
Vol.:(0123456789)

The Journal of the Astronautical Sciences (2023) 70:29
https://doi.org/10.1007/s40295-023-00385-9

1 3

ORIGINAL ARTICLE

Revisiting Universal Variables for Robust, Analytical Orbit 
Propagation Under the Vinti Potential

Ashley D. Biria1,2 

Accepted: 12 June 2023 / Published online: 27 August 2023 
© The Author(s) 2023

Abstract
To meet the growing complexity and demands of modern spacecraft missions, ana-
lytical solutions to initial value problems see continued use, typically supporting 
global searches of large trajectory design spaces. These efforts often employ uni-
versal two-body orbit propagators for their recognized speed and robustness, but 
many applications, like active space debris removal, would benefit from a compa-
rable propagator with greater accuracy. Vinti propagators, which consider planetary 
oblateness, may serve this purpose, but existing Vinti solutions possess computa-
tional difficulties in certain orbital regimes. To mitigate these deficiencies, the pre-
sent study develops and validates an analytical, third-order universal Vinti propaga-
tor free of computational difficulties by leveraging standard, oblate spheroidal (OS) 
universal variables and OS equinoctial orbital elements. Accuracy of the third-order 
approximation is assessed for multiple examples across an array of orbital regimes. 
Computational runtime is also evaluated, and performance is directly compared to 
the benchmark Vinti6 algorithm. On average, the Vinti propagator implemented 
in this work is only slower than a typical universal Kepler propagator by a factor of 
4.0 and slower than Vinti6 by a factor of 1.8, but with greater robustness than the 
benchmark. The new form of the equations of motion also has favorable implica-
tions for the associated boundary value problem.
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1 Introduction

The Vinti gravitational potential [1, 2], like that of the two-body problem [3, 4], 
can describe or capture the predominant natural motion of a small object traveling 
near a large gravitating body. The latter exactly describes satellite motion around 
a spherically symmetric body or point mass and the former exactly describes 
motion around an oblate spheroid, which better approximates the Earth’s basic 
shape. The utility of these gravitational models derives largely from the fact that 
they admit analytical solutions  [4–6] to their respective initial value problems 
(IVPs), furnishing a past or future state given specified initial conditions. The 
Kepler or two-body prediction problem has been studied for several centuries and 
is one of the most fundamental problems in astrodynamics [4]. As a natural ana-
logue of the Kepler problem for oblate spheroids and one of the few integrable 
problems in celestial mechanics, the Vinti problem warrants further study  [7]. 
These gravitational models have merit because, for many of the bodies in the 
solar system, such as Earth and other planets, these computationally efficient 
approximations of the actual physics are good enough to support numerous appli-
cations, either directly or as building blocks of a larger architecture [8–12]. But 
the rising complexity and innovation in modern spacecraft missions, like active 
space debris removal (ASDR), often call for more accuracy than two-body grav-
ity in preliminary trajectory designs. Replacing this model with Vinti’s potential, 
which reduces the modeling error by three orders of magnitude at Earth  [1], is 
an attractive way to better satisfy these accuracy requirements and provides the 
incentive to study Vinti’s potential in the current work.

The importance of more accurate models like the Vinti potential motivates the 
continued refinement of analytical Vinti IVP solutions to improve performance 
metrics like computational speed and robustness. These metrics are important for 
complex preliminary mission design applications that require global searches of 
very large trade spaces, such as those encountered in ASDR, a time-dependent 
traveling salesman problem with moving nodes  [13]. While numerical integra-
tion schemes may be simpler than analytical solutions, and more accurate, the 
integrator may be called on the order of a billion times in an ASDR application, 
and the implied long runtimes can make a numerical approach unappealing or 
less viable. In contrast, a hallmark of implemented analytical solutions to both 
Vinti and Kepler IVPs, accordingly called Vinti and Kepler propagators, is the 
innately high speed at which they predict or compute a spacecraft’s ballistic tra-
jectory. State-of-the-art Kepler propagators have a runtime of roughly a micro-
second and existing Vinti propagators are only five times slower on average [2], 
noting that those tested in that study also included J3 through Vinti’s asymmet-
ric potential  [14, 15]. A prior study by Biria and Russell [12] found for a low-
altitude ASDR application that a 400 times speed-up was attainable with a Vinti 
propagator, using the “Vinti6” algorithm [2], as compared to an eighth-order 
Runge-Kutta numerical integrator taking 50 steps per spacecraft revolution over 
a 10-day transit. Similar speed-ups are expected from the solution proposed in 
this paper, although algorithm robustness is prioritized over computational speed. 
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Specifically, the novel universal Vinti solution proposed in the current work aims 
to retain the described high computational speeds while leveraging astrodynamics 
concepts known to promote robustness.

Having motivated the utility of Vinti propagators, it is worth noting that, like 
Kepler propagators, a variety of source codes are publicly available. As fundamental 
tools, many analytical propagator codes are found in textbooks. For Kepler propaga-
tors, undergraduate textbooks like Vallado [8] and Curtis [16] offer straightforward 
implementations. For Vinti propagators, Vinti’s graduate textbook edited by Der and 
Bonavito [2] contains six source codes in multiple programming languages. More 
recently, Biria and Russell [11, 12, 17] developed enhanced versions that remove 
computational difficulties and indeterminate forms, substantially improving accu-
racy for bounded orbits, especially near the equatorial regime. Their source code is 
also publicly available online.1

Universal solutions to these IVPs, such as those archived by Der and Bonavito 
[2], are attractive because they should in theory possess no computational difficulties 
or limitations in validity, being valid for all orbital regimes. As such, while Wiesel 
[18] and Wright [10] contributed notable advancements to Vinti theory using action-
angle variables and numerical methods, the current effort is instead focused on uni-
versal techniques. Universal Kepler propagators are ubiquitous, computer programs 
commonly adopting the implementation of Bate et al. [4] in standard universal vari-
ables (UVs), which are notable for their robustness and connection to the Lagrange 
coefficients. Prior work on universal Vinti propagators [2, 19] use what Herrick [20] 
called “unified variables”, which, while retaining accuracy near the parabolic orbital 
regime, still utilize classical orbital elements and are not connected to oblate sphe-
roidal (OS) Lagrange coefficients. Lacking a standard-UV solution to Vinti’s IVP, 
existing Vinti propagators must rely more on carefully chosen numerical algorithms 
to create and increase robustness. In contrast, a Vinti propagator based on standard 
UVs arguably inherits more robustness naturally. While such a formulation may still 
be paired with the same robust numerical methods, the incorporation of additional 
robustness by design implies an extra layer of robustness that enhances the entire 
propagator.

The main contribution of this paper is the development of an analytical third-
order solution to the Vinti IVP using an analog of standard UVs adapted to OS 
geometry. Getchell [19] developed a universal third-order solution with OS “unified 
variables” (source code is available from Der and Bonavito [2]), but his solution 
does not remove all of the computational difficulties promised by the introduction 
of UVs. Note that UVs are not expected to mitigate computational issues for nearly 
rectilinear Vinti orbits, corresponding to the so-called forbidden zone  [21] inside 
which an analytical solution is not known. Apart from nearly rectilinear orbits, the 
solution proposed in the current study is valid for all orbital regimes and is free of 
all computational difficulties, accurately handling circular, equatorial, polar, nearly 
parabolic, and hyperbolic orbits. To accomplish this result, the approach taken iden-
tifies desirable features unique to different analytical solution methods and blends 

1 Code is published with the cited journal articles and is also available from this website: https:// sites. 
utexas. edu/ russe ll/ publi catio ns/ code/ vinti/

https://sites.utexas.edu/russell/publications/code/vinti/
https://sites.utexas.edu/russell/publications/code/vinti/
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those components together, unifying all of the individual benefits into a single algo-
rithm. Drawbacks of the individual algorithms are circumvented and only the ben-
efits are retained. Specifically, the proposed solution uses the definition of the node 
from Vinti’s 1969 solution [22], techniques to evaluate the integrals and avoid inde-
terminate forms at zero energy from Getchell’s 1970 solution [19], and finally, to 
avoid the computation of singular orbital elements, the solution adopts the stand-
ard definition of OS UVs  [23] and leverages the OS equinoctial orbital elements 
(EOEs) developed recently by Biria and Russell [17]. Results are validated against 
numerically integrated Vinti trajectories to assess the accuracy of the third-order 
solution, where the third-order approximation refers only to the evaluation of vari-
ous integrals, not the factoring of the quartics, which is carried out to double-preci-
sion accuracy. The presented algorithm’s runtime is also evaluated and compared to 
earlier findings, and its overall performance is directly compared to the benchmark 
Vinti6 propagator.

Another important aspect of the current study is the implication that it has for 
the closely related, congruent boundary value problem (BVP) governed by the 
Vinti potential. The reformulation of the equations of motion in terms of OS clas-
sical orbital element differences and coupling to OS equinoctial elements not only 
supports the solution of the IVP, but also enables the definition of the BVP, which 
is explored in related work by the author  [24, 25]. In the BVP application, Biria 
essentially uses the results of the present work to generalize Lambert’s equation to a 
system of equations that can be solved iteratively, avoiding targeting algorithms and 
the need for shooting methods that are commonly employed in perturbed Lambert 
solvers.

