + αnv j | − |φ◦
j |),

(Using triangular inequality) : K2 = −nαn

∑

i∈s1
λ∗
i |ui | − nαn

∑

j∈s2
γ ∗
j |v j |,

(Penalties ≤ αn by definition) : K3 = −nα2
n(r◦ + p◦)d. (10)

The last equation holds because of the decreasing speed of αn . On the other hand, similar
calculations to Theorem 1 results in

Ln(Θ
◦ + αnδ) − Ln(Θ

◦) → nα2
n{δ′UBδ + op(1)}. (11)

Because (11) dominates (10), then for any given η > 0, there is a large enough constant d
such that

Pr

[
in f

‖δ‖=d
{Q∗

n(Θ
◦ + αnδ)} > Q∗

n(Θ
◦)

]
≥ 1 − η.
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This result shows that with probability at least 1 − η, there is a local minimiser in the ball
{Θ◦ + αnδ : ‖δ‖ ≤ d} and as a result a minimiser Q∗

n(Θ) such that ‖Θ̂∗ − Θ◦‖ = Op(αn)

(see [22, Lemma 1], [5]).
The proof is completed. ��
Theorem 3 implies that there exist a

√
n-consistent local minimiser Q∗

n(Θ), when tuning
parameters (for significant variables) in DREGAR(p,0) converge to zero at the speed faster
than n−1/2.

In the next step we prove that under the case where the tuning parameter associated with
insignificant variables in DREGAR(p,0) shrink to zero at a speed slower than n−1/2, then
their associate coefficients will be estimated exactly equal to zero with probability tending to
1. Further, in the next theoremwe show that by increasing the penalties on the zero parameters
at a certain speed, the probability of these coefficients to be estimated exactly zero tends to
one.

Theorem 4 Let bn
√
n → ∞ and ‖Θ̂∗ − Θ◦‖ = Op(n−1/2) then

Pr(β̂∗
sc1

= 0) → 1, Pr(φ̂∗
sc2

= 0) → 1.

Proof This proof follows from the fact that Q∗
n(Θ̂

∗) must satisfy

∂Q∗
n(Θ)

∂βi

∣∣∣∣
Θ̂∗

= ∂Ln(Θ̂
∗)

∂βi
− nλ∗

i sign (β̂∗
i )

= ∂Ln(Θ
◦)

∂βi
+ nUi (Θ̂

∗ − Θ◦){1 + op(1)} − nλ∗
i sign (β̂∗

i ) (12)

whereUi is the i th row ofUB and i ∈ sc1. The second term in (12) is a direct result of adding
a ±X ′β,±H(p)φ to Ln(Θ̂

∗). By using the central limit theorem, the first term in Eq. (12),∑
t et x

′
ti , is of order Op(n1/2) and the second term is Op(n1/2). Furthermore, both terms are

dominated by nλ∗
i since bn

√
n → ∞ (expansion of [9,22]). Then the signof

∂Q∗
n(Θ̂

∗)
∂βi

is

dominated by the sign of β̂∗
i , from which β̂∗

i = 0 in probability. Analogously, we can show

that Pr(φ̂∗
sc2

)
p→ 1.

The proof is completed. ��
Theorem 4 shows that adaptive-DREGAR(p,0) is capable of producing sparse solutions.

Theorems 3 and 4 indicate that a
√
n-consistent estimator Θ̂∗ must satisfy Pr(Θ̂∗

2 = 0) → 1.
Then, adaptive-DREGAR(p,0) is a sparse model.

Theorem 5 Assume an
√
n → 0 and bn

√
n → ∞. Then, under assumptions [a−d]we have

√
n(Θ̂∗

1 − Θ◦
1 )

d→ MVN (O, σ 2U−1
0 ),

where U0 is the sub-matrix UB corresponding to Θ◦
1 , and Θ̂∗

1 corresponds to non-zero
elements of Θ̂∗.

