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Abstract
Solutions to nonlinear optimal control problems (OCPs) exhibit dispersions under 
model uncertainties and it is desirable to generate optimal solutions that exhibit 
less sensitivity to model uncertainties. We propose a novel solution desensitiza-
tion method dubbed “Reduced Desensitization Formulation (RDF)” by leveraging 
non-uniqueness of the solution of the costate differential equations when a hybrid 
indirect-direct optimization method is used. A key property of the RDF method is 
a significant reduction in the number of differential equations needed for generat-
ing desensitized solutions. This feature facilitates the generation of open-loop desen-
sitized trajectories and makes the methodology applicable to OCPs with a larger 
number of uncertain parameters. To demonstrate the utility of the RDF method, 
three important classes of trajectory optimization problems are considered with 
uncertainty in the thrust magnitude of the propulsion system: (1) minimum-fuel 
low-thrust interplanetary rendezvous maneuvers, (2) low-thrust orbit-raising maneu-
vers, and (3) minimum-fuel high-thrust rocket-landing problems. For the considered 
problems with bang-bang control profiles, an analysis is presented on the change 
in the number of control switches between sensitive and desensitized optimal solu-
tions. Numerical results demonstrate desensitization of the considered performance 
indices with respect to the thrust magnitude of the propulsion system.
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1  Introduction

Optimal control problems (OCPs) are typically solved using direct [1, 2], indirect 
[3] and hybrid methods [4]. OCPs are generally formulated to optimize a user-
defined objective (i.e., to minimize energy or fuel consumption) while respecting 
the system dynamics, constraints, and boundary conditions to achieve an optimal 
solution [5–11]. Typically, the optimal solution is obtained without considering 
the uncertainties in model parameters. However, parametric uncertainties influ-
ence the solution of low-thrust spacecraft and high-thrust rocket-landing trajec-
tory optimization problems.

For spacecraft trajectory optimization, the use of electric propulsion sys-
tems continues to grow owing to their higher specific impulse values compared 
to chemical propulsion systems [12]. The use of electric propulsion systems 
has already been demonstrated in several space missions such as Deep-Space 1 
[13], SMART-1 [14], Dawn [15] and Hayabusa [16]. NASA’s upcoming mission 
to asteroid Psyche uses an electric propulsion system [17]. Due to uncertain-
ties associated with the thrust magnitude of electric propulsion systems [18], it 
is important to include the effects of thrust magnitude uncertainty while design-
ing low-thrust trajectories. For instance, Reference [19] discusses the impact of 
uncertainties in electric propulsion thrust on an orbit. Various sources of uncer-
tainty for solar electric propulsion are given in [20] and the authors also dis-
cuss the recommended system margins for deep-space missions. It has also been 
found that the thrust magnitude error and misalignment are not negligible during 
orbit maneuvers [18]. In [21], the uncertainty in the thrust measurements using 
an inverted pendulum null-coil thrust stand was found to be ±6.9 mN. With the 
increasing interest in low-thrust trajectories, it is therefore essential to obtain tra-
jectories that are robust against uncertainties in model parameters.

For atmospheric flight problems, the ability to land rockets gently is impor-
tant for several reasons, including reusability, which reduces the overall cost of 
space launches. Additionally, soft landings are critical for preserving the integrity 
of payloads, such as scientific equipments, that may be attached to the rocket. 
Furthermore, the ability to land rockets softly is crucial for the potential future 
human exploration of other planets and moons, as it would enable the rocket 
to land and take off again without being damaged. Entry, Descent and Landing 
(EDL) problems are associated with uncertainties in the initial state vector (at the 
entry interface) and atmospheric properties (e.g., density) [22–25] and reducing 
the sensitivity of the solution of EDL OCPs will be instrumental for future plan-
etary missions. In [26], the benefits and importance of operational consideration 
in the guidance, navigation, and control design of spacecraft are emphasized. It is 
also known that for formation flights of satellites, thrust uncertainties are an issue 
[27, 28]. Spacecraft low-thrust trajectory design under operational constraints is 
also considered in [29].

Desensitized Optimal Control (DOC) addresses uncertainties in model 
parameters by incorporating sensitivities while designing optimal solutions, 
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which increases the robustness of the extremal solutions to uncertainties. This 
reduced sensitivity to parameteric  uncertainties is also associated with a sub-
optimal solution, which is an inevitable trade-off while using DOC formulation. 
However, desensitization has the potential to reduce the operational costs of a 
mission by reducing the frequency of re-planning of the trajectory, since the 
trajectory is now less sensitive to uncertain parameters. In [30], Seywald and 
Kumar propose the use of a sensitivity matrix of states for designing (open-loop 
and closed-loop) optimal trajectories that will show less sensitivity to state per-
turbations encountered along the trajectory. The utility of the approach is dem-
onstrated by solving Zermelo’s navigation problem with an uncertain parameter 
signifying the strength of the river current. In Ref. [31], the sensitivity-based 
DOC strategy has been used to minimize fuel consumption and reduce the sen-
sitivity to state uncertainties for a powered descent Mars pinpoint landing prob-
lem. The work in [31] extends the sensitivity-based DOC method to problems 
with control constraints. Direct collocation and nonlinear programming tech-
niques are used to solve Mars entry trajectory optimization problems using the 
sensitivity-based DOC method [32]. It is shown that a reduction in sensitivity 
of terminal state variables with respect to uncertainties on initial state variables 
and Mars atmospheric density variations is achievable. The sensitivity-based 
DOC method is applied to landing problems with uncertainties in atmospheric 
density and aerodynamic characteristics [33]. The landing error on small bodies 
is reduced in the presence of uncertainties of target body and thrust error in [34] 
using a desensitization formulation. In Reference [35], the authors developed a 
desensitization formulation by introducing Lagrange multiplier-like quantities 
that captured the desired sensitivity information. In [36], Zimmer identified a 
relationship between the DOC formulation and covariance trajectory shaping.

Recently, a costate desensitized optimal control method (C-DOC) has been 
developed [37] in which the uncertain parameters are elevated as new states with 
their time derivative being zero. The indirect formalism of optimal control theory 
is used, and costates associated with the new states are introduced. By introduc-
ing a quadratic penalization term (to the Lagrange cost) that only consists of the 
new costates, the costate values associated with uncertain parameters are reduced 
along the solution. The advantage of using the C-DOC method [37] is that a sys-
tem of 2(n + l) differential equations has to be considered, where n denotes the 
number of states for the original system, and l denotes the number of considered 
uncertain system parameters. Compared to the sensitivity-based DOC method, 
which requires  a system of (n + l)2 + n + l  differential equations, the number of 
states of the system is greatly reduced. It is shown in [38] that a sensitivity func-
tion can be used to either desensitize an optimal trajectory or a state at a given 
time (e.g., final time).

The contributions of this work are as follows. First, we investigate the applica-
tion of the C-DOC method for desensitization of the minimum-fuel trajectories with 
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respect to the thrust magnitude of the electric propulsion system. Second, using 
the non-uniqueness of the costate profiles, when a hybrid indirect-direct optimiza-
tion method is used, we propose a novel formulation (RDF) for generating desensi-
tized solutions. RDF requires n + l differential equations, which significantly sim-
plifies the generation of desensitized open-loop optimal trajectories. In particular, 
we consider two types of objectives (minimum fuel and maximum final radius) and 
perform an in-depth analysis of the OCPs with bang-bang control profiles. Third, 
the effects of thrust desensitization on the thrust switching profile and unit thrust 
vector components are studied for three important classes of problems. The util-
ity of the RDF is investigated by desensitizing three different classes of missions 
that cover a broad range of practical OCPs: (1) low-thrust minimum-fuel interplan-
etary rendezvous maneuvers, (2) low-thrust orbit-raising maneuvers, and (3) high-
thrust rocket-landing problems. The impact of thrust-desensitization is studied on 
many revolution trajectory optimization problems. For the rocket-landing problems, 
desensitization of final mass subject to a glide-slope constraint is investigated.

