Skip to main content
Log in

Analysis of the Impact of Orbit-Attitude Coupling at Higher-Degree Potential Models on Spacecraft Dynamics

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

A novel representation of the gravitational force and gravity-gradient torque acting on a rigid-body spacecraft is presented. This formulation considers orbit-attitude coupling perturbations acting on the spacecraft when the gravitational field is modeled using spherical harmonics. Furthermore, the main contribution of this work is the generalization of these coupling terms to any degree and order of spherical harmonic representation. The magnitude of the accelerations are presented for point-mass and rigid-body spacecraft up to degree and order 256 for the case of a spacecraft in orbit around a central body. Numerical simulations are provided for spacecraft orbits near two different central bodies: The Moon and a “Bennu-like” object. The “Bennu-like” object is assumed to have the same size, mass, gravitational parameter, and angular velocity as those of the titular asteroid, but with spherical harmonic gravity constants of the Moon. It is shown that the magnitudes of the accelerations caused by the orbit-attitude coupling are orders of magnitude smaller than the accelerations derived from assuming a point-mass spacecraft. It is also observed that the difference in these orders of magnitudes has the tendency to decrease appreciably as the size of the celestial body decreases, suggesting the importance of consideration of higher order attitude terms in scenarios with large, low-mass spacecraft and/or in orbits around small celestial bodies with highly nonuniform gravitational fields. Therefore, the formalism in this study can be used as an accurate tool to quantify the effects of translational-rotational coupling in space operations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schaub, H., Junkins, JL.: Analytical Mechanics of Space Systems, 4th edn. American Institute of Aeronautics and Astronautics, Reston, Virginia, (2018) https://doi.org/10.2514/4.105210

  2. Jean, I., Misra, A., Ng, A.: Orbital and attitude coupled dynamics of a spacecraft around an asteroid. In: Third IAA Conference on Dynamics and Control of Space Systems (2017)

  3. Misra, G., Izadi, M., Sanyal, A., et al.: Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies. Adv. Space Res. 57(8), 1747–1761 (2016). https://doi.org/10.1016/j.asr.2015.05.023

    Article  Google Scholar 

  4. Scheeres, D.J.: Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid. Comet and Planetary Satellite Orbiters, Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-03256-1

    Book  Google Scholar 

  5. Scheeres, D.J., Ostro, S.J., Hudson, R.S., et al.: Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132(1), 53–79 (1998). https://doi.org/10.1006/icar.1997.5870

    Article  Google Scholar 

  6. Sincarsin, G., Hughes, P.: Gravitational orbit-attitude coupling for very large spacecraft. In: Astrodynamics Conference. AIAA 1982-1402 (1982). https://doi.org/10.2514/6.1982-1402

    Article  MATH  Google Scholar 

  7. Lara, M., Ferrer, S., De Saedeleer, B.: Lunar analytical theory for polar orbits in a 50-degree zonal model plus third-body effect. J. Astronaut. Sci. 57(3), 561–577 (2009). https://doi.org/10.1007/bf03321517

    Article  Google Scholar 

  8. Burnett, E.R., Schaub, H.: Approximating orbits in a rotating gravity field with oblateness and ellipticity perturbations. Celest. Mech. Dyn. Astron. 134, 5 (2022). https://doi.org/10.1007/s10569-022-10061-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, Y., Zhong, R., Xu, S.: Orbital perturbation due to orbit-attitude coupling near asteroids. Aircraft Eng. Aerospace Technol. 90(1), 104–113 (2018). https://doi.org/10.1108/AEAT-05-2016-0081

    Article  Google Scholar 

  10. Wang, Y., Xu, S.: Orbital dynamics and equilibrium points around an asteroid with gravitational orbit-attitude coupling perturbation. Celest. Mech. Dyn. Astron. 125(3), 265–285 (2016). https://doi.org/10.1007/s10569-015-9655-y

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, Y., Xu, S.: Relative equilibria of full dynamics of a rigid body with gravitational orbit-attitude coupling in a uniformly rotating second degree and order gravity field. Astrophys. Space Sci. 354(2), 339–353 (2014). https://doi.org/10.1007/s10509-014-2077-6

    Article  Google Scholar 

  12. Hirt, C., Kuhn, M.: Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography-a case study for the moon. J. Geophys. Res.: Planets 122(8), 1727–1746 (2017). https://doi.org/10.1002/2017JE005298

    Article  Google Scholar 

  13. Šprlák, M.: On the numerical problems of spherical harmonics: Numerical and algebraic methods avoiding instabilities of the associated Legendre’s functions. zfv – Z. Geodäsie Geoinform. Landmanag. 136, 310–320 (2011). https://geodaesie.info/zfv/heftbeitrag/176

    Google Scholar 

  14. Elipe, A., Lara, M.: Frozen orbits about the Moon. J. Guid. Control. Dyn. 26(2), 238–243 (2003). https://doi.org/10.2514/2.5064

    Article  Google Scholar 

  15. Folta, D., Quinn, D.: Lunar frozen orbits. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2006). https://doi.org/10.2514/6.2006-6749

    Article  Google Scholar 

  16. Konopliv, A.S., Park, R.S., Yuan, D.N., et al.: The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission. J. Geophys Res: Planets 118(7), 1415–1434 (2013). https://doi.org/10.1002/jgre.20097