Proof FromTheorems 3 and 4, one can conclude that Pr(Θ̂∗
2 = 0)

p→ 1. Thus, theminimiser

Q∗
n(Θ)

wi th pr→1−−−−−−−→Q∗
n(Θ1). This implies that the lasso estimator Θ̂∗

1 satisfies the following
equation

∂Q∗
n(Θ1)

∂Θ1
|
Θ1=Θ̂∗

1
= 0.
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From Theorem 3, Θ̂∗
1 is a

√
n-consistent estimator. Thus a Taylor expansion of the above

equation yields

0 = 1√
n

∂Ln(Θ̂
∗
1 )

∂Θ1
+ ∂p(Θ̂∗

1 )

∂Θ1

√
n

= 1√
n

∂Ln(Θ̂
◦
1 )

∂Θ1
+ ∂p(Θ̂◦

1 )

∂Θ1

√
n +U0

√
n(Θ̂∗

1 − Θ◦
1 ) + op(1),

where p() is the tuning function
∑

i∈s1
λi |βi | +

∑

j∈s2
γ j |φ j |.

For n sufficiently large p(Θ̂∗
1 ) = p(Θ◦

1 ). Thus,

(Θ◦
1 − Θ̂∗

1 )
√
n = U−1

0√
n

∂Ln(Θ
◦
1 )

∂Θ1
+ op(1)

d→ N (0, σ 2U−1
0 ).

The proof is completed. ��
Theorem 5 implies that, adaptive DREGAR(p,0) is asymptotically an oracle estimator

provided an tends to zero at the speed faster than
√
n (or an

√
n → 0) and simultaneously bn

increases at the speed slower than
√
n (or bn

√
n → ∞).

4 Implementation

The formulation of the model lends itself naturally to its implementation, in contrast to other
time series models such as [23]. As the model contains residuals, which are unknown, we
apply a two-step optimization procedure

First step : ε̂ = Y − X ′β̂ − H(p)φ̂,

Second step : Y = X ′β + H(p)φ + Ĥ(q)θ.

Repeating steps 1 and 2 iteratively provides the solution to DREGAR.
The tuning parameters λ, γ and τ can be chosen by K-fold cross-validation or by an

information criterion such as AIC, BIC or eBIC. For our model these are given by:

AIC = −2L(Θ) + 2par

BIC = −2L(Θ) + log(T )par

eB IC = −2L(Θ) + log(T )par + log(par),

where par is the number of non-zero estimated parameters. For the simulation and real data
analyses, we use eBIC which was found to have a good performance by [4]. For adaptive-
DREGAR,we use λ∗ = ω/|β̃|, γ ∗ = ω/|φ̃| and τ ∗ = ω/|θ̃ |, with β̃, φ̃ and θ̃ the unpenalized
or lasso estimations of the parameters. We assume the same ω for both terms, so that we can
simplify the problem to the ordinary adaptive-lasso problem, and select this tuning parameter
by one of the criteria mentioned above.

A final choice for model selection is setting the orders p and q . We propose two general
approaches to choose the optimal orders: (a) setting an upper bound P and Q and choosing
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the model that achieves the minimum eBIC inside the grid, (b) setting an upper bound P and
Q and letting the model choose the optimal orders by keeping or eliminating the coefficients
under l1 sparsity constraints. In the second approach, the fitting is based on n = T − (P+Q)

time points, whereas in the first approach, the number of time points depends on the orders,
p and q. Then a rule of thumb is to use the first approach when the number of observations
is low and choose the second approach when there are enough observations.

Themethod is implemented in the R packageDREGAR, available in CRAN http://CRAN.
R-project.org/package=DREGAR.

5 Simulation study

We design a simulation study to compare the (adaptive) DREGAR with (adaptive) REGAR
[22] and (adaptive) lasso [25]. To this end we propose the following configuration:

1. Generate the design matrix, X , using a stationary Gaussian process with r = 100 and
T = 50, 100, 1000. That is, high-dimensionality is considered in terms of the number of
exogenous variables.

2. Set 90% of β coefficients to zero. Assign unequal random numbers in (−1, 1) to the
non-zero coefficients.

3. Generate data from the DREGAR(2,2) model

yt = 0.5yt−1 + 0.2yt−2 + Xβ + εt

εt = 0.3εt−1 − 0.1εt−2 + et

et ∼ N (0, σ 2),

with σ 2 = 0.5, 1 and 1.5.
4. Sample 1500 data points from the above model so that the first 50, 100 or 1000 observa-

tions are used for parameter estimation (training set) and the rest n = 1500 − T points
are left for evaluating the model performance (test set).

5. Select tuning parameters by minimizing eB IC and fix the maximum orders P and Q to
3 (i.e. allowing also for variable selection for φ and θ ).