This paper is organized as follows. The formulation for the sensitive minimum-
fuel low-thrust trajectory optimization problem is presented in Sect. 2. In Sect. 3, 
the sensitivity-based DOC and the C-DOC strategies are briefly reviewed. Then, the 
C-DOC is applied to the low-thrust trajectory optimization problem and the results 
are discussed. A modification is applied to the formulation presented in Sect. 3 using 
the non-uniqueness property of the costates, and details are given in Sect.  4. The 
RDF method is presented in Sect. 5. In Sect. 6, three classes of trajectory optimiza-
tion problems are solved using the RDF method and the results are presented. The 
concluding remarks are given in Sect. 7.

2 � Minimum‑Fuel Low‑Thrust Trajectory Optimization Problem

In this section, we formulate the standard (sensitive) OCP associated with mini-
mum-fuel low-thrust rendezvous maneuvers.

2.1 � Coordinate Sets

It is well established in the literature that the convergence of a trajectory optimiza-
tion problem is dependent on the choice of coordinate system/set [39–41]. In this 
work, two different coordinate systems are used for describing the dynamics of the 
spacecraft: the set of Cartesian coordinates and the set of modified equinoctial ele-
ments (MEEs) [42]. The equations of motion, when written in Cartesian coordinates, 
take simpler forms and are used for demonstrating the relations in the remainder of 
the paper. However, for solving the minimum-fuel low-thrust trajectory optimization 
problems, the set of MEEs is used [42]. The spacecraft’s equations of motion in Car-
tesian coordinates can be written as
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where r = [x, y, z]⊤ and v = [vx, vy, vz]⊤ denote position and velocity vectors of the 
spacecraft respectively, � is the gravitational parameter of the central body, r = ||r|| 
is the position vector Euclidean norm and �c is the acceleration due to the propul-
sion system. The state and control vectors can be written as

where T denotes the maximum thrust value, m denotes spacecraft mass, � ∈ [0, 1] is 
the engine throttling input, and û = [ux, uy, uz]

⊤ is the thrust steering unit vector (i.e., 
||û|| = 1 ). The time rate of change of Cartesian coordinates, refer to Eq. (1), can be 
written in a compact control-affine form as

where I represents an identity matrix and 0 represents a zero matrix.

2.2 � Formulation of the Standard (Sensitive) Minimum‑Fuel Trajectory 
Optimization Problem

The formulation of the sensitive minimum-fuel trajectory optimization problems is pre-
sented to set the stage for a comparison of the results against a desensitized low-thrust 
trajectory optimization formulation. The Mayer-form cost functional for a minimum-
fuel trajectory optimization problem can be written as

where m(tf ) denotes the spacecraft mass at the final time. The spacecraft’s equations 
of motion in a coordinate-independent control-affine form can be written as [41]

where x ∈ ℝ6 denotes the states of the spacecraft, c = Ispg0 denotes the constant 
effective exhaust velocity, Isp is the specific impulse and g0 is sea-level gravity con-
stant. In Eq. (5), x can represent the Cartesian position and velocity coordinates or 
the set of MEEs [42]. The variational Hamiltonian can be written as (the argument 
list of A vector and � matrix are dropped for simplicity)

(1)ṙ = v, v̇ = −
𝜇

r3
r + �c,

(2)xcart = [r⊤, v⊤]⊤, �c =
T

m
𝛿û,

(3)ẋcart = Acart(x) + �cart�c, Acart =

[
v

−
𝜇

r3
r

]
, �cart =

[
03×3

I3×3

]
,

(4)minimize
𝛿∈[0,1]&||û||=1

J = −m(tf ),

(5)ẋ = A(x) + �(x)�c, ṁ = −
T

c
𝛿,

(6)H = �x
⊤
[
A + ��c

]
− 𝜆m

T

c
𝛿,
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where �x ∈ ℝ6 denotes the costate vector associated with the state vector x and �m 
denotes the costate associated with mass. The costate dynamics can be obtained 
using the Euler-Lagrange equation [43] as

Applying Pontryagin’s minimum principle (PMP) and using the primer vector the-
ory of Lawden, we can derive the expressions for extremal control inputs (excluding 
singular control arcs [44]) as

where S is the so-called thrust switching function. In Eq. (8), the primer vector is 
defined as p = −�⊤�x . In summary, the primer vector determines the optimal direc-
tion of thrusting, û∗ , whereas the switching function governs the optimal profile of 
the throttle factor, �∗ (“optimal” and “extremal” are used interchangeably throughout 
the paper).

We consider fixed-time, rendezvous-type low-thrust maneuvers in which the 
initial and final states are known. Since the final value of mass is unknown, its 
costate value at the final time can be determined using the transversality con-
dition (i.e., �m(tf ) = −1 ). The boundary conditions for the sensitive minimum-
fuel trajectory optimization problem can be summarized as a nonlinear system 
of equations

where x0 and xT denote the known states at the initial and final times respectively, 
m0 denotes the initial mass and � = [�x

⊤(t0), 𝜆m(t0)]
⊤ denotes the unknown initial 

vector of costates. The OCP is converted into a Hamiltonian two-point boundary-
value problem (TPBVP), which consists of the following components: the state dif-
ferential equations, Eq. (5), costate differential equations, Eq. (7), extremal controls, 
Eq. (8), and the boundary conditions, Eq. (9). The resulting TPBVPs are typically 
solved using single- or multiple-shooting methods that consist of an algorithm to 
propagate the set of state-costate differential equations and a non-linear root-solving 
algorithm to satisfy the constraint vector given in Eq. (9) within a user-defined toler-
ance. The unknown vector, � = [�x

⊤(t0), 𝜆m(t0)]
⊤ , is iterated over until the nonlinear 

solver (e.g., MATLAB’s fsolve) converges. A difficulty in solving minimum-fuel 
low-thrust trajectory optimization problems is due to the discontinuous switches 
in the optimal throttle profile. In addition, the number of switches is not known in 
advance. However, a number of techniques exist in the literature to overcome the 
challenges with throttle profile discontinuities [45, 46].

(7)�̇x = −
[
𝜕H

𝜕x

]⊤
, 𝜆̇m = −

𝜕H

𝜕m
.

(8)û∗ =
p

||p||
= −

�⊤�x

||�⊤�x||
, 𝛿∗ =

{
1, if S ≥ 0,

0, if S < 0,
S =

c||�⊤�x||
m

+ 𝜆m,

(9)�(�) =
[
[x(t0) − x0]

⊤,m(t0) − m0, [x(tf ) − xT ]
⊤, 𝜆m(tf ) + 1

]⊤
= 0,
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3 � Analysis of the C‑DOC Formulation for Minimum‑Fuel Trajectory 
Optimization Problems

First, a brief review of the sensitivity-based DOC method is given to set the stage 
for comparing it against the C-DOC method. Consider the formulation of a standard 
OCP with a Mayer-form cost functional defined as

subject to

where t ∈ [t0, tf ] , x(t) ∈ ℝn denotes the states, u(t) ∈ ℝm denotes the controls, 
� ∈ ℝl is the vector of uncertain model parameters in the state dynamics, and 
gine(x(t), t;�) and geq(x(t), t;�) represent the nonlinear inequality and equality con-
straints respectively. To desensitize the OCP, Seywald and Kumar [30] made a new 
state vector that included the augmented state vector and elements of the state transi-
tion matrix as [x⊤

a
, vec(Φ)⊤]⊤ where x⊤

a
= [x⊤,�⊤] is the augmented state vector and 

vec(Φ) is the vector-form of the elements of the state transition matrix with its dif-
ferential equation given as

The dynamics for the augmented state vector can be written as

To desensitize the cost functional with respect to the uncertain parameter values, the 
cost functional is augmented with a penalty term as [30]

where ℚ(t) ≥ 0 is a user-defined positive semi-definite matrix. To evaluate Eq. (14), 
it is necessary to propagate the augmented state dynamics, xa , and the elements of 
the state transition matrix ( Φ(t, t0) ). A difficulty in using the sensitivity-based DOC 
method is the dimension of states n + l + (n + l)2 , as their differential equations have 
to be propagated which can be computationally demanding. However, the method 
has been applied successfully to a number of OCPs [30–32, 35].