2  Kinematic Equations

Vinti’s symmetric potential [1, 6] is written in terms of the oblate spheroidal (OS) 
coordinates �,�, � as

where � is the gravitational parameter of the central body, � is the OS coordinate 
equal to the semiminor axis of the instantaneous oblate spheroid, � is the right 
ascension, and � is the OS coordinate tied to latitude, approximately the sine of 
declination in an Earth application. The parameter c is fit to the oblateness term, 
J2 , of the spherical harmonic expansion as c2 = R2

e
J2 , where Re is the equatorial 

radius. Formal definitions of these quantities are available in many references  [1, 
6]. The analytical solution to Vinti’s IVP can be stated as x = f(t, t0, x0) , where 
x = [r⊤ v⊤]⊤ = [x y z ẋ ẏ ż]⊤ is the Earth-centered inertial (ECI) state, r and 
v are the position and velocity vectors, t is the time, and the subscript “ 0 ” denotes 
initial conditions (ICs) or the initial value of a quantity.

(1)V = −
��

�2 + c2�2
,
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Using Getchell’s definitions [19] of the Rj and Nj integrals for j = 1, 2, 3 , Vinti’s 
classical element solution [6] to the IVP in terms of right ascension is given by

where Rj are defined as

Nj are defined as

and �j and �j are the constants of integration with � = −�1 , � = �2 , and Ω = �3 . 
These quantities are all defined in other references, but for convenience, note that 
�1 is the energy integral, �3 is the polar component of the angular momentum, �2 
is similar to the total angular momentum and obtained from separating the Ham-
ilton-Jacobi equation, � is the time of OS periapsis passage, � is the argument of 
OS periapsis, and Ω is the right ascension of the OS ascending node (spheroidal 
RAAN) [12]. Further note that F(�) and G(�) are the quartics that must be factored 
to obtain the classical OS orbital elements a, e, and I = arcsinQ , which are the OS 
semimajor axis, eccentricity, and inclination, respectively. For universal variables, 
a is not directly pursued; instead, when factoring F(�) , two other quantities are 
obtained: p, the OS semilatus rectum, and � , the inverse of a, where � = −1∕a for 
elliptical orbits so that 𝛾 < 0 for elliptical orbits ( 0 ≤ e < 1 ) and 𝛾 > 0 for hyperbolic 
orbits ( e > 1 ). Orbital elements with a “0” subscript denote the prime constants [2] 
obtained directly from the �j Jacobi constants. For the lower limits of integration, �p 
is the OS periapsis radius and Getchell’s lower limit on the Nj integrals is zero when 
J3 = 0 in the potential. In the following, elements should generally be interpreted as 
spheroidal or OS unless noted otherwise.

(2)t − � = R1 + c2N1; � = −R2 + N2; Ω = � + c2R3 − N3,

(3)R1 = ∫
�

�p

±�2F(�)−1∕2d�

(4)R2 = �2 ∫
�

�p

±F(�)−1∕2d�

(5)R3 = �3 ∫
�

�p

±(�2 + c2)−1F(�)−1∕2d�,

(6)N1 = ∫
�

0

±�2G(�)−1∕2d�

(7)N2 = �2 ∫
�

0

±G(�)−1∕2d�

(8)N3 = �3 ∫
�

0

±(1 − �2)−1G(�)−1∕2d�,
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Going forward, it is helpful to continue to combine the contributions of Vinti [22] 
and Getchell [19] because their solutions possess important but different features that 
enable the current work. To exploit them, the solutions must be merged in some way. 
Specifically, many of Getchell’s results are desirable because he removes indeterminate 
forms in the Rj integrals. It is convenient to use his expressions for Nj as well. Vinti’s 
solution in terms of a slowly-varying OS RAAN [22], Ω� , is desirable because it ena-
bles the coupling of OS equinoctial elements to universal variables, which seems nec-
essary for a solution devoid of angle ambiguities and singular orbital elements. Getchell 
defined a quantity N4 without explanation, but it is actually the slow, nonsensitive part 
of N3 , which means it can be used to write the kinematic equations in terms of Ω� as

where, if N4g
 is Getchell’s definition of N4 , then N4 ≡ �3N4g

 in Eq. (9). This redefini-
tion is made so that N3 and N4 have consistent definitions. Using Getchell’s notation, 
it is straightforward to show that

where �1 and �2 are quantities defined by Getchell [19] and not related to � , the true 
argument of OS latitude. Equation (10) relates � to a different OS RAAN ( Ω� ≠ Ω ) 
and has not previously appeared in the literature.

To express the solution in terms of universal variables [23], a different form of the 
kinematic equations is required that depends on the difference in anomalistic and other 
angles. To obtain such a form, it is assumed that Eq. (9) is computed at two different 
times, t and t0 , and the corresponding equations are then differenced. Since �j are con-
stants of the motion, the result is

where Δ is shorthand for taking the difference of scalars ( Δt = t − t0 ) or long expres-
sions like Rj and Nj . The Rj integrals are ultimately a function of anomalistic angles 
like true and eccentric anomaly, f  and E, respectively, and the Nj integrals a function 
of � = f + �� , where �′ is a different OS argument of periapsis ( �′ ≠ � ). When 
differenced, ΔR1 ≡ ΔR1(x̂,Δf ) , ΔRj ≡ ΔRj(Δf ) for j = 2, 3 , and ΔNj ≡ ΔNj(Δ�) for 
j = 1, 2, 3, 4 , where x̂ is the OS universal variable identified by Biria [23]. Notice 
that the time of flight (TOF), Δt , appears explicitly in Eq.  (11). In this new form, 
Vinti’s IVP is now stated as x = f(Δt, x0).

2.1  Universal Spheroidal Time of Flight Equation

The first kinematic equation in Eq. (11) is the OS time of flight equation. After a con-
siderable amount of algebra, and adopting Izsak’s and Vinti’s conic parameteriza-
tion [5, 6], this equation can be written to O(J3

2
) as

(9)t − � = R1 + c2N1; � = −R2 + N2; Ω = Ω� + c2R3 − N4,

(10)� = Ω� + d10�1 + d20�2,

(11)Δt = ΔR1 + c2ΔN1; 0 = −ΔR2 + ΔN2; 0 = ΔΩ� + c2ΔR3 − ΔN4,
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with Getchell’s notation, where Biria [23] defines �0 and the UVs x̂ and ẑ for OS 
geometry (under Vinti’s potential), and also explains how the Stumpff functions, 
C(ẑ) and S(ẑ) , may be adapted to OS UVs. Equation (12), which directly relates TOF 
to the standard OS UVs for the first time, represents a significant development that 
is central to all of the present work, for both the IVP and BVP. While Eq.  36 in 
Getchell [19] requires the computation of the singular orbital element �1 before the 
root-solve of various orbital elements, Eq. (12) of this paper circumvents the com-
putation of �1 and instead prescribes the root-solve of the orbital element differences 
discussed in the context of Eq. (11). Note in Eq. (12) that x̂ =

√
aΔE for elliptical 

orbits and ẑ = −𝛾 x̂2 . The symbol Wk represents a special recursive function defined 
by Getchell [19], seeded with W0 = f  , W1 =

(
f + eV1

)
∕p , where Vk is a different 

recursive function seeded with V0 = f  , V1 = sin f .
Since J3 = 0 , odd Ck are zero, C0 = 0 , C2 = 1 , C4 = Q1∕2 , and C6 = 3Q2

1
∕8 . Then, 

only even Tk matter, and the even QkTk can be expressed as

by manipulating Getchell’s equations. Substituting for Q sin� = � , Eq. (13) can be 
simplified as

and Eq. (14) can be differenced at two times to obtain Δ(QkTk) as

Computational details for ΔWk and ΔTk are discussed in Appendix A.

2.2  Universal Spheroidal Argument of Periapsis or Apsidal Drift Equation

The second kinematic equation in Eq. (11) is the OS argument of periapsis equation, 
which can be stated as

or, using Getchell’s notation [19], to O(J3
2
) as

(12)

Δt =
1√
𝜇𝛾

1

�
𝜎
0
x̂2C(ẑ) +

�
1 + 𝜌

0
𝛾
�
x̂3S(ẑ) +

�
𝜌
0
+ A

1

�
x̂ +

1√
p

4�
k=0

Ak+2ΔWk

�

+ c2
1√
𝜇p

0
S
1

6�
k=0

CkΔ
�
QkTk

�

(13)T0 = � ; QkTk =
1

k

[
(k − 1)Q2

(
Qk−2Tk−2

)
− Q cos�(Q sin�)k−1

]

(14)T0 = � ; QkTk =
1

k

[
(k − 1)Q2

(
Qk−2Tk−2

)
− �k−1Q cos�

]

(15)
ΔT0 = Δ� ;

Δ
(
QkTk

)
=

1

k

[
(k − 1)Q2Δ

(
Qk−2Tk−2

)
− Δ

(
�k−1Q cos�

)]
.