We repeat each combination of models 100 times and calculate mean squared error of β̂

and the prediction mean squared error, defined by

PMSE = 1

n

n∑

1

(ytest − ŷtest)
2,

where ŷtest is calculated using the two steps discussed in the implementation. We compare
DREGAR(3,3) with lasso and with a DREGAR(0,6) model, which has the same number of
parameters as DREGAR(3,3) and is the closest in the DREGAR family to a REGAR model
[22].

Figures 1 and 2 show overall how adaptive DREGAR dominates lasso and REGAR for
low and high-dimensional problems in terms of both prediction error and MSE of β̂. Table 1
shows the full set of results for PMSE with a better performance of DREGAR across the
range of simulations.
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Fig. 1 Comparison of adaptive DREGAR, adaptive REGAR and adaptive lasso on the simulated data with
respect to PMSE for different values of T = 50, 100, 1000 and r = 100 for 90% sparsity in the regression
coefficients. The top figures refer to σ 2 = 1 and the bottom figures to σ 2 = 1.5

6 Real data illustration

6.1 Analysis of air pollution data

In this section, we show the performance of the model on the National Mortality, Mor-
bidity and Air Pollution Study (NMMAPS) dataset. This dataset is publicly available
from http://www.ihapss.jhsph.edu/data/NMMAPS/ and contains daily mortality, air pol-
lution, and weather data for 108 cities in the US from January 1, 1987 to December 31,
2000. The variables include six indicators for mortality (total non-accidental, cardiovas-
cular disease, respiratory, pneumonia, chronic obstructive pulmonary disease, accidental),
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Fig. 2 Comparison of adaptive DREGAR, adaptive REGAR and adaptive lasso on the simulated data with
respect to MSE of estimations for different values of T = 50, 100, 1000 and r = 100. The top figures refer to
σ 2 = 1 and the bottom figures to σ 2 = 1.5

six indicators of air pollution (repairable particulates (PM10)/(PM25), carbon monoxide
(CO), ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2)) as well as three indi-
cators of weather (temperature (T), dew point temperature (D) and relative humidity (H)).
Similar to [23] we study the relationship between ground level of ozone and indicators
of air pollution and weather conditions in Chicago in 1995. Differently to [23], we take
the effect of carbon monoxide (CO) into account. The covariates in the model consist of
NO2, SO2, CO, PM10, temperature and relative humidity as well as all two-ways inter-
actions. We show the interactions by initials, for instance NS represents the interaction
between NO2 and SO2. A total number of 365 observations and 21 covariates are included
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Table 1 Comparing
adaptive-DREGAR,
adaptive-REGAR and
adaptive-lasso with respect to
PMSE for T = 50, 100, 1000 and
σ 2 = 0.5, 1, 1.5

σ T DREGAR REGAR LASSO

50 3.61 (0.74) 6.04 (0.92) 6.7 (0.68)

0.5 100 4.18 (3.77) 6.16 (2.73) 6.83 (3.32)

1000 0.56 (0.13) 3.1 (0.31) 3.76 (0.37)

50 4.74 (0.91) 7.96 (1.06) 8.54 (0.76)

1 100 4.61 (1.36) 7.59 (1.38) 8.38 (1.11)

1000 1.32 (0.15) 4.37 (0.25) 5.1 (0.24)

50 5.46 (1.13) 8.89 (1.13) 9.62 (0.81)

1.5 100 6.26 (3.49) 10.1 (2.8) 11.13 (2.97)

1000 1.57 (0.09) 5.57 (0.14) 6.31 (0.13)

Averages across 100 iterations
are reported with standard
deviations in brackets

Fig. 3 The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the air pollution
data for the first 25 lags

in the analysis. All covariates and response are normalized to zero mean and unit vari-
ance.

Figure 3 shows a difficult choice for the maximum orders P and Q. We therefore follow
the second approach in Sect. 4 and propose P = 5 and Q = 5 and let the model’s parameter
inference guide the best orders. The parameters are estimated using the adaptive algorithm in
Sect. 4, setting amaximumof 50 iterations and selecting the tuning parameters byminimizing
eBIC.