A brief review of the C-DOC is given since it is used for our early efforts to 
obtain desensitized solutions. In Ref. [37], desensitization of OCPs is achieved, not-
ing that costates carry sensitivity information. By definition, costates represent first-
order variation in the cost functional with respect to the change in the states at each 

(10)minimize
x(t)&u(t)

J = �
(
x(tf ), tf

)
,

(11)

ẋ(t) = f (x(t), u(t), t;�), x(t0) = x0,

gine(x(t), t;�) ≤ 0,

geq(x(t), t;�) = 0,

(12)Φ̇(t, t0) =

[
𝜕f a(xa(t), u(t), t)

𝜕xa

]
Φ(t, t0).

(13)ẋa = f a(xa(t), u(t), t) = [f⊤(xa(t), u(t), t), 01×l]
⊤.

(14)minimize
x(t)& u(t)

Ja = �(x(tf )) + ∫
tf

t0

||Φ(t, t0)Φ(t, t0)
−1||ℚ(t)dt,
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time instant. Moreover, it is shown that this property is valid along any trajectory 
(and not necessarily on an extremal trajectory) [37]. For desensitizing the solution 
of an OCP, the uncertain parameter is elevated as a new state. By using indirect 
formalism, the time rate of change of the costate associated with the new state can 
be obtained. By penalizing the costate associated with the uncertain parameter, the 
OCP’s cost functional can be desensitized with respect to the uncertain parameters.

We consider the desensitization of spacecraft trajectories with respect to varia-
tions in the thrust of electric engines with the maximum thrust value elevated as a 
new state. The indirect formalism, as explained in Sect. 2, is followed for obtaining 
the costate of thrust. The time rate of change of thrust is

Let �x denote the costate vector associated with the state vector. The variational 
Hamiltonian, formed in Eq. (6), can be re-written as

where the term 𝜆T Ṫ  vanishes (with �T denoting the costate associated with thrust). 
The time rate of change of the thrust costate can be obtained using the Euler-
Lagrange equation as

To achieve desensitization of the final mass with respect to thrust magnitude, the 
thrust costate is minimized along the entire trajectory. Therefore, the cost functional 
in Eq. (4) is augmented with a quadratic penalization term as

where t0 and tf  denote the initial and final times respectively, and Q is a positive con-
stant parameter. The initial value of thrust is known and by following Ref. [37], the 
value of the thrust costate at the final time is 0 (due to the transversality condition). 
The nonlinear root-solving conditions for the TPBVP associated with the thrust-
desensitized minimum-fuel trajectory optimization problem becomes

where �T (tf ) denotes the thrust costate at the final time and 
�
⊤
= [�

x

⊤(t0),�m(t0), �T (t0)] . The components of the resulting TPBVP are the 
state differential equations, Eq. (5), thrust differential equation, Eq. (15), costate 
differential equations, Eq. (7), thrust costate differential equation, Eq. (17), and 
the boundary conditions, Eq. (19). Here, the extremal control is no longer deter-
mined through the relations given in Eq. (8), but the control is directly searched 
over to find extremal solutions. The reason for a direct search over control 
inputs is that upon applying optimal control theory, the expressions for extremal 

(15)Ṫ = 0.

(16)H = �x
⊤
[
A + ��c

]
− 𝜆m

T

c
𝛿 + 𝜆T Ṫ ,

(17)𝜆̇T = −
𝜕H

𝜕T
.

(18)minimize
𝛿∈[0,1]&||û||=1

J = −m(tf ) + ∫
tf

t0

Q𝜆2
T
(t) dt,

(19)�(�) =
[
[x(t0) − x0]

⊤
,m(t0) − m0, [x(tf ) − xT ]

⊤
, 𝜆m(tf ) + 1, 𝜆T (tf )

]⊤
= 0,
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controls will be identical to those derived in Eq. (8), which means that the control is 
independent of the value of Q. However, it is expected that by adding the penalization 
term, the optimal control will deviate from the sensitive control to reduce the value of the 
penalization. Thus, relations given in Eq. (8) are no longer valid, and a direct optimization 
over control inputs has to be performed with the constraints that �∗ ∈ [0, 1] and ||û|| = 1 . 
The solution procedure becomes a hybrid indirect-direct method that leverages state and 
costate dynamics, but directly searches over control inputs. Instantaneous values of the 
costates and control are needed to evaluate Eq. (17). Thus, the problem consists of 16 
differential equations and 4 control inputs. All the TPBVPs in this paper are solved using 
GPOPS-II [47]. We use the word simulation of OCP in GPOPS in the following sense: by 
doing one simulation in GPOPS we get one solution to an OCP.

3.1 � Numerical Examples

The C-DOC method is applied to a rendezvous problem from Earth to Mars, where 
the boundary conditions along with engine parameters are taken from [40]. Canoni-
cal scaling is used, in which one distance unit (DU) is taken as one astronomical 
unit (AU) and one time unit (TU) is equal to 5.022 × 106 seconds. The gravitational 
parameter of the Sun is � = 132712440018 km3/s2 . The spacecraft’s inertial initial 
position and velocity vectors are r(t0) = [−140699693,−51614428, 980]⊤ km and 
v(t0) = [9.774596,−28.07828, 4.337725 × 10−4]⊤ km/s respectively. The target posi-
tion and velocity vectors of the spacecraft are r

T
= [−172682023, 176959469, 7948912]⊤ 

km and vT = [−16.427384,−14.860506, 9.21486 × 10−2]⊤ km/s respectively. These 
position and velocity vectors are given in the Sun-Centered inertial frame. The fixed 
total flight time is 348.795 days. The initial mass of the spacecraft is 1000 kg and 
the electric propulsion system has the following parameters: nominal thrust, T = 0.5 
Newtons, constant specific impulse, Isp = 2000 seconds.

In Eq. (18), setting Q to 0 is equivalent to solving a sensitive minimum-fuel 
trajectory optimization problem. The global extremal solution for this problem is 
known with a final mass of 603.93 kg [40]. The desensitized Earth-Mars problem is 
solved using GPOPS-II. For the simulations, hp-LiuRao-Legendre mesh method and 
IPOPT are used. The plots for thrust time history, the components of the unit thrust 
direction vector and the optimal trajectory (for Q = 0 and Q = 0.001 ) are shown in 
Figs. 1, 2 and 3, respectively. In this paper, the unit thrust direction vector compo-
nents are plotted by multiplying with the engine throttle input, ẟ.   

It is to be noted that the extremal trajectory shown in Fig. 3a matches with the 
solution reported in [40]. The thrust and velocity costates associated with Q = 0 and 
Q = 0.001 are shown in Figs. 4 and 5, respectively. It is evident from Fig. 4, that 
the thrust costate is minimized along the extremal trajectory when the value of Q is 
increased. However, no significant change is observed in the thrust switching pro-
file (Fig. 1), components of the unit thrust steering direction vector (Fig. 2) and the 
optimal trajectory (Fig. 3). The optimal final mass for Q = 0 is 603.94 kg and for 
Q = 0.001 is 603.80 kg. The mass profiles, when Q = 0 and Q = 0.001 , are shown in 
Fig. 6.  
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To check for desensitization of the trajectory with Q = 0.001 , the thrust value, 
T0 , was increased by three percent from its nominal value (i.e., T0 = 0.515 N). The 
simulation was repeated for Q = 0 and Q = 0.001 . The plots for thrust profile, com-
ponents of the unit thrust steering vector and the optimal trajectory look similar to 
Figs. 1, 2 and 3, respectively, and are not shown here for brevity.

Simulation results are summarized in Table 1, where d is the absolute value of 
the difference in the mass at the final time when the value of thrust is increased 

Fig. 1   Minimum-fuel Earth–Mars problem: thrust profiles vs. time for different values of Q 

Fig. 2   Minimum-fuel Earth–Mars problem: unit thrust direction vector components (multiplied with the 
engine throttle, ẟ) for different values of Q 
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by 3%, d = |m(tf , T0 = 0.5) − m(tf , T0 = 0.515)| . The final optimal mass, when 
Q = 0 and T = 0.5 , corresponds to the final mass obtained in [40], confirming that 
Q = 0 will indeed give the solution to the sensitive OCP. Table  1 suggests that 
there is no reduction in the value of d when Q is increased. However, it is to be 
noted that the thrust costate history is minimized as the value of Q is increased. 
Results indicate that desensitization has not happened even after the thrust cos-
tate was minimized. This curious result guided us to perform further analysis of 
the thrust costate differential equation, which offers key insights into desensitiza-
tion mechanism.