    Article  Google Scholar 

  17. Lemoine, F.G., Goossens, S., Sabaka, T.J., et al.: High-degree gravity models from GRAIL primary mission data. J. Geophys. Res: Planets 118(8), 1676–1698 (2013). https://doi.org/10.1002/jgre.20118

    Article  Google Scholar 

  18. Lemoine, F.G., Goossens, S., Sabaka, T.J., et al.: GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 41(10), 3382–3389 (2014). https://doi.org/10.1002/2014GL060027

    Article  Google Scholar 

  19. Takahashi, Y., Scheeres, D.J.: Small body surface gravity fields via spherical harmonic expansions. Celest. Mech. Dyn. Astron. 119(2), 169–206 (2014). https://doi.org/10.1007/s10569-014-9552-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Šprlák, M., Han, S.C.: On the use of spherical harmonic series inside the minimum Brillouin sphere: Theoretical review and evaluation by grail and lola satellite data. Earth-Science Reviews 222(103), 739 (2021). https://doi.org/10.1016/j.earscirev.2021.103739

    Article  Google Scholar 

  21. Parikh, D., Tewari, A.: Optimal landing strategy on a uniformly rotating homogeneous rectangular parallelepiped. J. Astronaut. Sci. 68(1), 120–149 (2020). https://doi.org/10.1007/s40295-020-00243-y

    Article  Google Scholar 

  22. Russell, R.P., Lantoine, G.: Optimal control of relative motion in arbitrary fields: Application at deimos. J. Astronaut. Sci. 59(1–2), 193–215 (2012). https://doi.org/10.1007/s40295-013-0013-6

    Article  Google Scholar 

  23. Weeks, C., Miller, J.K.: A gravity model for navigation close to asteroids and comets. J. Astronaut. Sci. 52(3), 381–389 (2004). https://doi.org/10.1007/bf03546369

    Article  MathSciNet  Google Scholar 

  24. Jalali Mashayekhi, M., K. Misra A, Keshmiri M,: Dynamics of a tether system connected to an irregularly shaped celestial body. J. Astronaut. Sci. 63(3), 206–220 (2016). https://doi.org/10.1007/s40295-016-0088-y

  25. Holm, D.D.: Geometric Mechanics Part II: Rotating. Imperial College Press, Translating and Rolling (2011)

    Book  Google Scholar 

  26. Sastry, S.: Nonlinear systems: Analysis, stability, and Control. Springer, New York, NY (1999). https://doi.org/10.1007/978-1-4757-3108-8

    Book  MATH  Google Scholar 

  27. Vallado, D.A., McClain, W.D.: Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorne (2013)

    Google Scholar 

  28. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Martino Publishing, Mansfield Centre, CT (2014)

    MATH  Google Scholar 

  29. McCann, BS., Nazari, M (2021) Gravitational orbit-attitude perturbations for any degree and order potential models. In: AAS/AIAA Astrodynamics Specialist Conference (2017)

  30. Beck, J.A., Hall, C.D.: Relative equilibria of a rigid satellite in a circular Keplerian orbit. J. Astronaut. Sci. 46(3), 215–247 (1998). https://doi.org/10.1007/bf03546235

    Article  MathSciNet  Google Scholar 

  31. Misra, G., Sanyal, A.K.: Analysis of orbit-attitude coupling of spacecraft near small solar system bodies. In: AIAA Guidance, Navigation, and Control Conference (2015). https://doi.org/10.2514/6.2015-1777

    Article  Google Scholar 

  32. Mohan, S.N., Breakwell, J.V., Lange, B.O.: Interaction between attitude libration and orbital motion of a rigid body in a near keplerian orbit of low eccentricity. Celestial Mech. 5(2), 157–173 (1972). https://doi.org/10.1007/bf01229519

    Article  MATH  Google Scholar 

  33. Wang, Y., Xu, S.: Gravitational orbit-rotation coupling of a rigid satellite around a spheroid planet. J. Aerospace Eng. 27(1), 140–150 (2014). https://doi.org/10.1061/(asce)as.1943-5525.0000222

    Article  Google Scholar 

  34. Fonte, DJ.: Implementing a 50x50 gravity field model in an orbit determination system. PhD thesis, Massachusetts Institute of Technology (2009)

  35. Reid. T.: Orbital diversity for global navigation satellite systems. PhD thesis, Stanford University (2017)

Download references

Acknowledgements

Support from Department of Education Graduate Assistance in Areas of National Need (GAANN) and Faculty Innovative Research in Science and Technology (FIRST) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brennan McCann.

Ethics declarations

Conflict of interest

The authors have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Differentiating Potential

The gravitational acceleration is given by taking the gradient of Eq. (10) as [27]

$$\begin{aligned} {\mathbf {a}} = \frac{d U}{d {\mathbf {r}}_{{\mathcal {F}}}} = \frac{\partial U}{\partial \Vert {\mathbf {r}}\Vert }\left( \frac{\partial \Vert {\mathbf {r}}\Vert }{\partial {\mathbf {r}}_{ {\mathcal {F}}}} \right) ^{T}+\frac{\partial {U}}{\partial {\theta }}\left( \frac{\partial \theta }{\partial {\mathbf {r}}_{{\mathcal {F}}}}\right) ^{T}+\frac{\partial {U}}{\partial {\phi }}\left( \frac{\partial \phi }{\partial {\mathbf {r}}_{{\mathcal {F}}}}\right) ^{T} \end{aligned}$$
(A1a)