(16)g2 ≡ −ΔR2(Δf ) + ΔN2(Δ�) = 0,
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but the drift in the OS argument of periapsis, Δ�� , is not apparent or accessible in 
this form. Note in Eq. (17) that a number of simplifications have been made assum-
ing J3 = 0 . Now, to extract Δ�� from Eq. (17), there are multiple ways to proceed. 
The simplest option is to substitute Δ� = Δf + Δ�� into the isolated Δ� term and 
rearrange Eq. (17) so that Δ�� is on the left-hand side as

or, defining the right-hand side (RHS) in Eq. (18) as g̃2 , identify a recursive relation-
ship as

For convenience, define ΔÑ2 as the modified ΔN2 integral in Eq.  (18) with Δf  in 
the secular term. When the constants and Δf  are known, Eq.  (18) can be used to 
iteratively solve for Δ�� . If the derivative of g̃2

(
Δ𝜔�

)
 with respect to Δ�� has an 

absolute value less than unity, then the method of successive approximations will 
converge [26]. To verify this sufficient condition, the derivative is evaluated as

Each derivative in Eq.  (20) contains terms either equal to factors of Q2 or �2 , or 
the product of multiple trigonometric functions, which all have a maximum abso-
lute value of unity (see Appendix C). Each of these terms has a coefficient of Qk

1
 

for k = 1, 2, 3 , where Q1 = O(J2) . Therefore, if evaluated from left to right, the 
terms have maximum values on the order of 10−3 , 10−6 , and 10−9 for the Earth, 
respectively. Since |g̃�

2

(
Δ𝜔�

)| < 1 , the method of successive approximations will 
converge, and because the derivative is small, with |g̃�

2

(
Δ𝜔�

)| < O
(
J2
)
 , it will 

converge rapidly. The maximum error of the nth approximation can be stated as 
|Δ𝜔�

n
− Δ𝜔�| < O

(
Jn
2

)|Δ𝜔�
0
− Δ𝜔�| , which means that for an Earth application with 

a worst-case initial guess error of 1  radian, the fourth iteration will have an error 
of roughly 10−12 in the approximation of the root Δ�� . In practice, the initial error 
|Δ��

0
− Δ��| is orders of magnitude smaller than unity, even for a many-revolution 

(many-rev) orbit, e.g. for a representative low-Earth orbit (LEO) 20-rev scenario 
inclined 30 degrees, the observed initial error in apse line drift is only 2.6 × 10−3 
radians or about 0.15 degrees.

(17)
0 = −

�
p0

p�1

6�
k=0

AkΔWk

+
1√
S1

�
Δ� +

1

2
Q1Δ

�
Q2T2

�
+

3

8
Q2

1
Δ
�
Q4T4

�
+

5

16
Q3

1
Δ
�
Q6T6

��
,

(18)
Δ�� =

√
p0S1

p�1

6∑
k=0

AkΔWk

−
[
Δf +

1

2
Q1Δ

(
Q2T2

)
+

3

8
Q2

1
Δ
(
Q4T4

)
+

5

16
Q3

1
Δ
(
Q6T6

)]
,

(19)Δ𝜔� ≡ g̃2
(
Δ𝜔�

)
.

(20)g̃�
2

(
Δ𝜔�

)
= −

1

2
Q1

dΔ
(
Q2T2

)
dΔ𝜔�

−
3

8
Q2

1

dΔ
(
Q4T4

)
dΔ𝜔�

−
5

16
Q3

1

dΔ
(
Q6T6

)
dΔ𝜔�

.
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Note that alternatives to Eq. (18) may be obtained. For example, define the secular 
coefficient for the R2 integral as CR2

 and subtract CR2
Δ�� from both sides of Eq. (17) to 

obtain

where 
(
ΔWk

)
p
 represents the periodic part of each ΔWk term. Solving Eq. (21) for 

Δ�� leads to

For convenience, define ΔR̃2 as the modified ΔR2 integral in Eq. (22) with Δ� in the 
secular term.

2.3  Universal Spheroidal RAAN or Nodal Drift Equation

The third kinematic equation in Eq. (11) is the spheroidal RAAN equation, which in 
general enables the computation of the spheroidal RAAN drift as

To O(J3
2
) , Eq. (23) can be expressed with Getchell’s notation as

where

dk are zero for odd k, d2 = Q1∕2 , d4 = 3Q2
1
∕8 , and d6 = 5Q3

1
∕16 , which means that 

C1k and C2k are nonzero for all k. Observe that using Vinti’s potential with J3 = 0 has 
resulted in a number of simplifications and will also cause the C1k terms to cancel 
with the C2k terms for odd k.

(21)−CR2
Δ�� = −CR2

Δ� −

√
p0

p�1

6∑
k=1

Ak

(
ΔWk

)
p
+ ΔN2,

(22)Δ�� = Δ� +
1

CR2

[√
p0

p�1

6∑
k=1

Ak

(
ΔWk

)
p
− ΔN2

]
.

(23)ΔΩ� = −c2ΔR3 + ΔN4.

(24)

ΔΩ� = −c2
�3√
�p�1

�
ΔW2 + A1ΔW3 +

�
A2 − c2

�
ΔW4

+
�
A3 − A1c

2
�
ΔW5 +

�
A4 − A2c

2 + c4
�
ΔW6

�

−
�3

2
√
�p0S1

�
5�

k=0

C1kΔ
�
QkTk

�
+

5�
k=0

C2k(−1)
kΔ

�
QkTk

��
,

(25)C1k =

6∑
�=k+1

d�; C2k =

6∑
�=k+1

(−1)�d� ,



 The Journal of the Astronautical Sciences (2023) 70:29

1 3

29 Page 10 of 38

3  Universal Vinti Orbit Propagator

The new form of the kinematic equations established in the previous section 
enables the development of a novel, universal Vinti orbit propagator, but several 
additional components are required to furnish a complete algorithm. It is helpful 
to have in Fig. 1 an outline of the author’s computational procedure for the propa-
gator, showing how to initialize the algorithm and how to use UVs and OS equi-
noctial elements in concert. The computational procedure is discussed in detail in 
the following sections.

3.1  On the Spheroidal Equinoctial Elements

It seems a nonsingular solution based on the standard UVs, as presented here, 
would not be possible without the definition of OS equinoctial orbital elements 
[17], because a nonsingular coordinate transformation between the ECI frame and 
an orbital frame is required before and after the root-solve. A new, simple method 
based on vectors is proposed for the computation of the OS equinoctial elements 
p1 and p2 , which physically represent the components of the OS ascending node 
vector [17]. The OS position vector in ECI coordinates is given by

Fig. 1  Proposed and validated computational procedure for a universal Vinti propagator
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and taking the time derivative gives the OS inertial velocity as

where �̂� and ̇̂𝝆 denote the OS position unit vector and its inertial velocity, 
respectively,

the subscripts x, y denote x and y components, and the superscript N denotes the 
Newtonian or ECI frame. Letting the superscript R denote the rotating frame 
attached to the OS orbital plane with angular velocity � = [0 0 Ω̇�]⊤ , the OS 
velocity relative to the R frame attached to the OS orbital plane is given by

where R�̇� is constrained to lie in the orbital plane by definition. The OS specific 
angular momentum vector relative to the OS orbital plane can then be computed as

and the OS equinoctial unit vector ŵ parallel to Rh as ŵ = Rh∕‖Rh‖ in ECI coordi-
nates. Note that while ‖Rh‖ can be computed directly from Eq. (30), consideration of 
its physical meaning as the total angular momentum normal to the OS orbital plane 
points to a simple expression for the magnitude of Rh as

which can be verified from Eq. (30). Finally, p1 and p2 can be computed as

using the same formulas as Danielson et  al. [27] with K as the retrograde factor. 
The guidelines for computing Ω̇� offered by Biria and Russell [17] may be used in 
Eq. (29), although a better alternative is proposed here that is free of singularities at 
the poles.

(26)� =

⎡⎢⎢⎢⎢⎣

�√
�2 + c2

x

�√
�2 + c2

y

z

⎤⎥⎥⎥⎥⎦

(27)N �̇� =

⎡
⎢⎢⎣

�̇��̂�
x
+ 𝜌 ̇̂𝜌

x

�̇��̂�
y
+ 𝜌 ̇̂𝜌

y

ż

⎤
⎥⎥⎦
,

(28)̇̂𝜌x =
1√

𝜌2 + c2

�
ẋ −

𝜌�̇�

𝜌2 + c2
x

�
; ̇̂𝜌y =

1√
𝜌2 + c2

�
ẏ −

𝜌�̇�

𝜌2 + c2
y

�
,

(29)R�̇� = N �̇� − 𝝎 × 𝝆 =

⎡
⎢⎢⎣

�̇��̂�
x
+ 𝜌 ̇̂𝜌

x
+ Ω̇�𝜌

y

�̇��̂�
y
+ 𝜌 ̇̂𝜌

y
− Ω̇�𝜌

x

ż

⎤
⎥⎥⎦
,

(30)R
h = 𝝆 × R�̇�

(31)‖Rh‖ = 𝜌2�̇� ,

(32)p1 = −
ŵy

1 + Kŵz

; p2 =
ŵx

1 + Kŵz
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One of the two exact expressions for Ω̇� put forward by Biria and Russell [17] has 
the following form:

where Q1 is O(J2) and determined from factoring the G(�) quartic. The �3∕(1 − �2) 
expression is indeterminate near the poles, but the term it multiplies on the right in 
Eq. (33) can be manipulated. First, rewrite the right term inside the brackets as

Then, rationalize the numerator and simplify to obtain

so that the problematic 1 − �2 term can be canceled out of the denominator. Substi-
tuting the result in Eq. (35) back into Eq. (33) yields a final expression for Ω̇� , analo-
gous to those for ḟ  or �̇� , that is exact, always nonsingular, and independent of any 
method for evaluating the integrals, given by

When obtaining Ω̇� from OS orbital elements, an alternative expression for �3 may 
be used to give

where c2 = R2
e
J2 and Q1 = −c2�0∕(p0S1) have been used to write Ω̇� in a more 

familiar form. Equation (37) indicates that Ω̇� is O(J2) and proportional to cos I as 
expected. All quantities on the right-hand side are constant except for � and � , which 
cause the rate to vary over time. Interestingly, since �0 = 0 for parabolic orbits, the 
term on the right inside the brackets does not contribute to Ω̇� in that orbital regime:

(33)Ω̇� =
1

𝜌2 + c2𝜂2

�
−

c2𝛼3

𝜌2 + c2
+

𝛼3

1 − 𝜂2

�
1 −

√
1 − Q1𝜂

2

√
1 − Q1

��
,

(34)
�3

1 − �2

�
1 −

√
1 − Q1�

2

√
1 − Q1

�
=

�3

1 − �2

√
1 − Q1 −

√
1 − Q1�

2

√
1 − Q1

.