Fig. 3   Minimum-fuel Earth–Mars problem: three-dimensional trajectories for different values of Q 

Fig. 4   Minimum-fuel Earth–Mars problem: thrust costate profiles vs. time for different values of Q 
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Under the assumption of using Cartesian coordinates (i.e., the state vector 
x = [x, y, z, vx, vy, vz]⊤ and the costate vector �x = [𝜆x, 𝜆y, 𝜆z, 𝜆vx, 𝜆vy, 𝜆vz]

⊤ ) and 
using Eqs. (16) and (17), the expression for the time rate of change thrust costate 
can be derived as

Fig. 5   Minimum-fuel Earth–Mars problem: velocity costate profiles vs. time for different values of Q 

Fig. 6   Minimum-fuel Earth–Mars rendezvous problem: mass vs. time for different values of Q 



1 3

The Journal of the Astronautical Sciences (2024) 71:21	 Page 13 of 37  21

The thrust costate differential equation is a function of mass, mass costate, veloc-
ity costate, specific impulse and the components of the unit thrust direction vec-
tor. Since the thrust switching profile (Fig. 1) and the components of the unit thrust 
direction vector (Fig.  2) do not show substantial change when the value of Q is 
increased from 0 to 0.001, the change in thrust costate (Fig. 4) is due to the change 
in the velocity costate (Fig. 5). Therefore, the optimizer has reduced the cost func-
tional, Eq. (18), by changing the velocity costates and ignoring the thrust switching 
time or the components of the unit thrust direction vector. If the control profile does 
not change, then the evolution of the states will not be affected. Although mathemat-
ically the thrust costate is getting minimized, this does not have any physical signifi-
cance on trajectory desensitization, because the control profile remains unaltered. To 
achieve desensitization, the optimization method has to minimize the thrust costate 
by altering the thrust switching profile or components of the thrust unit vector.

4 � Modifying Costate Desensitization Formulation Using 
Non‑Uniqueness of Costates

In this paper, we observed the costates (associated with the states of the orig-
inal OCP) will not affect the controls, when a hybrid indirect-direct optimiza-
tion method is used. More specifically, the costate differential equations are not 
required to satisfy any along-the-path constraints and/or any boundary conditions. 
Thus, costates can have multiple solutions. It is possible to obtain the same con-
trol and state profiles for different costate profiles for an OCP using the proposed 
hybrid indirect-direct optimization method. This can also be verified by perform-
ing simulations in GPOPS-II by altering the values of the upper and lower bounds 
for the costates. For the Earth–Mars rendezvous problem solved in Sect. 3.1, two 
possible �vx profiles are shown in Fig. 7 that correspond to the same optimal solu-
tion. Similar behaviors are observed in the profiles of the costates associated with 
other states, but they are not shown here for brevity. Hence, modifying the costate 
differential equations will not affect the problem solution.

(20)𝜆̇T = −
𝛿

m

(
𝜆vxux + 𝜆vyuy + 𝜆vzuz − 𝜆m

m

c

)
.

Table 1   Desensitization results 
for the minimum-fuel Earth–
Mars problem

Q T0 (N) m(t
f
) d

0 0.5 603.9366 –
0 0.515 606.3346 2.398
0.0005 0.5 603.6023 –
0.0005 0.515 606.2597 2.6574
0.001 0.5 603.80 –
0.001 0.515 606.3158 2.5158
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To promote altering the control profile for reducing the value of thrust costate 
we multiply the right-hand side of the costates by a constant positive value. Thus, 
Eqs. (7) and (17) can be written as

The Earth-Mars desensitized rendezvous problem solved in Sect. 3.1, is solved again 
by considering a = 1.0 × 10−5 and T0 = 0.5 N. Since the costate differential equa-
tions are multiplied by a small number, the time rate of change of the costates will 
be small. Therefore, due to the presence of ‘a’ in the costate dynamics, the optimi-
zation algorithm cannot decrease the velocity costates rapidly to minimize the cost 
functional. Therefore, the optimizer will try to alter the thrust switching profile or 
the unit thrust direction vector to minimize the thrust costate.

The thrust and velocity costate profiles are shown in Figs.  8 and 9, respec-
tively, for Q = 0 and Q = 1.9 × 106 . The inclusion of the positive constant has 
clearly changed the evolution of thrust and velocity costates. Since the rate of 
change of the costates is scaled down due to ‘a’, it can be seen that the velocity 
costate looks almost like a constant value. For desensitizing, the value of Q is 
chosen as a large number because the thrust costate is in the order of 10−3 . Since 
the Lagrange cost functional is quadratic in thrust costate, the value of Q must 
be large for the solver to recognize the presence of this cost. The plots for thrust 
history, the components of the thrust direction unit vector and the optimal trajec-
tory for Q = 0 and Q = 1.9 × 106 are shown in Figs. 10a, b and 11 respectively. 
By increasing the value of Q, the optimal trajectory, thrust switching profile and 
the components of the thrust direction unit vector are changed. The mass profiles 
for Q = 0 and Q = 1.9 × 106 are shown in Fig.  12. The final mass for Q = 0 is 
mf = 603.9366 kg and for Q = 1.9 × 106 is mf = 599.9648 kg.    

(21)�̇x = −a
[
𝜕H

𝜕x

]⊤
, 𝜆̇m = −a

𝜕H

𝜕m
, 𝜆̇T = −a

𝜕H

𝜕T
.

Fig. 7   Minimum-fuel Earth–Mars problem: different �
vx

 profiles for Q = 0
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To check for desensitization, the value of initial thrust is increased by 
3%, T0 = 0.515 N. Simulations are performed for Q = 0 , Q = 1.9 × 106 and 
Q = 2.0 × 106 . Simulation results are summarized in Table 2. Similar to Sect. 3.1, 

Fig. 8   Minimum-fuel Earth–Mars problem: desensitized thrust costate profile with a = 1.0 × 10−5

Fig. 9   Minimum-fuel Earth–Mars problem: velocity costate profiles vs. time with a = 1.0 × 10−5
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d is the absolute value of the difference in the mass at final time when the value 
of thrust is increased by 3%, d = |m(tf , T0 = 0.5) − m(tf , T0 = 0.515)|.

From Table  2 it can be observed that the value of d gets reduced when Q 
is increased from 0 to 1.9 × 106 and 2.0 × 106 . Qualitatively, as the value of Q 
increases, the thrust costate is minimized, which reduces the sensitivity of the prob-
lem with respect to thrust. By desensitizing, the final value of mass does not change 
considerably when the value of the initial thrust is changed. Q = 0 represents the 
sensitive optimal control solution and thus it has the largest change in the final mass 
when the value of the thrust is changed. It can also be noted that the solution cor-
responding to Q = 1.9 × 106 is more desensitized than Q = 2.0 × 106 as the value of 
d is lower for the former case than the latter. Thus, the desensitization process is not 
linear and the value of d does not change monotonically with respect to changes in 
Q, which is also observed in [31].

Fig. 10   Minimum-fuel Earth–Mars problem: desensitized control profiles vs. time with a = 1.0 × 10−5

Fig. 11   Minimum-fuel Earth–Mars problem: desensitized optimal trajectory with a = 1.0 × 10−5
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5 � Reduced Desensitization Formulation

For the indirect method, the costate equations are necessary because the optimal 
control expression will be a function of costates. According to PMP, the optimal/
extremal control is the one that minimizes the Hamiltonian written as

In general, optimal control is a function of costates in the indirect method. On the 
other hand, when solving an OCP using a direct method, the costate equations are 
not included in the dynamics. The states and the controls become optimization 
variables while respecting the state equations and boundary conditions at a finite 
number of points [48]. However, the desensitization formulation shown in Sect. 3 
is based on the indirect optimization method and solved using a direct solver. It is 
to be noted that the expression for optimal control by using PMP is not used. How-
ever, since the cost functional (see Eq. (18)) is a function of costate of thrust, �T , it 

(22)û∗&𝛿∗ = arg min
𝛿∈[0,1]&||û||=1

H(x∗,m∗,𝝀x
∗, 𝜆∗

m
, 𝛿, û).