where the partial derivatives are given by

$$\begin{aligned}&\frac{\partial U}{\partial \Vert {\mathbf {r}}\Vert }=-\frac{\mu }{\Vert {\mathbf {r}}\Vert ^{2}}\Bigg [1+ \sum _{n=1}^{\infty }\sum _{p=0}^{n}(n+1)\Bigg (\frac{R_{M}}{\Vert {\mathbf {r}}\Vert }\Bigg )^n\bar{P}_{n,p}(\sin {\phi })(\bar{C}_{n,p}\cos {p\theta } +\dots \nonumber \\&\quad \bar{S}_{n,p} \sin {p \theta })\Bigg ] \end{aligned}$$
(A1b)
$$\begin{aligned}&\frac{\partial U}{\partial \theta }=\frac{\mu }{\Vert {\mathbf {r}}\Vert }\left[ \sum _{n=1}^{\infty }\sum _{p=0}^{n}\Bigg (\frac{R_{M}}{\Vert {\mathbf {r}}\Vert }\Bigg )^n\bar{P}_{n,p}(\sin {\phi })p(-\bar{C}_{n,p}\sin {p\theta } +\bar{S}_{n,p}\cos {p \theta })\right] \end{aligned}$$
(A1c)
$$\begin{aligned}&\frac{\partial U}{\partial \phi }= \frac{\mu }{\Vert {\mathbf {r}}\Vert }\left[ \sum _{n=1}^{\infty }\sum _{p=0}^{n}\Bigg (\frac{R_{M}}{\Vert {\mathbf {r}}\Vert }\Bigg )^n\left( \bar{P}_{n,p+1}(\sin {\phi })-\dots \right. \right. \nonumber \\&\quad \left. p\tan {\phi }{\bar{P}}_{n,p}(\sin {\phi })\right) (\bar{C}_{n,p}\cos {p\theta } +\bar{S}_{n,p} \sin {p \theta })\Bigg ] \end{aligned}$$
(A1d)
$$\begin{aligned}&\frac{\partial \Vert {\mathbf {r}}\Vert }{\partial {\mathbf {r}}_{{\mathcal {F}}}}=\frac{{\mathbf {r}}_{{\mathcal {F}}}^{T}}{\Vert {\mathbf {r}}\Vert } \end{aligned}$$
(A1e)
$$\begin{aligned}&\frac{\partial \theta }{\partial {\mathbf {r}}_{{\mathcal {F}}}}=-\frac{{\mathbf {r}}_{{\mathcal {F}}}^{T}\left( \hat{{\mathbf {e}}}_{3}^{'}\right) ^{\times } }{{\mathbf {r}}_{{\mathcal {F}}}^{T}\bar{{\mathbf {A}}}_{3}{\mathbf {r}}_{{\mathcal {F}}}} \end{aligned}$$
(A1f)
$$\begin{aligned}&\frac{\partial \phi }{\partial {\mathbf {r}}_{{\mathcal {F}}}}=\frac{1}{\sqrt{{\mathbf {r}}_{{\mathcal {F}}}^{T}\bar{{\mathbf {A}}}_{3}{\mathbf {r}}_{{\mathcal {F}}}}}\left( \left( \hat{{\mathbf {e}}}_{3}^{'}\right) ^{T}-\frac{{\mathbf {r}}_{{\mathcal {F}}}^{T}\left( \hat{{\mathbf {e}}}_{3}^{'}\right) ^{T}{\mathbf {r}}_{{\mathcal {F}}}}{\Vert {\mathbf {r}}\Vert }\right) \end{aligned}$$
(A1g)

Define the position vector from the origin to a differential mass element as \({\mathbf {r}}_{dm}={\mathbf {r}}_{{\mathcal {B}}}+\delta {\mathbf {r}}_{{\mathcal {B}}}\) where \({\mathbf {r}}_{{\mathcal {B}}}\) represents the position vector from the origin to the rigid body’s center of mass and \(\delta {\mathbf {r}}_{{\mathcal {B}}}\) is a position vector from the center of mass to the small mass element, both expressed in the \({\mathcal {B}}\) frame. Thus, employing the definitions in Eq. (13) and the definitions for \({\mathbf {A}}_{3}\) and \(\hat{{\mathbf {e}}}_{i}\) in Sect. 3, the differential force per unit mass is obtained as

$$\begin{aligned} \begin{aligned} d{\mathbf {F}}_g=&\mu \left[ -\frac{{\mathbf {r}}_{dm}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^\frac{3}{2}}\left( 1+ \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{A}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^\frac{n}{2}}\right) + \dots \right. \\&\left. \frac{ \hat{{\mathbf {e}}}_{3}^{\times }{\mathbf {r}}_{dm}}{\left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) }\left( \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{B}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^\frac{n+1}{2}}\right) +\dots \right. \\&\left. \frac{{\mathbf {r}}_{dm}^{T}{\mathbf {r}}_{dm}\hat{{\mathbf {e}}}_{3}-{\mathbf {r}}_{dm}^{T}\hat{{\mathbf {e}}}_{3}{\mathbf {r}}_{dm}}{\left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) ^{\frac{1}{2}}}\left( \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{C}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^{\frac{n+3}{2}}}\right) \right] dm\\ {}&=d{\mathbf {F}}_{gA}+d{\mathbf {F}}_{gB}+d{\mathbf {F}}_{gC} \end{aligned} \end{aligned}$$
(A2)

which is integrated over the body \({\mathbf {F}}_{g}=\int _{{\mathcal {B}}} d {\mathbf {F}}_{g}\) to obtain all orbit-attitude coupling effects. Similarly, the gravity gradient torque is obtained via \({\mathbf {L}}_{g}=\int _{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times }d{\mathbf {F}}_{g}\). Such derivations are presented in Appendix C, employing the binomial expansions in Appendix B.