We compare the optimal DREGAR(p,q) model with alternative models of similar com-
plexity or natural subclasses. In particular, we consider DREGAR(p+q,0), DREGAR(p,0),
DREGAR(0,q+p) and DREGAR(0,q). Note that the last two are the closest models to [22]
in the DREGAR family. In addition, we consider standard non-dynamic models, namely
adaptive-lasso and elastic-net. For the latter, we choose the optimal proportion of norms α

over a range of 100 values. We compare the models on the basis of a number of commonly
used criteria: eBIC, AIC, Quasi-likelihood Information Criteria (QIC) [18] and Consistent
AIC (CAIC) [3].

Table 2 provides a detailed illustration of the parameter estimates as well as information
on the comparison of the models. Time series coefficients in the middle-bottom of the table
propose an order of four and three forDREGARaswell asDREGAR(1,0) andDREGAR(0,3)
for the other models, suggesting that the maximum order of 5 for p and q is sufficient.
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Table 2 (Top) Comparing adaptive-lasso, elastic net and adaptive-DREGARmodels on the air pollution data
with respect to eBIC, AIC, CAIC and QIC where the asterisk denotes the minimum value

Model comparison

Model eBIC AIC CAIC QIC

Lasso 2457.37 2408.09 2466.89 6.82

enet 2493.52 2420.43 2508.63 6.70

DREGAR(5,5) 2349.27* 2280.28* 2363.44* 6.40*

DREGAR(0,10) 2355.88 2282.94 2370.99 6.49

DREGAR(10,0) 2350.12 2296.90 2368.21 6.42

DREGAR(0,5) 2399.92 2295.98 2422.66 6.80

DREGAR(5,0) 2358.64 2297.48 2370.93 6.45

Parameter estimation

Variables lasso enet p = 5 p = 10 p = 0 p = 0 p = 5
q = 5 q = 0 q = 10 q = 5 q = 0

Temp (T) 5.29 5.24 5.27 5.26 5.26 3.51 3.48

PM10(P) 0.00 −0.03 −0.06 0.00 0.00 0.00 0.00

SO2(S) −10.53 −5.66 −6.09 −12.04 −11.78 −7.94 −8.43

NO2(N) −2.87 −1.75 −1.76 −1.95 −2.16 −1.28 −1.64

Hum(H) −1.10 −1.62 −1.61 −1.25 −1.26 −1.12 −1.11

CO(C) −0.18 −1.95 −2.02 −0.46 −0.28 −1.83 −0.67

NS 0.00 −0.04 0.00 0.20 0.19 0.41 0.51

NP −0.41 −1.47 −1.48 −0.49 −0.50 −0.85 −1.00

NT 0.00 −0.71 −0.78 0.00 0.00 0.00 0.00

NH 1.08 0.82 0.91 0.19 0.36 0.00 0.41

SP 0.00 0.71 0.69 0.00 0.00 0.40 0.49

ST 6.29 4.60 4.79 7.22 7.10 4.28 4.33

SH 5.34 1.59 1.85 6.06 5.87 4.48 4.88

PT 3.60 3.73 3.74 3.25 3.26 2.68 2.65

PH 0.00 0.00 0.00 −0.07 0.00 0.00 0.00

TH 0.00 0.00 0.00 0.09 0.05 0.00 0.00

CN 0.00 0.12 0.13 0.19 0.22 0.00 0.00

CS 0.00 0.84 0.83 0.00 0.00 0.00 0.00

CP 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CT −0.47 −0.45 −0.39 −1.25 −1.18 −0.11 −0.28

CH −1.61 −0.01 0.00 −0.92 −1.18 0.00 −0.99

Time series coefficients

lasso enet p = 5 p = 10 p = 0 p = 0 p = 5

q = 5 q = 0 q = 10 q = 5 q = 0

– – φ1 = 0.23 φ1 = 0.46 θ = 0.36 θ1 = 0.35 φ1 = 0.46

– – φ2 = 0 φ2 = 0 θ2 = 0 θ2 = 0 φ2 = 0

– – φ3 = 0 φ3 = 0 θ3 = 0.08 θ3 = 0.09 φ3 = 0

– – φ4 = 0.09 φ4 = 0 θ4 = 0 θ4 = 0 φ4 = 0
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Table 2 continued