(35)

�3

1 − �2

√
1 − Q1 −

√
1 − Q1�

2

√
1 − Q1

=
�3

1 − �2

−Q1

�
1 − �2

�
√
1 − Q1

�√
1 − Q1 +

√
1 − Q1�

2

� ,

(36)Ω̇� = −
𝛼3

𝜌2 + c2𝜂2

⎡⎢⎢⎢⎣
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Q1√
1 − Q1
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1 − Q1 +

√
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2

�
⎤⎥⎥⎥⎦
.

(37)
Ω̇� = −

R2
e
J2

�
𝜇p0

�
1 − Q1S0

�

𝜌2 + c2𝜂2

×

�
1
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−
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√
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√
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2

�
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The various connections to standard concepts for two-body dynamics evident in 
Eqs.  (30) and (32) highlight the role and utility of OS vectors in a way not previ-
ously shown. While the approach by Biria and Russell [17] establishes useful rela-
tionships for computing p1 and p2 in certain contexts, the physical insight and sim-
plicity offered by the above algorithm is considered an improvement over previous 
methods. Furthermore, the introduction of an exact, nonsingular expression for Ω̇� in 
Eq. (36) finally removes all singularities from the OS equinoctial coordinate trans-
formation, greatly simplifying the transformation and making it easier to use.

3.2  Well‑Behaved Exact Forms for the Mean Frequencies

Let CRj
 be Getchell’s three secular coefficients for the respective Rj integrals and CNj

 
be his three secular coefficients for the Nj integrals (see Appendix B). From here, 
defining a mean-motion-like quantity as

for convenience, the anomalistic and draconitic mean frequencies can be written 
respectively as

and

From Eqs.  (40) and (41), the secular rate for OS argument of periapsis can be 
obtained as

Similarly, assuming �3 is factored out of CR3
 and CN3

 , the secular rate for OS RAAN 
can be determined as

(38)Ω̇�
parabola

= −
R2
e
J2
√
𝜇p0�

𝜌2 + c2
��
𝜌2 + c2𝜂2

� cos I.

(39)nv ≡
√

��1

a3
=

√
−��1�

3

(40)
2��1 =

nv

1

�1
+ nv

(
CR1

+ c2
CN1

CN2

CR2

)

(41)2��2 =

nv
CR2

CN2

1

�1
+ nv

(
CR1

+ c2
CN1

CN2

CR2

) .

(42)�̇��
s
= 2𝜋𝜈2 − 2𝜋𝜈1 =

nv

(
CR2

CN2

− 1

)

1

𝛾1
+ nv

(
CR1

+ c2
CN1

CN2

CR2

) .
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where �3 =
√

�p0
(
1 − Q1S0

)
cos I has been used to make the dependence on cos I 

explicit.

3.3  Initial Guesses for a One‑Dimensional, Two‑Tier, Nested Root‑Solve

Taking an approach analogous to Bate et al. [4], good initial guesses can be derived 
depending on the orbital regime. By choosing the definition of Vinti UVs proposed by 
Biria [23], the arguments presented by Bate et al. to derive various initial guesses for x̂ 
also follow for Vinti dynamics. New arguments are presented to derive initial guesses 
for Δ�� , which is zero under Keplerian dynamics.

For elliptical orbits  [23], x̂ =
√
aΔE , which means x̂ = 2𝜋

√
a after one orbital 

period in the sense of one revolution of an anomalistic angle. Following Bate et al. [4], 
note that

where tp is the anomalistic orbital period. Let tp = 2�∕2��1 = 1∕�1 and solve for x̂ 
to obtain

Substituting 2��1 from Eq. (40) into Eq. (45) and noting that

a good initial guess for x̂ in the elliptical regime can finally be expressed as

Using mean frequencies or Eq. (42), a good guess for Δ�� in the elliptical regime 
( 𝛾 < 0 ) is given by

For hyperbolic orbits with a large change in hyperbolic eccentric anomaly, the 
arguments by Bate et al. [4] can be applied to obtain the approximations:

(43)Ω̇�
s
= −

nv
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c2CR3
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CN3

CN2

)

1

𝛾1
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+ c2
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)
√

𝜇p0
(
1 − Q1S0

)
cos I,

(44)
x̂

2𝜋
√
a
≈

Δt

tp
,

(45)x̂ ≈
√
a(2𝜋𝜈1)Δt.

(46)
√
anv =

√
��1∕a = −�

√
��1,

(47)
x̂guess =

−𝛾
√
𝜇𝛾1

1

𝛾1
+ nv

�
CR1

+ c2
CN1

CN2

CR2

�Δt.

(48)Δ𝜔�
guess

= �̇��
s
Δt.
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where “e” in this section refers to the exponential function. Recall the universal TOF 
equation in Eq. (12) and neglect not only the 𝜌0x̂ term, as Bate et al. did, but also 
O(J2) and smaller terms, to give

Substituting Eq. (49) into Eq. (50) gives

and solving for 
√
−ẑ leads to

after taking the logarithm. Noting from Bate et al. [4] that x̂ is positive when Δt is 
positive, the initial guess for x̂ when dealing with hyperbolic orbits can finally be 
stated as

Over the span of a typical hyperbolic orbit, �′ will not change much, so the drift Δ�� 
can be guessed as

For nearly parabolic orbits, the same assumptions are made for Vinti dynamics as 
for Keplerian dynamics. Accordingly, an appropriate guess for x̂ in this orbital 
regime is x̂guess = 0 , which may be applied for nearly parabolic orbits in the bounded 
or unbounded case, perhaps with a tolerance of |𝛾| < 10−5 , depending on how many 
terms are retained for the approximations of the C and S functions in this regime [4]. 
When nearly parabolic orbits are escape trajectories ( � ≥ 0 ), then Δ��

guess
= 0 is a 

good guess, as for hyperbolic orbits.
Striking similarities are observed for the initial guesses of x̂ between Keplerian 

and Vinti dynamics. While the guess for x̂ is different between elliptical, nearly par-
abolic, and hyperbolic regimes, the guess for Δ�� is binary: zero for escape trajec-
tories ( � ≥ 0 ), but with a dependence on mean frequencies for bounded trajectories 
( 𝛾 < 0 ). When employed in a root-solve procedure, these initial guesses for x̂ and 
Δ�� will speed up convergence and increase robustness of the root-solve in a univer-
sal Vinti orbit propagator.
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−ẑ

2ẑ
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−ẑ

sgn(Δt)2x̂3
,
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−ẑ

(52)
√
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(53)x̂guess = sgn(Δt)
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−a ln
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𝜇𝛾1Δt
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(54)Δ��
guess
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3.4  Initialization and Root‑Solve Procedure

An outline of the initialization and root-solve procedure employed in this study and 
depicted in Fig.  1 is offered here. For the majority of the algorithm’s initialization 
phase, the procedure developed in Biria and Russell [17] is used to convert an initial 
ECI state to initial OS equinoctial elements and compute all the intermediate constants. 
In other words, the first eight steps in the flow chart follow the procedure in that ref-
erence, except that Ω̇� is computed from Eq. (36) and p10 , p20 from Eqs. (26–32), the 
improved algorithm developed in an earlier section. Next, since the current propagator 
uses universal variables, Getchell’s method [19] is used to compute the coefficients of 
the six integrals and certain initial values, with subtle differences to avoid indeterminate 
forms. For the ΔRj integrals, the coefficients Ak are computed from Getchell’s equa-
tions [19] and the initial values ekVk0

 are computed from Eqs. (72–74) in Appendix A. 
Additional constant coefficients generated by the recursive functions Wk in Eq. (69) and 
ekVk are computed and stored for later use at this stage, noting that ej is factored out of 
each coefficient such that the exponent matches the number of trigonometric functions 
multiplied together in a given term. The ej factors are discarded from the coefficients 
and accounted for by grouping them with the appropriate terms in Vk . This bookkeep-
ing process avoids divisions by e that could cause issues for nearly circular orbits when 
e ≈ 0 . For the ΔNj integrals, the coefficients Ck,C1k,C2k and initial values QkTk0 are 
required. Expressions for coefficients are given explicitly just before Eq. (13) to com-
pute Ck for ΔN1 , explicitly in Eq. (17) for ΔN2 , and in Eq. (25) to compute C1k,C2k for 
ΔN4 . The QkTk0 terms can be computed from Eqs. (14) and (68).

After computing all of the necessary constants, the next step is to initialize the root-
solve. Of the three kinematic equations, the root-solve only involves Eq. (12) for x̂ and 
Eq. (18) for Δ�� . Equation (24) for ΔΩ� is decoupled and is not used until after the root-
solve. The root-solve is initialized by guessing x̂ and Δ�� using the methods developed 
in the previous section. Guess x̂ from Eq. (47) in the elliptical case or Eq. (53) in the 
hyperbolic case, or set x̂guess = 0 in the parabolic case. Guess Δ�� from Eq. (48) in the 
elliptical case or Eq. (54) in the hyperbolic or parabolic case.