Appendix B Binomial Expansions

Using binomial expansions, it can be shown that for an integer \(m\in {\mathbb {Z}}\) that

$$\begin{aligned} \begin{aligned} \left( {\mathbf {r}}_{dm}^{T}{\mathbf {r}}_{dm}\right) ^{-\frac{m+1}{2}}=&\frac{1}{\Vert {\mathbf {r}}\Vert ^{m+1}}\left( 1-\frac{\left( m+1\right) {\mathbf {r}}_{{\mathcal {B}}}^{T} \delta {\mathbf {r}}_{{\mathcal {B}}}}{\Vert {\mathbf {r}}\Vert ^{2}}-\frac{\left( m+1\right) \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} \delta {\mathbf {r}}_{{\mathcal {B}}}}{2\Vert {\mathbf {r}}\Vert ^{2}} +\dots \right. \\&\left. \frac{\left( m+1\right) \left( m+3\right) \left( {\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}}\right) ^2}{2\Vert {\mathbf {r}}\Vert ^4} \right) +{\mathcal {O}}(3) \end{aligned} \end{aligned}$$
(B1)

where \({\mathbf {r}}_{dm}={\mathbf {r}}_{{\mathcal {B}}}+\delta {\mathbf {r}}_{{\mathcal {B}}}\). Hence,

$$\begin{aligned} \begin{aligned} \left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) ^{-\frac{m+1}{2}}=&\frac{1}{\left( {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}\right) ^{\frac{m+1}{2}}}\left( 1-(m+1)\frac{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}-\dots \right. \\&\quad \left. (m+1)\frac{\delta {\mathbf {r}}_{{\mathcal {B}}} ^{T}{\mathbf {A}}_{3} \delta {\mathbf {r}}_{{\mathcal {B}}}}{2{\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}+\dots \right. \\ {}&\left. \frac{(m+1)(m+3)}{2}\frac{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}})^{2}}{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{2}} \right) +{\mathcal {O}}(3) \end{aligned} \end{aligned}$$
(B2)

Appendix C Gravitational Effect Derivation

The derivations for the gravitational effects are presented below, where the following common identities are utilized:

$$\begin{aligned}&\int _{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} \delta {\mathbf {r}}_{{\mathcal {B}}} dm=\frac{1}{2}\text {tr}({\mathbf {J}}), \quad \int _{{\mathcal {B}}}-\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times } \delta {\mathbf {r}}_{{\mathcal {B}}}^{\times }dm={\mathbf {J}},\\& \int _{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} dm=\frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}},\quad\int _{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}} dm = 0 \end{aligned}$$

and, defining \(\odot\) as the Hadamard element-wise matrix product and the vector for summation \(\varvec{\sigma }=[1\quad 1\quad 1]^{T}\),

$$\begin{aligned} \int _{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{i}\delta {\mathbf {r}}_{{\mathcal {B}}}~dm=\frac{1}{2}\left( \text {tr}({\mathbf {A}}_{i})\text {tr}({\mathbf {J}})-2\varvec{\sigma }^{T}\left( {\mathbf {A}}_{i}\odot {\mathbf {J}}\right) \varvec{\sigma }\right) \quad (i=1,2,3) \end{aligned}$$

1.1 C.1 Gravitational Force

The derivations for \({\mathbf {F}}_{gA1}\) have been presented in other sources [1], so that derivation is neglected here.

1.1.1 C.1.1 Term \({\mathbf {F}}_{gA2}\)

Term \({\mathbf {F}}_{gA2}\):

$$\begin{aligned} {\mathbf {F}}_{gA2}=-\mu \sum _{n=1}^{\infty }\sum _{p=0}^{n}\int _{{\mathcal {B}}} \frac{Q_{n,p}^{A}{\mathbf {r}}_{dm}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^\frac{n+3}{2}}dm \end{aligned}$$

Applying Equ. (B1) and rearranging the inner products for the integral evaluation gives

$$\begin{aligned} \begin{aligned} {\mathbf {F}}_{gA2}=&-\mu \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{A}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\int _{{\mathcal {B}}}\left( {\mathbf {r}}_{{\mathcal {B}}}-\frac{\left( n+3\right) \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}}}{2\Vert {\mathbf {r}}\Vert ^{2}}{\mathbf {r}}_{{\mathcal {B}}}+\dots \right. \\ {}&\left. \frac{\left( n+3\right) \left( n+5\right) {\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}} {\mathbf {r}}_{{\mathcal {B}}}}{2\Vert {\mathbf {r}}\Vert ^4} {\mathbf {r}}_{{\mathcal {B}}} -\frac{\left( n+3\right) \delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}}{\Vert {\mathbf {r}}\Vert ^{2}}{\mathbf {r}}_{{\mathcal {B}}}\right) ~dm \end{aligned} \end{aligned}$$

which, after some simplification, leads to

$$\begin{aligned} \begin{aligned} {\mathbf {F}}_{gA2}=&-\mu m\sum _{n=1}^{\infty }\sum _{p=0}^{n} \frac{Q_{n,p}^{A}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\left\{ 1+\frac{\left( n+3\right) }{m \Vert {\mathbf {r}}\Vert ^{2}}\left[ {\mathbf {J}} + \dots \right. \right. \\ {}&\left. \left. \frac{1}{2}\left( \frac{n+2}{2}\text {tr}({\mathbf {J}})-\left( n+5\right) \frac{{\mathbf {r}}_{{\mathcal {B}}}^T {\mathbf {J}} {\mathbf {r}}_{{\mathcal {B}}}}{\Vert {\mathbf {r}}\Vert ^{2}}\right) {\mathbf {I}}_3\right] \right\} {\mathbf {r}}_{{\mathcal {B}}} \end{aligned} \end{aligned}$$
(C1)

Eqs. (16c) and (16d) are obtained from Eq. (C1).