Time series coefficients

lasso enet p = 5 p = 10 p = 0 p = 0 p = 5

q = 5 q = 0 q = 10 q = 5 q = 0

– – φ5 = 0 φ5 = 0 θ5 = 0 θ5 = 0 φ5 = 0

– – θ1 = 0.26 φ6 = 0 θ6 = 0 – –

– – θ2 = 0.32 φ7 = 0 θ7 = 0 – –

– – θ3 = 0.16 φ8 = 0 θ8 = 0 – –

– – θ4 = 0 φ9 = 0 θ9 = 0 – –

– – θ5 = 0 φ10 = 0 θ10 = 0 – –

Ljung–Box statistic

lasso enet p = 5 p = 10 p = 0 p = 0 p = 5

q = 5 q = 0 q = 10 q = 5 q = 0

P-value 0 0 0.61 0.08 0.54 0.52 0.09

(Middle-top) Estimation of the regression coefficients. (Middle-bottom) Estimation of the time-dependent
coefficients. (Bottom) Ljung–Box p-value for the null hypothesis of residuals following white noise

DREGAR(4,3) shows better results than DREGAR(p,0), and DREGAR(0,q) models with
respect to model performance as shown in the top panel of the table. In line with [23],
our results show several significant interactions, especially those between sulphur dioxide-
temperature (ST) and humidity (SH), as well as between particulates and temperature (PT).
However,we should stress that the twoanalyses are not directly comparable, sinceweconsider
an additional variable, CO, which shows a significant effect on the ozone ground level and a
non-zero effect for the interaction with weather indicators, namely CT and CS. We further
report the Ljung–Box test [2] statistics in the bottom of the Table 2. With the exception of
lasso, elastic-net, DREGAR(5,0) and DREGAR(10,0), all other models show good fitting,
i.e. no evidence against the white noise assumption. Figure 4 displays the scatterplot of fitted
versus observed response for lasso and DREGAR(4,3), the residuals from the DREGAR(4,3)
mode and the corresponding sample ACF and PACF. The small curvature in the scatter plot,
mentioned also by [23], can be an indication of a particular weather condition that results
in an interaction between primary pollutants. The residuals’ ACF and PACF suggest that the
residuals are white noise as confirmed also by the p-value of the Ljung–Box test (0.61).

Finally, we have also compared the fit of the best DREGAR model, DREGAR(4,3), with
a DREGAR(0,7) model (the closest to a REGAR(7) model), in order to assess the benefit
in having different autoregressive structures for the response and the predictors, a unique
feature of the model that we propose in this paper. Without penalising the coefficients,
the maximum likelihood for DREGAR(4,3) is −1106.884 and that of DREGAR(0,7) is
−1110.832, suggesting an improved fit for the DREGAR(4,3) model.

6.2 Analysis of stock market data

For the second real application we take an example from the stock market. Data are collected
from yahoo finance (https://finance.yahoo.com) and contain 251 closing prices for 30 indices
in the DowJones market in 2015. We take the IBM index as the response and the remaining
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(a) (b)

(c) (d)

Fig. 4 Diagnostic plots on air pollution data. a Scatter plot of fitted versus observed response for adaptive
DREGAR(4,3) and adaptive lasso, bDREGAR(4,3) residuals, c sample ACF and PACF for the DREGAR(4,3)
residuals, d sample PACF of the DREGAR(4,3) residuals

Fig. 5 The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the IBM data for
the first 25 lags

29 indices as the covariates and study their correlations via the DREGAR family of models.
The variables are listed as follows: 3M (MMM), American Express (AXP), Alcoa (AA),
AT&T (T), Bank of America (BAC), Boeing (BA), Caterpillar (CAT), Chevron (CVX),
Cisco Systems (C), Coca-Cola (KO), DuPont (DD), ExxonMobil (XOM), General Electric
(GE), Hewlett-Packard (HPQ), TheHomeDepot (HD), Intel (INTC), IBM (IBM), Johnson&
Johnson (JNJ), JPMorgan Chase (JPM), Kraft (KRFT), McDonald’s (MCD), Merck (MRK),
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Table 3 Comparison of adaptive-lasso, elastic-net, GARCH and adaptive-DREGAR for the DowJones30
dataset on the basis of BIC, AIC, CAIC, QIC, sparsity and Ljung–Box statistic