A desired root-solve procedure follows the calculation of the two initial guesses 
described above, where the one-dimensional root-solve depicted in Fig. 1 searches for 
the value of the universal variable x̂ that solves Eq. (12). It is one-dimensional in the 
sense of Vinti’s solution [6] or that of Getchell [19], where the equation governing the 
OS argument of periapsis, �′ , is used in an intermediate step. In those references, with 
J3 = 0 , the equation for �′ is used to sequentially obtain the value of � . In the current 
approach, where the value of Δ�� is unknown but a good initial guess is available, a 
straightforward method of successive approximations is applied to Eq. (18) to solve for 
Δ�� at each iteration of the root-solve on x̂ . This approach is taken while acknowledg-
ing that better alternatives may exist. For the described outer loop, a Newton–Raphson 
algorithm combined with a bisection method [28] is used, a technique that Press et al. 
[28] describe as a fail-safe alternative to the less robust Newton–Raphson method. 
While robustness may improve with a variable order Laguerre’s method  [9, 29], its 
implementation in this framework is left to future work. For iteration j = 0 , set 
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x̂j = x̂guess and Δ��
j
= Δ��

guess
 , and compute ẑj , Cj , and Sj from the definitions described 

in Biria [23], Δfj from Eq. (84), and Δ�j from

As a safeguard, a quadrant check is performed to ensure sgn
(
Δfj

)
= sgn(Δt) , which 

could be violated near the full-rev boundary if the derivatives are inaccurate; Δfj is 
appropriately shifted to the range 

[
0, sgn(Δt)2�

]
 as necessary. The quantities ΔR1j

 
and ΔN1j

 are required to calculate the right-hand side of Eq.  (12). Compute ΔWkj
 

from Eq. (70) and ΔR1j
 from

Also compute ΔR2j
 in the outer loop as

To obtain ΔN1j
 , a converged value of Δ��

j
 is required, which is furnished by the 

method of successive approximations. First, for iteration i = 0 , set Δ��
ji
= Δ��

j
 and 

Δ�ji = Δ�j , and compute Δ(QkTk)ji from Eqs.  (15) and (65–68). Then, compute 
Δ��

j(i+1)
 from Eq.  (18). If |Δ𝜔�

j(i+1)
− Δ𝜔�

ji
| > 10−12 or a desired tolerance, apply 

Eq. (55) to update Δ�ji to Δ�j(i+1) , set i = i + 1 , and return to Eq. (15). Otherwise, 
Δ��

j(i+1)
 has converged to within the desired tolerance, which was found to take only 

a few iterations in practice since the initial guess is a good estimate. Use Eqs. (55) 
and (15) to update Δ�ji and Δ(QkTk)ji one more time, respectively, and then compute 
ΔN1j

 as

and the right-hand side of Eq. (12) as Δtj = ΔR1j
+ c2ΔN1j

 . The Newton update Δx̂j 
can be obtained from

where

and its derivative

(55)Δ�j = Δfj + Δ��
j
.

(56)

ΔR1j
=
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ẑj
�
+
�
𝜌0 + A1

�
x̂j +
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AkΔWkj
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=

1√
�p0S1
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(59)x̂j+1 = x̂j + Δx̂j; Δx̂j = −
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(
x̂j
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g�
1

(
x̂j
) ,

(60)g1
(
x̂j
)
= ΔR1j

+ c2ΔN1j
− Δt = Δtj − Δt,
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is obtained from Eqs.  (86), (92), and (93), with computational details on the first 
derivatives given in Appendix C, to be calculated in the outer loop. Using a simple 
stopping criterion like the one in Curtis [16], if the update |Δx̂j| > 10−12 or a desired 
tolerance, set j = j + 1 , update x̂j , ẑj , Cj , Sj , Δfj , and return to Eq. (55) to update Δ�j 
and repeat the process, including the evaluation of Eq. (18) as part of the method of 
successive approximations. Otherwise, x̂j has converged to within the desired toler-
ance and the root-solve is terminated. Then, compute ΔΩ� from Eqs. (24–25). Note 
that any desired one-dimensional root-solve on x̂ could be substituted into the above 
process, but it must be ensured that any time x̂ is updated, such as right before ter-
minating the root-solve, all derived quantities that flow from x̂ need to be updated 
as well to be consistent, including Δf  , Δ� , ΔWk , Δ(QkTk) , and the evaluation of 
Eq. (18) as part of the method of successive approximations.

At this stage in the propagator, differential OS orbital elements have been obtained 
for the classical OS elements that vary with time: Δf  and UVs for the anomalistic 
motion, and Δ�� and ΔΩ� to describe the total drift of the trajectory within the rotat-
ing OS orbital plane and the total drift of the OS orbital plane itself, respectively. The 
intermediate determination of the secular drift and evolution of the system [6] has been 
circumvented, and singular elements have been bypassed. If indeterminate calculations 
are to be avoided, a nonsingular orbital reference frame is required to map the state 
back to the ECI frame, and the OS equinoctial reference frame can be employed again 
for this purpose.

3.5  Propagating OS Equinoctial Elements

At the conclusion of the root-solve and after solving for ΔΩ� , three of the relevant equi-
noctial elements can be propagated, which amounts to adding ΔL to the initial true lon-
gitude L0 as

and appropriately rotating the OS ascending node vector by ΔΩ� as

Then, with the final Ω̇� obtained from Eq. (36) and �̇� and �̇� from Eqs. 21 and 17 in 
Vinti [22], respectively, as

where e sin f  and Q sin� are computed from angle sum identities and ḟ  and �̇� from 
Biria and Russell [17], the transformation to ECI coordinates is almost complete. 
Finally, the steps outlined in Biria and Russell [17] can be followed to compute the 

(61)g�
1

(
x̂j
)
=

dΔt

dx̂

||||x̂=x̂j

(62)L = L0 + ΔL = L0 + Δ� + KΔΩ�

(63)
[
p1
p2

]
=

[
cosΔΩ� − sinΔΩ�

sinΔΩ� cosΔΩ�

][
p10
p20

]
.

(64)�̇� =
𝜌2 ḟ

p
e sin f ; �̇� = �̇�Q cos𝜓 ,
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remaining final scalar time derivative, L̇ , final OS equinoctial unit vectors, f̂ and ĝ , 
their time derivatives, ̇̂f and ̇̂g , and ultimately the ECI position and velocity.

3.6  Mitigating Degradation of Accuracy in Elliptical Many‑Rev Scenarios

In elliptical many-rev scenarios, Δt , x̂ , ẑ , and root-solved angular quantities can 
grow very large if a naive approach is adopted that does not leverage knowledge of 
the orbital period, incurring computational errors that grow over time and become 
large for ultra-high-rev scenarios. To avoid this degradation of accuracy, a robust 
version of the universal Vinti orbit propagator should reduce the TOF and angular 
quantities to a range within a single orbital period. Such a reduction is complicated 
to achieve under the Vinti potential, but it is possible and has been implemented in 
this work.

Under Keplerian dynamics, it is trivial to apply the modulo operation to the 
orbital period to achieve the desired reduction [4]. When this approach is adapted 
to the Vinti propagator developed in this study, however, the orbital “period” is 
not constant; it is slightly different for each rev, where the (anomalistic) period is 
defined here as the time it takes for |Δf | to go from 0  to 2 � for a particular rev. 
The desired quantity then becomes the time ΔtN required to complete N revs, 
which can be found iteratively. The iteration required is nowhere near as complex 
as the root-solve depicted in Fig.  1, mainly because Δ��

N
 is the only unknown, 

with ΔfN = sgn(Δt)2�N , x̂N = sgn(Δt)
√
a2𝜋N , ẑN = (2𝜋N)2 , C(ẑ)N = 0 , and 

S(ẑ)N = 1∕ẑN . The propagator uses the method of successive approximations to 
iteratively solve Eq.  (18) for Δ��

N
 with the initial guess Δ𝜔�

N
= sgn(Δt)�̇��

s
tpNguess , 

and then, once converged, it is trivial to compute ΔtN from Eq. (12). Computational 
details, including a method for guessing N, are provided in Appendix D. The implied 
small increase in compute time is considered a small sacrifice in exchange for accu-
racy preservation.

4  Examples: Universal Propagator Accuracy, Speed, and Robustness

Having introduced, in full, a novel Vinti orbit propagator, the performance of the 
presented algorithm must be assessed in terms of accuracy, runtime, and robustness. 
First, accuracy is evaluated for a small set of carefully chosen orbital regimes of 
interest. Then, computational speed is measured from a large set of random initial 
conditions, from which robustness statistics are also extracted. Finally, additional 
performance comparisons are made to the benchmark Vinti6 algorithm [2].

4.1  Accuracy

The accuracy of Vinti dynamics has been evaluated against spherical harmonics 
techniques in multiple prior studies [11, 30, 31] and is not examined further in this 
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work. The modeling of non-conservative forces under Vinti’s potential has been 
explored as well, Vinti [32] and Tong and Wu [33] taking a generalized approach 
while Sherrill [34] and Watson et al. [35] focused on atmospheric drag. While per-
turbations due to non-conservative forces are important for certain applications, they 
are outside the scope of this work. Instead, the present work focuses on evaluating 
the accuracy of the third-order approximation of the Rj and Nj integrals in differ-
ent orbital regimes and the computational runtime of the proposed universal Vinti 
propagator.