1.1.2 C.1.2 Term \({\mathbf {F}}_{gB}\)

Term \({\mathbf {F}}_{gB}\):

$$\begin{aligned} {\mathbf {F}}_{gB}=\mu \int _{{\mathcal {B}}}\frac{ \hat{{\mathbf {e}}}_{3}^{\times }{\mathbf {r}}_{dm}}{\left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) }\left( \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{B}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^\frac{n+1}{2}}\right) dm \end{aligned}$$

Switching the order of integral and series, applying the appropriate binomial expansions from Eqs. (B1) and (B2) and definition for \({\mathbf {r}}_{dm}\), distributing retaining up to second order terms in \(\delta {\mathbf {r}}_{{\mathcal {B}}}\), and rearranging inner products leads to

$$\begin{aligned} \begin{aligned} {\mathbf {F}}_{gB}=&\frac{\mu \hat{{\mathbf {e}}}_{3}^{\times }}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{B}}{\Vert {\mathbf {r}}\Vert ^{n+1}}\int _{{\mathcal {B}}}\left( {\mathbf {r}}_{{\mathcal {B}}}-\frac{(n+1)\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}}{\Vert {\mathbf {r}}\Vert ^{2}}{\mathbf {r}}_{{\mathcal {B}}}-\dots \right. \\&\left. \frac{(n+1)\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} \delta {\mathbf {r}}_{{\mathcal {B}}}}{2\Vert {\mathbf {r}}\Vert ^{2}}{\mathbf {r}}_{{\mathcal {B}}}+\frac{(n+1)(n+3){\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {r}}_{{\mathcal {B}}}}{2\Vert {\mathbf {r}}\Vert ^{4}}{\mathbf {r}}_{{\mathcal {B}}}-\dots \right. \\&\left. \frac{2\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3} {\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}r}+\frac{2(n+1){\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {r}}_{{\mathcal {B}}}}{\Vert {\mathbf {r}}\Vert ^{2}({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})}{\mathbf {r}}_{{\mathcal {B}}}-\dots \right. \\&\left. \frac{\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}{\mathbf {r}}_{{\mathcal {B}}}+\frac{4{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {A}}_{3} {\mathbf {r}}_{{\mathcal {B}}}}{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{2}}{\mathbf {r}}_{{\mathcal {B}}}\right) dm \end{aligned} \end{aligned}$$

Evaluating the integrals and rearranging gives the expression in Eq. (15c).

$$\begin{aligned} \begin{aligned} {\mathbf {F}}_{gB}=&\frac{\mu \hat{{\mathbf {e}}}_{3}^{\times }}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{B}}{\Vert {\mathbf {r}}\Vert ^{n+1}}\Bigg \{m+\dots \\ {}&\left[ -\frac{\text {tr}({\mathbf {J}})\text {tr}({\mathbf {A}}_{3})-2\varvec{\sigma }^{T}\left( {\mathbf {A}}_{3}\odot {\mathbf {J}}\right) \varvec{\sigma }}{2{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}+\dots \right. \\ {}&\left. \frac{4}{\left( {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}\right) ^{2}}{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}+\dots \right. \\&\left. \frac{2(n+1)}{\Vert {\mathbf {r}}\Vert ^{2}({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})}{\mathbf {r}}_{{\mathcal {B}}}^{T}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}-\frac{(n+1)\text {tr}({\mathbf {J}})}{4\Vert {\mathbf {r}}\Vert ^{2}}+\dots \right. \\&\left. \frac{(n+1)(n+3)}{2\Vert {\mathbf {r}}\Vert ^{4}}{\mathbf {r}}_{{\mathcal {B}}}^{T}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {r}}_{{\mathcal {B}}}\right] {\mathbf {I}}_3-\dots \\ {}&\frac{2}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {A}}_{3}-\frac{(n+1)}{\Vert {\mathbf {r}}\Vert ^{2}}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) \Bigg \}{\mathbf {r}}_{{\mathcal {B}}} \end{aligned} \end{aligned}$$
(C2)

1.1.3 C.1.3 Term \({\mathbf {F}}_{gC1}\)

Term \({\mathbf {F}}_{gC1}\):

$$\begin{aligned} {\mathbf {F}}_{gC1}=\mu \int _{{\mathcal {B}}}\frac{{\mathbf {r}}_{dm}^{T}{\mathbf {r}}_{dm}\hat{{\mathbf {e}}}_{3}}{\left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) ^{\frac{1}{2}}}\left( \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{C}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^{\frac{n+3}{2}}}\right) dm \end{aligned}$$