Fig. 12   Minimum-fuel Earth–Mars problem: mass vs. time with a = 1.0 × 10−5

Table 2   Desensitized minimum-
fuel Earth–Mars simulation 
results using the non-uniqueness 
property of costates

Q T0 (N) m
f

d

0 0.5 603.9366 –
0 0.515 606.3324 2.3958
1.9 × 106 0.5 599.9648 –

1.9 × 106 0.515 600.5614 0.5966

2.0 × 106 0.5 599.8991 –

2.0 × 106 0.515 598.1656 1.7335
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becomes necessary to include the costate dynamics in the desensitization formula-
tion, although a direct solver (e.g., GPOPS-II) is used to solve the problem.

The key point is that the optimal control must differ from its profile associated 
with the standard (sensitive) formulation. This is a trade-off between optimality-
driven and desensitized-driven formulations. From the analysis presented in Sect. 3 
and 4, it is evident that thrust desensitization for minimum-fuel trajectories hap-
pens only when the thrust costate is minimized by altering the thrust switches and 
the components of the unit thrust direction vector. As demonstrated in the previous 
section, the non-uniqueness of the costate differential equations can be leveraged 
to minimize thrust costate by changing the thrust switches and components of the 
unit thrust direction vector. From these observations, we arrive at the following two 
conclusions: (1) by decreasing the value of the positive constant a, the time rate 
of change of costates will become very small or negligible and the costate profiles 
almost take a constant value, and (2) because the state and control profile are inde-
pendent of the costate profile using this desensitization formulation (based on the 
direct method), imposing constraints on the value of costates at the initial time will 
not affect the solution of the sensitive OCP. Using the above two points makes it 
possible to make the velocity and mass costate a constant K (similar to orbit averag-
ing [49]) and we can choose K by imposing a constraint on the costates at the initial 
time. The constraints are enforced on the velocity and mass costates and can be sum-
marized as

where Kvx , Kvy , Kvz and Km are the constant velocity and mass costates. Since the 
time rate of change of costates can be made negligible, the following conclusion can 
be made

Therefore, we no longer need to propagate the differential equations of velocity and 
mass costates. Hence, Eq. (20) is written as

An immediate consequence of using Eq. (25) is that we can remove �x and �m from 
the set of states. This is a substantial reduction in the number of differential equa-
tions, which improves the computational efficiency for obtaining desensitized open-
loop optimal solutions. Therefore, the differential equations that will be used for 
desensitization are Eqs. (25) and (5). Note that we have removed Ṫ = 0 from the set 
of differential equations. The nonlinear residual equation given in Eq. (19) is modi-
fied as

Theoretically, the value of Kvx , Kvy , Kvz and Km will affect the magnitude of the thrust 
costate and different magnitudes of the thrust costate can be achieved by changing 

(23)�vx(t0) = Kvx, �vy(t0) = Kvy, �vz(t0) = Kvz, �m(t0) = Km,

(24)�vx(t) = Kvx, �vy(t) = Kvy, �vz(t) = Kvz, �m(t) = Km.

(25)𝜆̇T = −
𝛿

m

(
Kvxux + Kvyuy + Kvzuz − Km

m

c

)
.

(26)� =
[
[x(t0) − x0]

⊤
,m(t0) − m0, [x(tf ) − xT ]

⊤
, 𝜆T (tf )

]⊤
= 0.
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Kvx , Kvy , Kvz and Km . For different magnitudes of thrust costate, desensitization can 
be achieved by choosing the value of Q carefully so that it results in the minimiza-
tion of the thrust costate. To clarify this point, the example solved in Sect. 3.1 is 
re-solved using the formulation explained above for Kvx = Kvy = Kvz = Km = 1 . The 
plots for the evolution of thrust costate, thrust switching and components of the unit 
thrust direction vector are shown in Figs. 13 and 14.  

To assess desensitization, the value of initial thrust is increased by 3% and 5%. 
Simulation results are summarized in Table 3. Similar to Sect. 3.1, d is the absolute 
value of the difference in the mass at final time, when the value of thrust is changed. 
Table 3 suggests that the Earth-Mars trajectory is desensitized as the value of Q is 
increased.

Please note that the final mass of low-thrust trajectory optimization problems 
is asymmetrical with respect to the thrust magnitude. When the thrust magni-
tude is increased, the spacecraft propulsion system becomes more capable. From 
orbital mechanics, we also know that for a propulsion system with a fixed value 

Fig. 13   Minimum-fuel 
Earth-Mars problem: desen-
sitized thrust costate history 
using the RDF method with 
K
vx
= K

vy
= K

vz
= K

m
= 1

Fig. 14   Minimum-fuel Earth–Mars problem: desensitized thrust profile using the RDF method with 
K
vx
= K

vy
= K

vz
= K

m
= 1
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of specific impulse, an increase in the thrust magnitude corresponds to getting 
closer to an impulsive maneuver. Impulsive maneuvers are efficient since grav-
ity losses are minimized. Conversely, if the thrust magnitude decreases, the final 
mass decreases relative to the nominal value, but not in a symmetrical manner 
due to the equation of orbital mechanics and the addition of gravity losses due 
to the operation of the thruster over longer periods of time. This is the reason for 
the asymmetrical change in the value of the final mass when thrust is increased 
or decreased. Thus, for a fixed initial mass value, a fixed specific impulse value 
and for a fixed time of flight [50], any increase in the thrust magnitude cor-
responds to a larger final mass. Thus, for Q = 0 , the final mass associated with 
T0 = 0.525 N has a greater final mass. This increase in the thrust at the largest 
limit corresponds to an approximation of impulsive maneuvers [50]. The slope 
of the thrust costate curve during thrusting is 4.405 kg/N/day for both the sen-
sitive and desensitized solutions. From Fig. 14a it is observed that the number 
of thrust switches is two for the desensitized trajectory and four for the thrust-
sensitive trajectory. The number of thrust switches is the same roughly after half 
of the total time of flight (174 days). Desensitization is achieved through extra 
thrusting at the initial phase of the mission, where the thrust is more effective 
since the spacecraft operates closer to the Sun.

The same problem is also solved for Kvx = 2,Kvy = 3,Kvz = 4,Km = 5 . The 
plots for thrust switching and components of the unit thrust direction vector are 
similar to those shown in Fig. 14 and are not included for brevity. The desensi-
tization results are summarized in Table 4. The plot for the evolution of thrust 
costate is shown in Fig. 15a.

The Earth-Mars rendezvous is also solved for K
vx
= 200,K

vy
= 300,K

vz
= 400,

K
m
= 500 . The plots for thrust switching and components of the unit thrust 

direction vector are similar to those shown in Fig. 14 and are not included for 
brevity. The desensitization results are summarized in Table 5. The plot for the 
evolution of thrust costate is shown in Fig. 15.

From Figs. 13, 15a and b it is evident that by changing the value of Kvx , Kvy , 
Kvz and Km the profile of the thrust costate gets scaled. Also, Tables 3, 4 and 5 

Table 3   Minimum-fuel Earth-
Mars problem: desensitization 
simulation results using 
the RDF method with 
K
vx
= K

vy
= K

vz
= K

m
= 1

Q T0 (N) m(t
f
) (kg) d (kg)

0 0.5 603.9366 –
0 0.515 606.3346 2.3980
0 0.525 607.8243 3.8877
0.001 0.5 599.9071 –
0.001 0.515 600.4905 0.5834
0.001 0.525 600.6427 0.7356
0.005 0.5 599.9071 –
0.005 0.515 600.4729 0.5658
0.005 0.525 600.6427 0.7356
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Table 4   Minimum-fuel Earth–
Mars problem: desensitization 
simulation results using the 
RDF method for K

vx
= 2,

K
vy
= 3,K

vz
= 4,K

m
= 5

Q T0 (N) m(t
f
) (kg) d (kg)

0 0.5 603.9401 –
0 0.515 606.3335 2.3934
0 0.525 607.8254 3.8853
0.001 0.5 599.9997 –
0.001 0.515 600.4709 0.4712
0.001 0.525 600.6389 0.6392
0.005 0.5 599.9997 –
0.005 0.515 600.47 0.4703
0.005 0.525 600.638 0.6383

Fig. 15   Minimum-fuel Earth–Mars problem: desensitized thrust costate history using the RDF method

Table 5   Minimum-fuel Earth–Mars problem: desensitization simulation results using the RDF method 
for K

vx
= 200,K

vy
= 300,K

vz
= 400,K

m
= 500

Q T0 (N) m(t
f
) (kg) d (kg)

0 0.5 603.9401 –
0 0.515 606.3334 2.3933
0 0.525 607.8254 3.8853
10−9 0.5 599.9997 –

10−9 0.515 600.5217 0.522

10−9 0.525 600.6858 0.6861

5 × 10−9 0.5 599.9997 –

5 × 10−9 0.515 600.4891 0.4894

5 × 10−9 0.525 600.6561 0.6564
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suggest that desensitization can be achieved for different magnitudes of thrust 
costate by choosing the value of Q accordingly.