The propagator’s accuracy in four different orbital regimes is examined in Fig. 2 
to validate the approach and implementation, with ICs for each scenario given in 
Table 1. Other parameters are � = 3.986004415 × 105 km3/sec2 , Re = 6378.137 km, 
and J2 = 1.082636022984 × 10−3 . Depending on the orbital regime, the trajectories 
are initialized with Keplerian mean anomaly, Mk , or true anomaly, fk . The examples 
include a geostationary orbit (GEO) (Fig. 2a) and a Molniya orbit (Fig. 2b) taken 
directly from Appendix C in Der and Bonavito [2], in addition to two examples of 
inclined escape trajectories: an exactly parabolic case (Fig.  2c) and a retrograde 
hyperbolic case (Fig.  2d). Figure  2 shows the 3D trajectory and log-scale posi-
tion error for each example. The position error metric is the magnitude of the vec-
tor error between the third-order analytical solution and the numerically integrated 
equations of motion in ECI coordinates  [36]. Numerical integration is performed 
in MATLAB using ode45, a variable-step fourth-order Runge–Kutta method, with 
a 2.224 × 10−14 relative accuracy tolerance and a 1.0 × 10−20 absolute tolerance. In 
the Vinti propagator, the tolerance on Δ�� is set to 10−15  rad in both the primary 
and full-rev root-solve algorithms, to extract as much accuracy as possible, and x̂ 

Table 1  Initial osculating Keplerian orbital elements for Fig. 2 examples

aThe GEO example is taken from Appendix C, Scenario IV in Der and Bonavito [2]; full numerical val-
ues used for quantities truncated above are ak = 42,164.169613508 km
bThe Molniya example is taken from Appendix C, Scenario III in Der and Bonavito [2]; full numerical 
values used for quantities truncated above are ak = 26,628.1361947432 km, ek = 0.741696641081651, 
Mk = 144.0088647361997 deg
cThe Parabolic and Hyperbolic examples are initialized with the osculating Keplerian periapsis radius, 
rpk , instead of the semimajor axis. For the parabola, the full numerical value of the Keplerian eccentricity 
is ek = 0.99997885396048585

Example orbit Geostationarya Molniyab Parabolicc Hyper-
bolicc

Figure 2a 2b 2c 2d
rpk (km) – – 6,700 6,700
ak (km) 42,164 26,628 – –
ek 0.0 0.7416966 0.9999789 1.20
ik (deg) 0.0 63.4 40.01 150.01
Ωk (deg) 0.0 120.0 30.0 30.0
�k (deg) 0.0 0.0 11.0 11.0
fk (deg) – – −95.0 −95.0

Mk (deg) 250.0 144.00886 – –
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is iterated upon until the solution cannot be further improved in double precision. 
The accuracy and reliability of the propagator is found to be high across all orbital 
regimes, with errors in Fig. 2 seen to be within about 10−8 km over a range of flight 
times for escape trajectories and within roughly 10−6 km for long many-rev propaga-
tions up to 20 days. OS Lagrange coefficients are used to help assess and monitor 

Fig. 2  Propagated trajectories at Earth (left column) and log-scale position errors (right column) for four 
orbital regimes. The new analytical Vinti propagator agrees well with numerically integrated Vinti trajec-
tories
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convergence [23]. The secular error growth observed may be attributed to two fac-
tors: 1)  the computation of approximate orbital element coordinates (the momenta 
are computed to double-precision accuracy), meaning the representation of the Vinti 
trajectory in orbital element space does not exactly match its representation in initial 
ECI coordinates; 2)  the secular terms in the propagation step are only accurate to 
the third order in J2 . Additional testing showed that the present algorithm generally 
matches the accuracy of the Vinti6 algorithm  [2] when the many-rev accuracy 
retention measure is applied. These details are presented in Section 4.3 along with 
some runtime comparisons.

In accordance with the goals of this work, the long propagation times described 
above are chosen to assess the algorithm’s performance and identify any limitations, 
not to demonstrate its performance in practice. For example, while a Vinti GEO 
propagation of a few days may be useful in preliminary mission design, time spans 
in a catalog building application may be limited to a day or so and is subject to non-
physical constraints like data processing schedules. That being said, the practicality 
of long Vinti propagations in GEO depends not only on the application, but also on 
how the algorithm is used. As noted by Getchell [19], for comparisons to pertur-
bation theories or numerical integration, fitting the Vinti solution to an ephemeris 
would extract the greatest performance from the algorithm, where principal differ-
ences would be due to neglecting equatorial obliquity.

The results above also shed light on some important qualitative differences 
that can occur between various dynamical models. In particular, Fig.  2c is a 
notable example of a set of ICs that leads to a qualitative discrepancy between 
the Kepler and Vinti propagators. Two-body dynamics predict a bounded orbit 
with ek = 0.99998 (see Table 1 for the exact value), while Vinti dynamics pre-
dict an escape trajectory with e =  1.0, which is exactly parabolic. Other tests 
identified cases where the inverse occurs, where the Keplerian dynamics predict 
an escape trajectory and the Vinti dynamics predict a bounded one. For objects 
orbiting oblate bodies, the Vinti theory offers a quick way to evaluate bound-
edness more accurately, of practical importance for preliminary, interplanetary 
mission design that typically starts with two-body dynamics. When consider-
ing orbit insertion at Saturn, for example, such oblateness effects would be even 
more pronounced, and employing a universal Vinti propagator would imply a 
more efficient orbit design process.

4.2  Speed and Robustness

Computational speed and robustness are evaluated on an HP EliteBook 830  G5 
laptop computer with an Intel Core i5-8350U  CPU operating at a base speed of 
1.9 GHz with 16 GB of RAM. The maximum speed at which a single one of these 
cores is capable of operating is 3.6 GHz, and the CPU operated at this maximum 
speed during tests, where the universal Vinti propagator is benchmarked in runtime  
against a universal Kepler propagator. Both algorithms are implemented in For-
tran  90 and compiled with Intel Fortran Compiler Classic for Windows in 64-bit 
mode with O3 and Qip optimization settings enabled. ICs and times of flight are 
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given in Table 2: 1,536,000 ICs spanning a range of orbital regimes are propagated 
for Δt values ranging from 1 sec to 1 day, specifically for [1; 10; 100; 1,000; 10,000; 
86,400]  sec, totaling 9,216,000 function calls. For each of rpk , ek , and ik , 40 sam-
ples are randomly chosen from a uniform distribution, except that the exact values 
rpk =  2,500 km, ek =  (0, 1), and ik =  (0, 90, 180) deg are explicitly sampled. The 
value of Ωk is explicitly set to 60 deg for all ICs because RAAN intuitively should 
not affect convergence properties or runtime; the values of �k and fk are similarly 
not random and are explicitly given in Table  2, overall ensuring the inclusion of 
potential stress cases associated with the following orbit types: nearly circular and/
or exactly equatorial (direct and retrograde), exactly polar, initialized exactly on a 
pole, and nearly parabolic (both elliptical and hyperbolic).

For the described times of flight and ICs, the Vinti algorithm described above 
only takes ≈ 4.15 μs on average to compute a set of final ECI position and velocity 
vectors. The tolerance on Δ�� for this data set is reduced to 10−13  rad in the main 
root-solve because the additional accuracy is not considered worth the trade in runt-
ime. The Vinti propagator produces zero errors and is found to be only ≈ 3.98 times 
slower than a comparable universal Kepler propagator based on the Bate et al. [4] 
formulation, which takes an average of ≈ 1.04 μs on the same machine and also pro-
duces zero errors. As before, both algorithms are set up to iterate until the solu-
tion cannot be further improved in double precision. Runtimes observed here are 
consistent with Der and Bonavito’s findings  [2], where the Vinti propagators they 
examined, which add J3 to the baseline Vinti dynamics via Vinti’s asymmetric 
potential  [14, 15], run five times slower than a Kepler propagator on average. It 
should be noted that other known universal Vinti propagators  [2] require a func-
tion call to a universal Kepler propagator to obtain an initial guess for the independ-
ent UV in the Vinti algorithm. In contrast, the initial guesses implemented in the 
current algorithm are simple closed-form expressions that can be computed quickly. 
Assuming an average 1.04-μs Kepler call, the current Vinti propagator is saving 
about (1 − 4.15 μs∕5.19 μs) × 100 = 20% in runtime relative to an identical imple-
mentation using a Kepler initial guess, which highlights the value of the proposed 
initial guess technique. Note that the baseline Kepler propagators are not identi-
cal between the current study and those performed by Der and Bonavito [2]. As 

Table 2  Initial osculating 
Keplerian orbital elements for 
the assessment of computational 
runtime, using each of the 
following six Δt values: 
[1; 10; 100; 1, 000; 10, 000; 86, 400]  
sec

a The “min” function and fk∞ = arccos(−1∕ek) are only invoked for 
ek ≥ 1 . If fk = fk∞ , then fk is reset to 5 − fk∞ in degrees

Quantity Range Number 
of sam-
ples

Sampling type

rpk (km) [2,500; 50,000] 40 Uniform
ek [0; 2.5] 40 Uniform
ik (deg) [0; 180] 40 Uniform
Ωk (deg) 60 1 Explicit
�k (deg) [0; 30; 90; 180; 220; 300] 6 Explicit
fk (deg)a [0; min([90; 180; 270], fk∞)] 4 Explicit
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such, conclusions on the relative computational speeds of the current algorithm and 
propagators like Vinti6 cannot be drawn with the given information. The direct 
runtime comparisons required to assess the efficiency of the Vinti6 algorithm are 
explored in the following section.