Rearranging and applying the binomial expansions from Eq. (B1), distributing and retaining up to second order terms in \(\delta {\mathbf {r}}_{{\mathcal {B}}}\) gives

$$\begin{aligned} \begin{aligned} {\mathbf {F}}_{gC1}=&\frac{\mu }{\left( {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}\right) ^{\frac{1}{2}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{C}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\int _{{\mathcal {B}}} \left( \Vert {\mathbf {r}}\Vert ^{2}-\frac{2(n+3){\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {r}}_{{\mathcal {B}}}}{\Vert {\mathbf {r}}\Vert ^{2}}-\dots \right. \\ {}&\left. \frac{(n+1)\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}}}{2}+\frac{\left( n+3\right) \left( n+5\right) {\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {r}}_{{\mathcal {B}}}}{2\Vert {\mathbf {r}}\Vert ^{2}}-\dots \right. \\ {}&\left. \frac{2_{{\mathcal {B}}}r^{T} \delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3} {\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}+\frac{(n+3){\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3} {\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}-\dots \right. \\ {}&\left. \frac{\Vert {\mathbf {r}}\Vert ^{2}(\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}})}{2{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}+\frac{3}{2}\frac{\Vert {\mathbf {r}}\Vert ^{2}({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})}{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{2}}\right) dm ~ \hat{{\mathbf {e}}}_{3} \end{aligned} \end{aligned}$$

Rearranging and evaluating the integrals gives Eq. (15d).

$$\begin{aligned} \begin{aligned} {\mathbf {F}}_{gC1}=&\frac{\mu }{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{\frac{1}{2}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{ Q_{n,p}^{C}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\left[ m\Vert {\mathbf {r}}\Vert ^{2}-\frac{n+1}{4}\text {tr}({\mathbf {J}})-\dots \right. \\ {}&\left. \frac{\Vert {\mathbf {r}}\Vert ^{2}}{4{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\left( \text {tr}({\mathbf {J}})\text {tr}({\mathbf {A}}_{3})-2\varvec{\sigma }^{T}\left( {\mathbf {A}}_{3}\odot {\mathbf {J}}\right) \varvec{\sigma }\right) +\dots \right. \\ {}&\left. \left( \frac{3}{2}\frac{\Vert {\mathbf {r}}\Vert ^{2}{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}}{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{2}}-\frac{2{\mathbf {r}}_{{\mathcal {B}}}^{T}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}+\dots \right. \right. \\ {}&\left. \left. \frac{(n+3){\mathbf {r}}_{{\mathcal {B}}}^{T}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\right) \left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}+\dots \right. \\&\left. \left( \frac{(n+3)(n+5)}{2\Vert {\mathbf {r}}\Vert ^{2}}-\frac{2(n+3)}{\Vert {\mathbf {r}}\Vert ^{2}}\right) {\mathbf {r}}_{{\mathcal {B}}}^{T}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {r}}_{{\mathcal {B}}} \right] \hat{{\mathbf {e}}}_{3} \end{aligned} \end{aligned}$$
(C3)

1.1.4 C.1.4 Term \({\mathbf {F}}_{gC2}\)

Term \({\mathbf {F}}_{gC2}\):

$$\begin{aligned} {\mathbf {F}}_{gC2}=-\mu \int _{{\mathcal {B}}} \frac{{\mathbf {r}}_{dm}^{T}\hat{{\mathbf {e}}}_{3}{\mathbf {r}}_{dm}}{\left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) ^{\frac{1}{2}}}\left( \sum _{n=1}^{\infty }\sum _{p=0}^{n} \frac{Q_{n,p}^{C}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^\frac{n+3}{2}}\right) dm \end{aligned}$$

Switching the integral and series terms, applying the binomial expansions in Eqs. (B1) and (B2), distributing, and rearranging gives

$$\begin{aligned} \begin{aligned} {\mathbf {F}}_{gC2}=&-\frac{\mu }{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{\frac{1}{2}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n} \frac{Q_{n,p}^{C}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\int _{{\mathcal {B}}} \left(\vphantom{\frac{3}{2}\frac{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {A}}_{3} {\mathbf {r}}_{{\mathcal {B}}}}{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{2}}(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}} (\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}+\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} \hat{{\mathbf {e}}}_{3}-\dots \right. \\ {}&\left. \frac{(n+3)\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {r}}_{{\mathcal {B}}}}{\Vert {\mathbf {r}}\Vert ^{2}}(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}})-\frac{(n+3){\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} \hat{{\mathbf {e}}}_{3}}{\Vert {\mathbf {r}}\Vert ^{2}}{\mathbf {r}}_{{\mathcal {B}}}-\dots \right. \\ {}&\left. \frac{(n+3)\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} \delta {\mathbf {r}}_{{\mathcal {B}}}}{2 \Vert {\mathbf {r}}\Vert ^{2}}(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}+\dots \right. \\ {}&\left. \frac{(n+3)(n+5)({\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {r}}_{{\mathcal {B}}})}{2\Vert {\mathbf {r}}\Vert ^{4}}(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}-\dots \right. \\ {}&\left. \frac{\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3} {\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}})-\frac{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} \hat{{\mathbf {e}}}_{3}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}} {\mathbf {r}}_{{\mathcal {B}}}+\dots \right. \\ {}&\left. \frac{(n+3){\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {r}}_{{\mathcal {B}}}}{\Vert {\mathbf {r}}\Vert ^{2}({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})}(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}-\frac{\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {A}}_{3} \delta {\mathbf {r}}_{{\mathcal {B}}}}{2{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}+\dots \right. \\ {}&\left. \frac{3}{2}\frac{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {A}}_{3} {\mathbf {r}}_{{\mathcal {B}}}}{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{2}}(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}\right) dm \end{aligned} \end{aligned}$$