Model eBIC AIC CAIC QIC Ljung–Box p-value #Non-zero

GARCH(1,1) 889.50 726.70 912.03 2.7 0.01 29

Lasso 644.30 549.89 581.57 2.2 0.06 7

elastic-net 624.05 560.59 624.05 2.5 0.05 18

DREGAR(5,5) 561.27* 528.91* 598.43* 2.3 0.12 7

DREGAR(10,0) 569.94 542.61 610.10 2.4 0.11 7

DREGAR(0,10) 581.50 536.82 604.70 2.3 0.11 9

DREGAR(5,0) 586.31 537.58 605.47 2.4 0.12 8

DREGAR(0,5) 590.74 543.19 611.10 2.3 0.15 7

For the information criteria, the asterisk denotes the minimum

Fig. 6 Diagnostic plots for theDowJones30 analysis. (Top) Scatter plot of fitted versus observed y for adaptive
DREGAR(3,4) and adaptive lasso. (Bottom) Sample ACF and PACF of the DREGAR(3,4) residuals

Microsoft (MSFT), Pfizer (PFE), Procter & Gamble (PG), General Motors (GM), United
Technologies (UTX), Verizon (VZ), Wal-Mart (WMT), Walt Disney (DIS).

We apply first differences of the log-prices to get stationary returns [10]. Figure 5 shows
low orders of auto-correlations in the residuals as typical of financial data.

Adaptive DREGAR(5,5), DREGAR(10,0), DREGAR(0,10), DREGAR(5,0) and DRE-
GAR(0,5) are applied to the data and the tuning parameters are selected using eBIC. In
addition, we consider adaptive-lasso and elastic net as well as GARCH, which is typically
used for financial data. For GARCH, we use the R packagerugarch and choose the optimal
model by searching among all models with maximum orders (2,2). The models are compared
on the basis of eBIC, AIC, CAIC, QIC, Ljung–Box statistic and sparsity.

Table 3 shows that DREGAR(5,5) performs very well compared to other methods with
respect to eBIC, AIC and CAIC as well as sparsity. Fitting adaptive DREGAR(5,5) to data
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results in an order of 3 for the dynamic term and an order of 4 for the residuals. So the
final selected model is DREGAR(3,4), suggesting that a maximum order of 5 for p and
q is adequate also for this dataset. Amongst the top selected predictors, there are: MSFT
(coefficient 0.3), HPQ (0.23), VZ (0.20), MMM (0.14), MRK (0.13) and CVX (0.10). Fig-
ure 6(top) shows observed versus fitted response for lasso and DREGAR(3,4). From this
figure, DREGAR(3,4) has a better fit compared to lasso in terms of the correlation between
the observed and fitted values (ρDREGAR(3,4) = 0.811, ρlasso = 0.804). Finally, the sample
ACF and PACF at the bottom of Fig. 6 confirm the results from the Ljung–Box statistic,
showing that the residuals from DREGAR(3,4) behave like white noise.

Similarly to the previous example, we compare the fit of the best DREGAR(3,4) with
a DREGAR(0,7) model. Without penalising the coefficients, the maximum likelihood for
DREGAR(3,4) is −243.98 and that of DREGAR(0,7) is −251.41, suggesting an improved
fit for the DREGAR(4,3) model.

7 Conclusion

This paper addressed the problem of dynamic regression in the presence of autocorrelated
residuals by proposing an extension of the regression model of [22] with the inclusion of
lags of the response. We showed that adding this dynamic term results in a structure more
similar to a general ARMAX model than REGAR [22] and REGARMA [23] and with
fewer difficulties in parameter estimations than REGARMA. Further, we proposed an l1
penalized likelihood approach for variable selection for both regression and time-dependent
coefficients and studied its theoretical properties. We proposed two iterative algorithms for
parameter estimation and provided an R package that contains the implementations and
simulation from the model. Finally, we show the applicability of the model and comparison
with existing approaches in the simulation study as well as two real data applications.

Future work could extend the methods presented in this paper by estimating DREGAR
coefficients using penalties that strike a trade-off between l1 and l2 norms, such as elastic
net. We expect these methods to work well, as the l2 penalty imposes less weight on small
coefficients compared to the l1 penalty. Such an extension is also expected to work well
in the presence of correlation among the predictors. Moreover, it would be interesting to
add GARCH-type errors to the model, similar to a recent contribution to the literature for
the REGARMA model [24]. Finally, it would be of interest to extend the methodology to
non-linear and non-stationary cases.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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