6 � Numerical Results

The RDF method is applied to three different classes of trajectory optimization 
problems. First, it is applied to the following minimum-fuel interplanetary rendez-
vous problems: (a) Earth to comet 67P/Churyumov-Gerasimenko, and (b) Earth to 
asteroid Dionysus. The reason for solving these OCPs is that they represent a broad 
range of maneuvers consisting of multiple orbital revolutions that require a notice-
able change in the inclination of the spacecraft’s orbit. Second, the RDF method is 
applied to an orbit-raising problem in which the objective is to maximize the final 
circular radius. Finally, the RDF method is applied to a high-thrust, minimum-fuel, 
rocket-landing problem. We emphasize that for solving low-thrust trajectory optimi-
zation problems, we have used the set of MEEs [42] due to their advantages com-
pared to the set of Cartesian coordinates [39–41]. However, the thrust costate differ-
ential equation takes the following form

where Kvr , Kvt , Kvn denote the constant velocity costate in the osculating frame, ur , 
ut , and un denote radial, transversal and normal (along specific angular momentum 
vector) components of the thrust unit direction vector expressed in the osculating 
coordinate attached to the spacecraft [41]. Based on the study that we presented in 
Sect. 4, for all problems, we can use the scaling to demonstrate that costates can be 
forced to remain constant along the trajectory. Thus, we have used the reduced form 
of the 𝜆̇T equation in the provided results. The values Kvr , Kvt , Kvn and Km are set to 
1 in the following examples. All the TPBVPs associated with the RDF method are 
solved using GPOPS-II [47].

6.1 � Earth‑Comet 67P/Churyumov‑Gerasimenko Rendezvous problem

According to the counting scheme followed in this paper, for the RDF method, 
n = 7 and l = 1 . The boundary conditions along with the spacecraft engine param-
eters for this problem (referred to as Earth-67P) are taken from [51]. Canonical 
scaling explained in Sect.  3.1 is used. The spacecraft’s initial position vector is 
r(t0) = [−10687809.15,−151602518.3, 8676.494013]⊤ km and the initial veloc-
ity vector is v(t0) = [29.22497601,−2.197707221, 0.000972199]⊤ km/s. The tar-
get position vector is rT = [−536251927.7,−126576922.3, 14541016.26]⊤ km and 
the target velocity vector is vT = [−6.858900316,−13.35248149,−0.453167946]⊤ 
km/s. All vectors are given in the Sun-Centered Inertial frame. The total fixed time 
of flight is 1776 days. The initial mass of the spacecraft is 3000 kg. The electric 

(27)𝜆̇T = −
𝛿

m

(
Kvrur + Kvtut + Kvnun − Km

m

c

)
,
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propulsion system has the following parameters: nominal initial thrust, T0 = 0.6 
Newtons, constant specific impulse, Isp = 3000 seconds.

The global extremal trajectory for this problem is known with a final mass of 
2092.1 kg and the spacecraft makes two orbital revolutions around the Sun. The 
plots for the evolution of thrust costate, thrust switching, components of the unit 
thrust direction vector, and three-dimensional trajectory are shown in Figs.  16, 
17, and 18, respectively. To check for desensitization, the value of the initial 
thrust is increased and decreased by 5%. Simulation results are summarized in 
Table  6. The slope of the thrust costate curve during thrusting is 2.9368 kg/N/
day for both sensitive and desensitized solutions. Table 6 suggests that the Earth-
Comet 67P trajectory is desensitized as the value of Q is increased. Figure 17a 
suggests that the number of thrust switches for the desensitized trajectory is 6 and 
for the sensitive trajectory is 7. The sensitive trajectory has an initial coasting that 
suggests that it has a late-departure arc. This is not observed in the desensitized 
trajectory, and thrust desensitization is achieved by thrusting from the start of the 
mission. This is attributed to the Oberth effect, which suggests a greater change 
in mechanical energy due to the thrust of the spacecraft being possibly near the 
perihelion than in the aphelion. Table 7 summarizes the thruster on and off times 
for the sensitive and desensitized trajectories. The thruster is switched on for 
about 511.993 days and 565.881 days for the entire sensitive and desensitized 
trajectory respectively. Desensitization with thrust value is achieved through this 
extra thrusting in the desensitized trajectory, but this also leads to an increased 
consumption of fuel that results in a lower final mass. Thus, there is a trade-off 
between desensitization and optimality.

6.2 � Earth‑Dionysus Rendezvous Problem

The boundary conditions along with the spacecraft engine parameters are taken 
from Reference [40]  for this problem. The spacecraft’s initial position and veloc-
ity vectors are r(t0) = [−3637871.081, 147099798.784,−2261.441]⊤ km and 
v(t0) = [−30.265097,−0.8486854, 0.0000505]⊤ km/s respectively. The target posi-
tion vector is rT = [−302452014.884, 316097179.632, 82872290.075]⊤ km and the 
target velocity vector is vT = [−4.53347379984,−13.1103098008, 0.65616382602]⊤ 
km/s. All vectors are given in the Sun-Centered Inertial frame. Canonical scaling 
explained in Sect. 3.1 is used for this problem. The total time of flight is 3534 days. 
The initial mass of the spacecraft is considered as 4000 kg. The electric propul-
sion system has the following parameters: nominal initial thrust, T0 = 0.32 Newtons, 
constant specific impulse, Isp = 3000 seconds. The global extremal trajectory for 
this problem is known with a final mass of 2718.16 kg and the spacecraft makes 
five orbital revolutions around the Sun. The plots for the evolution of thrust cos-
tate, thrust switching and components of the unit thrust direction vector, and three-
dimensional trajectory are shown in Figs. 19a, 20 and 21. Figure 19b shows the time 
histories of inclination, semi-major axis and eccentricity.  

To check for desensitization, the value of the initial thrust is increased and 
decreased by 2%. Desensitized simulation results are summarized in Table  8 and 
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suggest that the Earth-Dionysus trajectory is desensitized as the value of Q is 
increased. Figure  20a indicates that the number of thrust switches for the sensi-
tive trajectory is 12 and for the desensitized trajectory is 9. Table 9 summarizes the 
thruster on and off times for the sensitive and desensitized trajectories. The thruster 

Table 6   Minimum-fuel Earth-
67P problem: desensitization 
simulation results using the 
RDF method

Q T0 (N) m(t
f
) (kg) d (kg)

0 0.6 2092.0655 –
0 0.63 2096.6016 4.5361
0 0.57 2086.4695 5.5960
0.0001 0.6 2023.7571 –
0.0001 0.63 2025.1220 1.3649
0.0001 0.57 2021.6993 2.0578
0.001 0.6 2000.4243 –
0.001 0.63 2000.1836 0.2407
0.001 0.57 1999.3305 1.0938

Fig. 16   Minimum-fuel Earth-
67P problem: thrust costate 
history using the RDF method

Fig. 17   Minimum-fuel Earth-67P problem: thrust switching history using the RDF method
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is switched on for about 1357.869 days and 1523.608 days for the entire sensi-
tive and desensitized trajectories respectively. Desensitization with thrust value is 
achieved through this extra thrusting in the desensitized trajectory, but this also leads 
to an increased consumption of fuel that results in a lower final mass. The slope of 
the thrust costate curve during thrusting is 2.9368 kg/N/day for both the sensitive 
and desensitized solution. The sensitive minimum-fuel trajectory has a late-depar-
ture coast, that is not seen in the desensitized solution. Also, Fig. 19b suggests that 
the inclination change for the desensitized trajectory is achieved gradually over time, 
when compared to the sensitive trajectory, where the majority of the change in the 
inclination occurs at the largest distance from the Sun. 