Evaluating the integrals and rearranging gives Eq. (15e).

$$\begin{aligned} \begin{aligned} {\mathbf {F}}_{gC2}=&-\mu \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{C}}{\Vert {\mathbf {r}}\Vert ^{n+3}({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{\frac{1}{2}}}\left\{ \vphantom{\frac{(n+3)\left( \hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}\right) }{\Vert {\mathbf {r}}\Vert ^{2}}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right)} \left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) \hat{{\mathbf {e}}}_{3}+\dots \right. \\&\left. \left. \left. \Bigg [m(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){-\frac{\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {A}}_{3}}+\dots \right. \right. \right. \\ {}&\left. \left. \left. \Big [-\frac{(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}})(n+3)\text {tr}({\mathbf {J}})}{4\Vert {\mathbf {r}}\Vert ^{2}}-\dots \right. \right. \right. \\ {}&\left. \left. \left. \frac{\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}}{4{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\left( \text {tr}({\mathbf {J}})\text {tr}({\mathbf {A}}_{3})-2\varvec{\sigma }^{T}\left( {\mathbf {A}}_{3}\odot {\mathbf {J}}\right) \varvec{\sigma }\right) +\dots \right. \right. \right. \\ {}&\left. \left. \left. \left( \frac{(n+3)(n+5)(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}^{T}}{2\Vert {\mathbf {r}}\Vert ^{4}}-\dots \right. \right. \right. \right. \\ {}&\left. \left. \left. \left. \frac{(n+3)\hat{{\mathbf {e}}}_{3}^{T}}{\Vert {\mathbf {r}}\Vert ^{2}}\right) \left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {r}}_{{\mathcal {B}}}+\left( \frac{(n+3)(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}){\mathbf {r}}_{{\mathcal {B}}}^{T}}{\Vert {\mathbf {r}}\Vert ^{2}({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})}+\dots \right. \right. \right. \right. \\ {}&\left. \left. \left. \frac{3}{2}\frac{(\hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}})}{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{2}}{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}-\frac{\hat{{\mathbf {e}}}_{3}^{T}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\right) \left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}\right. \Big ]{\mathbf {I}}_3-\dots \right. \\&\left. \frac{(n+3)\left( \hat{{\mathbf {e}}}_{3}^{T}{\mathbf {r}}_{{\mathcal {B}}}\right) }{\Vert {\mathbf {r}}\Vert ^{2}}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) \Bigg ]{\mathbf {r}}_{{\mathcal {B}}}\right\} \end{aligned} \end{aligned}$$
(C4)

1.2 C.2 Gravity Gradient Torque

The derivations for the term \({\mathbf {L}}_{gA1}\) can be found in [27] and [1], so they are omitted here.

1.2.1 C.2.1 Term \({\mathbf {L}}_{gA2}\)

Term \({\mathbf {L}}_{gA2}\):

$$\begin{aligned} {\mathbf {L}}_{gA2}=-\mu \int _{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times } {\mathbf {r}}_{dm} \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{A}}{\left( {\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm}\right) ^\frac{n+3}{2}}dm \end{aligned}$$

If the order of the cross product is reversed, the series and integration operators switched, the binomial expansion in Eq. (B1) is applied, and the products distributed, the expression becomes

$$\begin{aligned} {\mathbf {L}}_{gA2}=-\mu \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{A}{\mathbf {r}}_{{\mathcal {B}}}^{\times }\left( n+3\right) }{\Vert {\mathbf {r}}\Vert ^{n+5}}\left[ \int _{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} dm\right] {\mathbf {r}}_{{\mathcal {B}}} \end{aligned}$$

Evaluating the integrals reveals the final from of \({\mathbf {L}}_{gA2}\) in Eq. (18b).

$$\begin{aligned} {\mathbf {L}}_{gA2}=\mu {\mathbf {r}}_{{\mathcal {B}}}^{\times }\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{A}\left( n+3\right) }{\Vert {\mathbf {r}}\Vert ^{n+5}}{\mathbf {J}} {\mathbf {r}}_{{\mathcal {B}}} \end{aligned}$$

1.2.2 C.2.2 Term \({\mathbf {L}}_{gB}\)

Term \({\mathbf {L}}_{gB}\):

$$\begin{aligned} {\mathbf {L}}_{gB}=\mu \int _{{\mathcal {B}}}\frac{\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times } \hat{{\mathbf {e}}}_{3}^{\times }{\mathbf {r}}_{dm}}{\left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) } \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{B}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^\frac{n+1}{2}} dm \end{aligned}$$