4.3  Comparisons to the Vinti6 Algorithm

For completeness, the presented Vinti propagator is directly compared to the For-
tran version of Vinti6  [2] in terms of accuracy, robustness, and computational 
efficiency. Accuracy and robustness are compared in Fig.  3 using the same four 
examples defined in Table 1. While Vinti6, which is based on Vinti’s asymmet-
ric potential  [14], is capable of modeling both J2 and J3 , the J3 effects are omit-
ted (set to zero) to increase the fairness of the accuracy and robustness compari-
sons, the number of mathematical computations in the code remaining unchanged. 
Note that, before performing the comparisons, the author corrected an error in the 
original Vinti6 Fortran code located inside the root-solve, where the code origi-
nally exits the loop upon convergence without updating � and subsequently the Tk 
functions. The algorithm error is eliminated by removing line 614 and inserting it 
immediately after line  628 in the code.2 Evidently, this correction is only needed 
in the Fortran version of Vinti6 and not in the C version. Now, to obtain accu-
racy assessments for Vinti6, the error metric discussed in the previous section 
is simply applied to the Vinti6 outputs and that error is plotted side-by-side with 
the error in Fig.  2. Der and Bonavito [2] note that Kepler1, the default Kepler 
propagator in Vinti6, may be replaced with any UV Kepler propagator, and so 
it is replaced with the Kepler propagator described in the previous section to make 
the comparisons as fair as possible. This choice to replace the Kepler algorithm pro-
motes a fair comparison from the perspective of both robustness, since its robustness 
is demonstrated in the previous section, and runtime, since the measured runtime is 
recorded in the previous section. The panels in Fig. 3 are arranged in the same order 
as the panels in Fig. 2 to make comparisons easier.

Focusing first on Fig. 3b, d, which are the Molniya and hyperbolic cases, respec-
tively, Vinti6 is observed to agree almost exactly with the presented algorithm. 
This level of agreement is expected because the approximations in both algorithms 
are correct to O(J3

2
) and both leverage some form of universal variables. However, in 

Fig. 3a, c, which are the GEO and parabolic cases, respectively, there are some clear 
discrepancies. Over the chosen time spans, while the presented Vinti propagator 
maintains millimeter-level or better accuracy, the Vinti6 errors are consistently 
on the order of a few kilometers for these two examples, representing two orbital 
regimes that should be easily handled by universal techniques, but which are not 
handled well by Vinti6. Further investigation suggested that the large Vinti6 
errors result from the algorithm converging to poor solutions for the GEO and para-
bolic examples. Based on the GEO results and a few additional quick tests, the accu-
racy degradation is found to exist for nearly circular and/or equatorial orbits and is 

2 The Fortran code on line 614 in the original Vinti6 algorithm [2] is: if (iflag.eq. 1) go to 
60 ! solution converged.
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worse for the exactly equatorial scenario. Further study is required to understand the 
cause of the parabolic discrepancy. The findings not only indicate that the presented 
Vinti propagator is a significant improvement over a well-known benchmark, but 
they also suggest that the coupling of UVs to equinoctial orbital elements is a neces-
sary theoretical development for enhancing the robustness of analytical Vinti orbit 
propagators.

Fig. 3  Comparisons between 
the presented Vinti propagator 
and Vinti6 using log-scale 
position errors for four orbital 
regimes. The new analytical 
Vinti propagator consistently 
performs well, while Vinti6 
fails for the GEO and parabolic 
cases
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Given the unequal levels of robustness observed between the presented Vinti 
propagator and Vinti6, it may be considered unfair to perform a runtime com-
parison of the two algorithms. The lack of robustness in one algorithm raises a num-
ber of challenges for runtime comparisons and raises questions on the usefulness of 
making the assessment. Generally, such a measurement of the computational speed 
of Vinti6 could be misleading. One area of concern is that when Vinti6 con-
verges to poor solutions, the algorithm may converge more quickly or slowly than 
average, depending on the situation, which could unfairly benefit or hurt its perfor-
mance. Further study would be required to determine if the convergence to poor 
solutions is predictable. Nevertheless, it is considered worthwhile to still evaluate 
the average Vinti6 runtime for archival purposes. For the times of flight and ICs 
specified in Table 2, Vinti6 takes an average of ≈ 2.30 μs to compute final ECI 
state vectors on the same machine described in Section  4.2. While Vinti6 can 
potentially compute a solution in 55% of the time as the presented Vinti propaga-
tor on average, the presented orbit propagator is much more robust. The practitioner 
must decide whether trading robustness for speed is acceptable for their applica-
tion, keeping in mind that the speedup offered by Vinti6 may be less in practice 
because the runtime measured in this study includes Vinti6 solutions that failed to 
converge correctly. The speed and robustness of Vinti6 also has a strong depend-
ence on the speed and robustness of the underlying UV Kepler propagator, which 
must be taken into consideration when deciding which algorithm to use.

5  Conclusions

A universal analytical solution is developed for Vinti’s symmetric, unperturbed 
dynamical problem, which uses oblate spheroidal (OS) geometry to add planetary 
oblateness to the dynamics. Standard OS universal variables are meshed with OS 
equinoctial orbital elements to eliminate all singularities and computational difficul-
ties from the solution, rendering it universally valid for bounded and unbounded tra-
jectories at any inclination, including polar and direct or retrograde equatorial orbits. 
The forbidden zone associated with nearly rectilinear orbits, a rarely encountered 
region in practice, remains the only regime for which an analytical solution is not 
known. Central to this approach, a generalized universal Kepler equation is devel-
oped, and a two-tier, nested root-solve is proposed to solve it, where steps are taken 
to guarantee that the simpler inner root-solve converges in a few iterations. Inter-
estingly, the entire root-solve is viewed as operating in a rotating OS orbital ref-
erence frame, and the equinoctial elements enable a nonsingular mapping between 
this frame and the inertial frame. The algorithm design permits forward or backward 
propagation.

The presented Vinti solution is obtained with notable simplifications and 
improvements in accuracy relative to earlier solutions. In particular, the coordi-
nate transformations between inertial position and velocity and OS equinoctial ele-
ments are now exact, where they previously relied on approximations to evaluate the 
transformations near the poles. Exactness is enabled by the derivation of an exact, 
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nonsingular representation of the rate at which the OS ascending node drifts over 
time. The computation of OS ascending node vector components from inertial coor-
dinates is also simplified using a new approach based on vectors that streamlines 
the algorithm. Otherwise, the accuracy of the solution is as high as previous ana-
lytical solutions, where the quartics are factored to double-precision accuracy and 
the integrals are evaluated to an accuracy of O(J3

2
) . A technique to preserve solu-

tion accuracy in many-rev scenarios is also offered. Ultimately, with these mecha-
nisms in place, the new Vinti propagator is demonstrated to be more robust than the 
benchmark Vinti6 with J3 = 0 , especially in the nearly circular, equatorial, and 
parabolic regimes. When applied at Earth, the implemented Vinti algorithm, which 
includes novel, simple initial guess techniques that do not require a Kepler solu-
tion, is only slower than a universal Kepler propagator by a factor of 4.0 on average. 
The new Vinti algorithm is slower than Vinti6 by an average factor of 1.8, but 
the increased runtime comes with substantial gains in robustness for popular orbital 
regimes.

The formulation of a solution to Vinti’s dynamical problem that combines OS 
universal variables and equinoctial elements implies a level of robustness and effi-
ciency, both expected and observed, that can be passed on to related applications. 
Depending on the primary body’s shape, preliminary mission design that typically 
relies on two-body approximations can benefit from the increased accuracy, enjoy-
ing a minor sacrifice in compute time relative to two-body propagation and a sig-
nificant speed boost relative to numerical integration that includes J2 effects. The 
solution also prescribes singularity-free partial derivatives and an analytical, univer-
sal state transition matrix that is nonsingular for bounded and unbounded orbits in 
any nondegenerate orbital regime. Finally, the new form of the kinematic equations 
lends itself to the definition of a boundary value problem as a system of equations, 
which will be explored in a follow-on study.

Appendix A: Computational Details for Kinematic Equations

Recall Eq. (15) as

and observe that

ΔT0 = Δ� ; Δ
(
QkTk

)
=

1

k

[
(k − 1)Q2Δ
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Qk−2Tk−2

)
− Δ

(
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)]
,
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0

(
Q cos�0

)
;

(66)Q sin� = Q sin�0 cosΔ� + Q cos�0 sinΔ� ;

(67)Q cos� = Q cos�0 cosΔ� − Q sin�0 sinΔ� ;
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For the ΔWk terms, note first from Getchell [19] that if W0 = f  and W1 = (f + eV1)∕p , 
then

Equation (69) can be differenced at two times to obtain ΔWk as

where powers of eccentricity are grouped with the Vk terms in the same way that 
powers of Q are grouped with the Tk terms to avoid angle ambiguities. Specifically, 
recalling that Getchell [19] writes the recursive function Vk , seeded with V0 = f  and 
V1 = sin f  , as

the ekVk terms for k > 0 can be expressed as

where

To better see how computations of ΔWk may be carried out, it is convenient to 
split ΔWk into secular and periodic parts. Due to the recursive generation of terms 
defined in Eqs.  (70) and (72), the secular terms contain Δf  with various constant 
coefficients, while the periodic terms have the form

with different constant coefficients.
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Appendix B: Secular Coefficients

Getchell’s secular coefficients [19] are related to Vinti’s coefficients [6] on the left-hand 
side as

If using these relations to compute the third coefficients, assume �3 is factored out of 
CR3

 and CN3
 so that �3 cancels; Vinti’s “A” coefficients indeed go to zero for parabolic 

orbits. The secular coefficients are given explicitly to order O(J3
2
) as
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Appendix C: First Derivatives for the Initial Value Problem

In Vinti dynamics, as in Keplerian dynamics, the universal variable x̂ is the vari-
able being root-solved in the solution of the IVP and other variables depend on x̂ . 
Therefore, first derivatives with respect to x̂ are required in any Newton-Raphson 
procedure. Straightforward derivatives are presented first for completeness, and a 
simpler, more efficient alternative, which is actually implemented in the propagator, 
is presented second.