6.3 � Orbit‑Raising Problem

Here, the RDF method is applied to a standard orbit-raising problem [43]. Let 
x = [r, u, v]⊤ denote the state vector, where r denotes radial coordinate, u denotes 
radial velocity, and v denotes transverse velocity. According to the counting scheme 
used in this paper, n = 3 and l = 1 for the orbit-rising problem. Therefore, if the 
C-DOC method is used, a total of 8 differential equations ( 2(n + l) = 2(3 + 1) = 8 ) 
are needed, while only 4 differential equations ( n + l = 3 + 1 = 4 ) are needed for the 

Fig. 18   Minimum-fuel Earth-67P problem: three-dimensional view of trajectory for different values of Q 

Table 7   Minimum-fuel 
Earth-67P problem: Thrust 
switching times for sensitive and 
desensitized trajectory.  
( Ton-time when the thruster is 
turned on, Toff-time when the 
thruster is turned off)

Sensitive solution Desensitized solution

Ton (days) Toff (days) Ton (days) Toff (days)

79.617 219.542 0 244.671
556.48 712.148 581.337 694.557
1293.48 1492.05 1299.34 1494.8
1758.17 1776 1763.47 1776
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RDF method. A planar two-dimensional model is considered and the state dynamics 
are written in polar coordinates as

where T denotes propulsive thrust, m is the spacecraft mass, and � is the thrust steer-
ing angle, which is the scalar control input. The time rate of change of thrust costate, 
𝜆̇T , can be derived as

where �u and �v denote the costates of radial and transversal velocities respectively.
The aim is to maximize the final radius, and by following Eq. (18), the desensi-

tizing cost functional is given as

The differential equations that will be considered while solving the orbit-raising 
problem are given in Eq. (28) (excluding Ṫ = 0 ) and (29). The scaled boundary 
conditions at initial time t0 = 0 for the radial coordinate, radial velocity, transverse 
velocity, mass and thrust are 1, 0, 1, 1, and 0.1405, respectively. The fixed total time 
of flight in scaled unit is 3.32 and ṁ = −0.0749 . The boundary conditions at final 
time tf  are

(28)

ṙ = u, u̇ =
v2

r
−

𝜇

r2
+

T

m0 − |ṁ|t
sin(𝜙), v̇ =

−uv

r
+

T

m0 − |ṁ|t
cos(𝜙), Ṫ = 0,

(29)𝜆̇T = −

(
𝜆u sin(𝜙) + 𝜆v cos(𝜙)

m0 + ṁ(t − t0)

)
RDF
→ 𝜆̇T = −

(
sin(𝜙) + cos(𝜙)

m0 + ṁ(t − t0)

)
,

(30)minimize
�∈[0,2�]

J = −r(tf ) + ∫
tf

t0

Q�2
T
dt.

Fig. 19   Minimum-fuel Earth-Dionysus problem: desensitized thrust costate (left) and orbital elements 
(right) vs. time using the RDF method for different values of Q
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The plots of orbit radius evolution, thrust costate evolution and control history for 
initial thrust, T0 = 0.1405 are shown in Figs. 22, 23a and 25b, respectively. The final 
radius for the sensitive solution ( Q = 0 ) is r(tf ) = 1.525 . To visualize the effect of 
desensitization on the orbit-raising problem, the radius profile for different values 
of thrust in the range of 0.1355 to 0.1455 was plotted for Q = 0 and Q = 20 and 
is shown in Fig. 22. Clearly, the dispersion in the final radius for Q = 0 is larger, 
when compared to Q = 20 . To check for desensitization, the initial thrust value 
was changed to 0.1505 and 0.1305. The desensitization results are summarized in 
Table 10. Table 10 suggests that the change in the final radius, r(tf ) is reduced as the 
value of Q is increased.  

(31)u(tf ) = 0, v(tf ) =

√
1

r(tf )
, �T (tf ) = 0.

Fig. 20   Minimum-fuel Earth-Dionysus problem: desensitized thrust switching vs. time using the RDF 
method

Fig. 21   Minimum-fuel Earth-Dionysus problem: three-dimensional view of trajectory for different values 
of Q 
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6.4 � Rocket‑Landing Problem

A lunar rocket-landing guidance problem is formulated by assuming a lander with 
a 2-dimensional position and rotation that is equipped with a gimbaled propul-
sion system. An illustration of the problem is shown in Fig. 24. The goal of the 
optimization problem is to guide the lander to a soft touchdown by consuming the 
least amount of propellant. The state vector is constructed to include information 
regarding the position, [x, y]⊤ , velocity, [vx, vy]⊤ , rotational dynamics, [𝜃,𝜔]⊤ and 
mass, m. To desensitize the trajectory, thrust T is elevated as one of the states. 
According to the counting scheme used in this paper, n = 7 and l = 1 for this 
problem. Therefore, if the C-DOC method is used, a total of 16 differential equa-
tions ( 2(n + l) = 2(7 + 1) = 16 ) are needed, while only 8 differential equations 
( n + l = 7 + 1 = 8 ) are needed for the RDF method. The dynamics of the lander 
can be written as

Table 8   Minimum-fuel 
Earth-Dionysus problem: 
desensitization simulation 
results using the RDF method

Q T0 (N) m(t
f
) (kg) d (kg)

0 0.32 2718.2712 –
0 0.3264 2723.7508 5.4796
0 0.3136 2712.3718 5.8994
0.00001 0.32 2582.1304 –
0.00001 0.3264 2585.7113 2.7630
0.00001 0.3136 2578.3367 4.6116
0.0001 0.32 2558.1231 –
0.0001 0.3264 2557.2601 0.8630
0.0001 0.3136 2557.9666 0.8639
0.001 0.32 2557.1304 –
0.001 0.3264 2556.0274 1.1030
0.001 0.3136 2558.0402 0.9098

Table 9   Minimum-fuel Earth-
Dionysus problem: Thrust 
switching times for sensitive and 
desensitized trajectories.  
( Ton-time when the thruster is 
turned on, Toff-time when the 
thruster is turned off)

Sensitive solution Desensitized solution

Ton (days) Toff (days) Ton (days) Toff (days)

89.695 315.851 0 892.838
517.113 742.296 1046.32 1249.29
1033.87 1256.82 1725.32 1893.78
1682.07 1900.06 2599.23 2758.46
2549.24 2758.48 3106.44 3206.55
3007.58 3263.93 – –
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where T  denotes the maximum thrust produced by the propulsion system, 
� ∈ [0.25, 1] is the throttle magnitude, u ∈ [−10◦, 10◦] (with an abuse of notation) 
is the thrust gimbal angle, g = 1.625 ms−2 denotes the surface gravitational accel-
eration of the moon, L = 0.5 m is the thrust lever arm, moment of inertia is J = 105 
kg m 2 , and � = 1∕(IspgE) denotes the propellant consumption rate coefficient with 
Isp = 370 s and gE = 9.807 ms−2 is the sea-level gravitational acceleration of Earth. 
The total fixed time of flight is 82.863 s. The augmented cost functional becomes

where �T denotes the thrust costate. By following the steps outlined in Sect. 3, the 
thrust costate dynamics can be written as

where �vx and �vy denote the costates of velocity, �� is the costate of angular velocity 
and �m is the mass costate. Following the RDF method, the thrust costate differential 
equation in Eq. (34) can be simplified as

(32)

ẋ = vx, ẏ = vy, v̇x = −
T𝛿

m
sin(𝜃 + u), v̇y =

T𝛿

m
cos(𝜃 + u) − g,

𝜃̇ = 𝜔, 𝜔̇ = −
LT𝛿

J
sin(u), ṁ = −𝛼T𝛿, Ṫ = 0,

(33)minimize
�& u

J = −m(tf ) + ∫
tf

t0

Q�2
T
(t) dt,

(34)𝜆̇T = 𝜆vx
𝛿

m
sin(𝜃 + u) − 𝜆vy

𝛿

m
cos(𝜃 + u) + 𝜆𝜔

L𝛿

J
sin(u) + 𝜆m𝛼𝛿,

(35)𝜆̇T =
𝛿

m
sin(𝜃 + u) −

𝛿

m
cos(𝜃 + u) +

L𝛿

J
sin(u) + 𝛼𝛿.