Now, notice that Δf  appears in the kinematic equations, which means its deriva-
tive with respect to x̂ is needed. Biria [23] derives a relationship between Δf  and x̂ 
under the Vinti potential as

Solving Eq. (84) for Δf  , taking the derivative with respect to x̂ , and simplifying the 
result yields

after using the Ŝ�2 − 𝛾 Ŝ2 = 1 identity, and

after further simplifications. The derivative of Δ� with respect to x̂ is also needed 
because ΔN1 is a function of Δ� . Noting that Δ� is obtained from a root-solve of 
Eq.  (16) given Δf  , the derivative of that root-solve procedure can be obtained by 
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�

�
x̂

2

�
+ 𝜎0Ŝ
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�
x̂

2

�

(86)dΔf

dx̂
=

√
p

𝜌

(87)g2 ≡ −ΔR2(Δf ) + ΔN2(Δ�(Δf )) = 0



1 3

The Journal of the Astronautical Sciences (2023) 70:29 Page 31 of 38 29

where the required derivatives of ΔR2 and ΔN2 , respectively, can be obtained explic-
itly as

and

The simplest way to evaluate the RHS derivatives in Eq. (89) is to note that taking 
the derivative of ΔWk with respect to Δf  recovers the original integrand that gener-
ates the recursive function. The derivatives can be stated in terms of the integrand, 
found in Eq. 24 of Getchell [19], as

Equation  (91) is the simplest expression for computing the derivative, and it can 
be further verified if desired by evaluating Eqs.  (104) and (105). The RHS partial 
derivatives in Eq.  (90) can be evaluated with Eqs.  (96–97). Finally, multiplying 
Eq. (88) by Eq. (86) yields the desired result as

With Eq. (86) and Eq. (92) established, the first derivative of the OS time of flight 
equation, Eq. (12), can be pursued with respect to the independent variable, x̂ . The 
first derivative can be stated as

or it can be simplified to

(88)
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where � has been substituted into the first term in Eq. (12) using the relation

from Biria [23], Eq.  (91) has been substituted, and other derivatives can be com-
puted as

and

Noting dΔT0∕dΔ� = 1 , Eqs. (96) and (97) can be written explicitly for even k up to 
k = 6 as

and

As an alternative to verifying Eq. (91), take the derivative of Eq. (70) with respect 
to Δf  to give

(94)
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Taking the first derivative of each secular term will leave only the various constant 
secular coefficients found from Eqs. (70) and (72). For the periodic terms, taking the 
derivative of Eq. (75) with respect to Δf  yields

which after multiplying by the associated constant periodic coefficients from 
Eqs. (70) and (72) results in the desired derivatives of the periodic terms. Sum the 
secular and periodic terms to obtain the total derivative.

While the above derivatives are technically correct, as the exact derivatives of 
the approximate equations being root-solved, these derivatives can be approximated 
very well at Earth by the exact derivatives of the actual Rj and Nj integrals to yield 
extensive simplifications. For the Nj integrals, the simplifications result from the 
direct application of elliptic integrals. The N1 and N2 integrals can be expressed in 
terms of the incomplete elliptic integrals of the first and second kind as [2]

where

are the incomplete elliptic integrals of the first and second kind, respectively, and 
the constant modulus q in Vinti’s notation is related to the parameter k1 in Getchell’s 
notation [19] as k1 = q2 = Q1Q

2 . Although the derivative dΔNj∕dΔ� is desired for 
j = 1, 2 , it is equivalent to dNj∕d� because d�∕dΔ� = 1 and the integrals evaluated 
at t0 are not a function of Δ� . Substituting Eq. (107) into Eq. (106) and taking the 
derivative of the resulting equations for Nj with respect to � yields simple nonsingu-
lar expressions as
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after applying Leibniz rule and some algebraic manipulation to eliminate indetermi-
nate forms in dN1∕d� for nearly parabolic orbits. The Rj integrals are treated simi-
larly, expressed in different forms as

where the integrals on the first line in Eqs. (109) and (110) are taken from Getchell 
[19] and those on the second line are obtained by substituting Getchell’s differential 
relationships for �,

into the original integrals as needed, noting for Getchell’s X̂ variable that dX̂ = dx̂ . 
The R1 integral is written with respect to x̂ because dΔt∕dx̂ is ultimately desired, 
while that of R2 is written with respect to f  because dΔR2∕dΔf  is required in 
Eq. (92). Note that dΔR1∕dx̂ is equivalent to dR1∕dx̂ and dΔR2∕dΔf  to dR2∕df  for 
reasons analogous to those cited for the Nj integrals and because df∕dΔf = 1 . Tak-
ing the derivatives of Eqs.  (109) and (110) with respect to x̂ and f  , respectively, 
yields simple nonsingular expressions as

and

Finally, the derivative of Eq. (12) can be computed as

by substituting the appropriate expressions from Eqs. (108), (112), (113), (86), and 
(92), the latter simplifying to
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This exact version of Eq. (94) can be written explicitly as

Appendix D: Computational Details for Retaining Propagator 
Accuracy

The true number of complete revs N traversed in the specified TOF Δt would ide-
ally be known beforehand, but it is unavailable. Instead, the algorithm requires an 
initial guess of the number of full revs, Nguess , first estimated as Nguess = ⌊�Δt�∕tp⌋ . 
If a multiple-rev case is estimated ( Nguess > 0 ), then compute the time (ΔtN)guess 
required to complete Nguess revs. Once (ΔtN)guess is determined, compute the time 
remaining after the full revs as ΔtR = Δt − (ΔtN)guess , effectively analogous to a 
modulo operation on the period. If sgnΔtR = sgn (ΔtN)guess , then the guess was 
correct and N = Nguess . Otherwise, it is assumed that Nguess > N , which would 
lead to a fatal error if not corrected with N = Nguess − 1 . The kindred scenario of 
guessing a number of complete revs that is one less than the true number of com-
plete revs ( Nguess < N ) is not catastrophic and only slightly degrades the accu-
racy of the root-solve, comparable to the accuracy obtained when propagating a 
trajectory between 1 and 2 full revs without performing the modulo operation. 
A better approach might explicitly determine whether Nguess > N or Nguess < N 
and treat each case differently, but since the Nguess < N scenario is found to be 
nearly harmless, the propagation algorithm proceeds with Nguess computed as 
Nguess = Nguess0

− 1 under either case.
When ΔtN is obtained, it is essential to also store the values of Δ�N and ΔΩ�

N
 , 

in addition to (QkTkp)N , the periodic part of (QkTk)N that serves as the initial value 
for the reduced problem. It is not necessary to store (Wk)N because it is 2 �-peri-
odic, meaning that (Wk)0 = (Wk)N if the modulo-2� value of f  is used. As a result, 
the periodic parts cancel, i.e. Δ(Wkp

)N = 0 , so that Δ(Wk)N only includes the secu-
lar terms: constant coefficients multiplied by ΔfN . In contrast, |Δ�N| ≠ 2�N in 
general, typically falling on either side of 2�N according to the orbital regime. 
Note that the subscript “N” notation does not refer to the value obtained after the 
quantity progresses through N revs, but rather the value obtained after Δf  has 
progressed through N revs. For example, in a typical application, Δt is not large 
enough to cause ΔΩ� to even exceed one rev, so that |ΔΩ�

N
| is much smaller than 

2 �N  . With the described mitigation technique, the remainder x̂R becomes the 
root-solved quantity in Eq. (12), and Δ��

R
 and Δ�R are adjusted iteratively; ΔΩ�

R
 is 
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obtained at the conclusion of the root-solve, and the full angle differences, com-
puted as

can then be used in Eqs. (62) and (63) to propagate the OS equinoctial elements.
Note that if the Kepler initial guess is used, as in Vinti6 and other Vinti 

propagation algorithms, the number of complete revs N under Vinti dynamics is 
actually still unknown. The reason is that if the propagation is in the vicinity of 
a complete rev, then the J2 perturbation could actually nudge the number of revs 
forward or backward, depending on the orbital regime. If the spacecraft has barely 
completed 3 revs under Keplerian dynamics, for example, it is possible that the 
spacecraft is just shy of 3 complete revs under Vinti dynamics. Conversely, if the 
spacecraft is just shy of completing 3 revs under Keplerian dynamics, it is pos-
sible that the spacecraft is just beyond 3 complete revs under Vinti dynamics. As 
such, some calculation would still be required to determine the actual number of 
complete revs under Vinti dynamics, even if the number of complete revs under 
Keplerian dynamics is known.
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