Fig. 22   Orbit-raising problem: radius dispersion vs. time for different values of thrust
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Equations (32) and (35) are the differential equations that will be considered for 
desensitization simulations. The state vector is X(t)⊤ = [x, y, vx, vy, 𝜃,𝜔,m, 𝜆T ] . The 
boundary conditions for this problem are x(t0) = 0.5 km, y(t0) = 1.4 km, vx(t0) = 80 
km/hr, vy(t0) = −100 km/hr, �(t0) = −30 deg, � = 0 deg/s, m(t0) = 25, 000 kg, 
�T (t0) is free, x(tf ) = 0 km, y(tf ) = 0.5 × 10−3 km, vx(tf ) = 0 km/hr, vy(tf ) = 0 km/hr, 
�(tf ) = 0 deg, �(tf ) = 0 deg/s, m(tf ) is free, �T (tf ) = 0 . The nominal thrust is T = 80 
kN. It is also common to consider a glideslope constraint to avoid colliding with any 
potential object (e.g., boulders). The glideslope constraint can be written as

(36)|x| − y

tan(�gs)
≤ 0.

Fig. 23   Orbit Raising problem: desensitized profiles of thrust costate and control

Table 10   Orbit-raising problem: 
desensitization simulation 
results using the RDF method

Q T0 r(t
f
) d

0 0.1405 1.5253 –
0 0.1505 1.5606 0.0353
0 0.1305 1.4898 0.0355
10 0.1405 1.3053 –
10 0.1505 1.3265 0.0212
10 0.1305 1.2840 0.0213
20 0.1405 1.2987 –
20 0.1505 1.3197 0.021
20 0.1305 1.2788 0.019
50 0.1405 1.2868 –
50 0.1505 1.3098 0.023
50 0.1305 1.2653 0.0215
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A glideslope angle of �gs = 45 deg is considered in this paper. To check for desen-
sitization, simulations were performed for different values of Q and by increasing 
the nominal thrust by 5% . The desensitization simulation results are summarized in 
Table 11. The last column in Table 11 refers to the difference in the final mass when 
the thrust is increased by 5% . Table 11 suggests that as the value of Q increases, the 
difference in the mass at the final time gets reduced. The time histories for the thrust 
magnitude and gimbal angle are plotted in Fig. 25a and b respectively. Clearly, the 
control profile of the desensitized problem ( Q = 1.0 × 106 ) is different from the sen-
sitive solution ( Q = 0 ). In addition, the thrust magnitude exhibits fewer switches for 
the desensitized trajectory. Table  12 summarizes the thruster switch times for the 
sensitive and desensitized trajectories. The thruster operates at its maximum throt-
tle value for about 41.234 seconds and 42.336 seconds along the entire sensitive and 
desensitized trajectories respectively. Desensitization with thrust value is achieved 
through this extra thrusting in the desensitized trajectories, but this also leads to an 
increased consumption of fuel that results in a lower final mass. Figs.  26 and 27 
depicts the solution of a Monte Carlo analysis, where the thrust value was changed 
in the range of 76, 000 − 84, 000 N during the analysis. An important observation 
from Fig. 26 is that the desensitized trajectory stays farther away from the glideslope 
constraint than the sensitive trajectory. This gives the desensitized trajectory free-
dom in changing the trajectory to achieve mass desensitization. The reduced disper-
sion in the final mass value for the desensitized solution can be seen in Fig. 27. The 
plot for the thrust costate vs. time is shown in Fig. 28. Unlike the results in Figs. 13, 
16 and 19a, �T of the rocket-landing problem has multiple slope values.

Fig. 24   Illustration of the 
rocket-landing problem with a 
glideslope constraint
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7 � Conclusion

A novel scalable method for generating open-loop desensitized solutions to opti-
mal control problems (OCPs) is developed—Reduced Desensitization Formula-
tion (RDF). The application of the RDF is demonstrated by solving three differ-
ent classes of problems: (1) minimum-fuel low-thrust interplanetary rendezvous 
maneuvers, (2) low-thrust orbit-raising maneuvers, and (3) high-thrust minimum-
fuel rocket-landing problem in the presence of a glide-slope constraint. The con-
sidered problems all exhibit desensitized cost with respect to the uncertainties in 
the thrust magnitude produced by the propulsion system. The results indicate that 
for minimum-fuel, low-thrust trajectories, the late-departure coasts (that consti-
tute an early phase of the sensitive open-loop trajectories) are no longer present 
in the desensitized trajectories. In essence, the majority of the inclination and 
energy change occurs during the early phases of the trajectory. This change is 
more pronounced in long-time horizon maneuvers, such as the trajectory from 
Earth to asteroid Dionysus.

Table 11   Rocket-landing 
problem: desensitization 
simulation results using the 
RDF method

Q T0 (N) m(t
f
)(kg) d (kg)

0 80,000 23,792.187 –
0 84,000 23,795.249 3.062
1.0 × 106 80,000 23,774.536 –

1.0 × 106 84,000 23,775.792 1.256

5.0 × 106 80,000 23,773.419 –

5.0 × 106 84,000 23,774.417 0.997

7.0 × 106 80,000 23,773.345 –

7.0 × 106 84,000 23,774.296 0.950

Fig. 25   Rocket-landing problem control profiles using the RDF method for different Q values
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For the orbit-raising problem, since the final radius is the objective of the prob-
lem, the desensitized trajectories exhibit less dispersion in the final radius. For 
the rocket-landing problem, with the final mass being the objective, the desen-
sitized trajectory “stays far” from the glideslope constraint in order to gain flex-
ibility in modifying the thrust switching. Results indicated that for OCPs with 
bang-bang control profiles, the number of control switches decreases compared 
to the sensitive optimal solutions. Another important result, for the class of prob-
lems with bang-bang control profiles, is that the slope of the costate associated 
with the thrust is exactly equal to the slope of the same costate, when the optimal 
control of the sensitive optimal control is used. As a result, and since the costate 
of thrust at the final time has to be zero, the differences in the costate profiles are 
at the initial value of the costates and the number of switches. For the rocket-
landing problem, both thrust and gimbal angle affect the trajectory, the slope of 
the thrust costate has multiple slope values along the sensitive and desensitized 
trajectories, but the corresponding slope values for both the sensitive and desensi-
tized trajectories are the same.

Table 12   Rocket-landing 
problem: Thrust switching times 
for sensitive and desensitized 
trajectories. ( �high-time when 
�high = 1 , �low-time when 
�low = 0.25 ). Time unit is 
seconds

Sensitive solution Desensitized solution

�high �low �high �low

0 0.753 0 23.9553
6.387 29.679 64.4815 82.8626
65.673 82.8626 – –

Fig. 26   Rocket-landing problem: Monte Carlo trajectory analysis using the RDF method for different Q 
values
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The results indicate that for all the considered problems, the value of cost 
functional associated with the desensitization results in a slightly worse cost 
when compared to the sensitive problem results. This is expected since there is an 
inevitable trade-off in cost when obtaining open-loop desensitized optimal solu-
tions. Although we lose optimality with respect to the cost functional value of the 
sensitive optimal control problem, we gain significantly from a practical space-
craft operations perspective. For instance, by using desensitized trajectories, the 

Fig. 27   Rocket-landing problem: mass profile Monte Carlo analysis using the RDF method for different 
Q values

Fig. 28   Rocket-landing problem: thrust costate vs. time using the RDF method for different Q values
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spacecraft trajectory is less affected in the presence of thrust magnitude uncer-
tainties. The optimal control is also less likely to be updated due to uncertainty in 
the parameters, and this will reduce the number of times the trajectory needs to 
be re-planned on the ground and up-linked to the spacecraft.
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