Reversing the order of the second cross product (i.e. \(\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times }\hat{{\mathbf {e}}}_{3}^{\times }{\mathbf {r}}_{dm}=-\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times }{\mathbf {r}}_{dm}^{\times }\hat{{\mathbf {e}}}_{3}\)), implementing the product of the binomial expansions (up to first order in \(\delta {\mathbf {r}}_{{\mathcal {B}}}\)) given in Eqs. (B1) and (B2), substituting for \({\mathbf {r}}_{dm}\), distributing, and applying the property \(\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times }{\mathbf {r}}_{dm}^{\times }\hat{{\mathbf {e}}}_{3}={\mathbf {r}}_{dm}\left( \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}\hat{{\mathbf {e}}}_{3}\right) -\hat{{\mathbf {e}}}_{3}\left( \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {r}}_{dm}\right)\) yields

$$\begin{aligned} \begin{aligned} {\mathbf {L}}_{gB}=&\frac{\mu }{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{B}}{\Vert {\mathbf {r}}\Vert ^{n+1}}\Bigg [\int _{{\mathcal {B}}} -\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}\hat{{\mathbf {e}}}_{3}+\hat{{\mathbf {e}}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T} \delta {\mathbf {r}}_{{\mathcal {B}}}+\dots \\ {}&\left( \frac{\left( n+1\right) {\mathbf {r}}_{{\mathcal {B}}}^{T}\delta {\mathbf {r}}_{{\mathcal {B}}}}{\Vert {\mathbf {r}}\Vert ^{2}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}+\frac{2{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}\delta {\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}\right) \left( \hat{{\mathbf {e}}}_{3}{\mathbf {r}}_{{\mathcal {B}}}-{\mathbf {r}}_{{\mathcal {B}}}\hat{{\mathbf {e}}}_{3}\right) dm\Bigg ] \end{aligned} \end{aligned}$$

Evaluating the common integrals leads to the final expression for \({\mathbf {L}}_{gB}\) in Eq. (18c).

$$\begin{aligned} \begin{aligned} {\mathbf {L}}_{gB}=&\frac{\mu }{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{B}}{\Vert {\mathbf {r}}\Vert ^{n+1}}\Bigg [{\mathbf {J}}\hat{{\mathbf {e}}}_{3}+\dots \\ {}&\left( \frac{\left( n+1\right) {\mathbf {r}}_{{\mathcal {B}}}^{T}}{\Vert {\mathbf {r}}\Vert ^{2}}+\frac{2{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\right) \left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) \left( \hat{{\mathbf {e}}}_{3}{\mathbf {r}}_{{\mathcal {B}}}-{\mathbf {r}}_{{\mathcal {B}}}\hat{{\mathbf {e}}}_{3}\right) \Bigg ] \end{aligned} \end{aligned}$$

1.2.3 C.2.3 Term \({\mathbf {L}}_{gC1}\)

Term \({\mathbf {L}}_{gC1}\):

$$\begin{aligned} {\mathbf {L}}_{gC1}=\mu \int _{{\mathcal {B}}} \frac{\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times } \left( {\mathbf {r}}_{dm}^{T}{\mathbf {r}}_{dm}\hat{{\mathbf {e}}}_{3}\right) }{\left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) ^{\frac{1}{2}}}\left[ \sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{C}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^{\frac{n+3}{2}}}\right] dm \end{aligned}$$

Switching the integral and series terms, applying the product of the binomial expansions (up to first order in \(\delta {\mathbf {r}}_{{\mathcal {B}}}\)) given in Eqs. (B1) and (B2), changing the order of the cross product, substituting for \({\mathbf {r}}_{dm}\), distributing, and rearranging yields

$$\begin{aligned} \begin{aligned} {\mathbf {L}}_{gC1}=&-\frac{\mu \hat{{\mathbf {e}}}_{3}^{\times }}{\left( {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}\right) ^{\frac{1}{2}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{C}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\int _{{\mathcal {B}}}\Bigg [2\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {r}}_{{\mathcal {B}}}-(n+3)\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {r}}_{{\mathcal {B}}} -\dots \\ {}&\frac{\Vert {\mathbf {r}}\Vert ^{2} \delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3} {\mathbf {r}}_{{\mathcal {B}}}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\Bigg ] dm \end{aligned} \end{aligned}$$

Evaluating the integrals gives the final form seen in Eq. (18d).

$$\begin{aligned} \begin{aligned} {\mathbf {L}}_{gC1}=&\frac{\mu \hat{{\mathbf {e}}}_{3}^{\times }}{\left( {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}\right) ^{\frac{1}{2}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{C}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\Bigg [\left( n+1\right) \left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) +\dots \\ {}&\frac{\Vert {\mathbf {r}}\Vert ^{2}}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) {\mathbf {A}}_{3}\Bigg ]{\mathbf {r}}_{{\mathcal {B}}} \end{aligned} \end{aligned}$$
(C5)

1.2.4 C.2.4 Term \({\mathbf {L}}_{gC2}\)

Term \({\mathbf {L}}_{gC2}\):

$$\begin{aligned} \mathbf{L}_{gC2}=-\mu \int _{{\mathcal {B}}} \frac{\delta {\mathbf {r}}_{{\mathcal {B}}}^{\times }\left( {\mathbf {r}}_{dm}^{T}\hat{{\mathbf {e}}}_{3}{\mathbf {r}}_{dm}\right) }{\left( {\mathbf {r}}_{dm}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{dm}\right) ^{\frac{1}{2}}}\left( \sum _{n=1}^{\infty }\sum _{p=0}^{n} \frac{Q_{n,p}^{C}}{({\mathbf {r}}_{dm}^{T} {\mathbf {r}}_{dm})^\frac{n+3}{2}}\right) dm \end{aligned}$$

Switching the integral and series terms, applying the product of the binomial expansions (up to first order in \(\delta {\mathbf {r}}_{{\mathcal {B}}}\)) given in Eqs. (B1) and (B2), changing the order of the cross product, substituting for \({\mathbf {r}}_{dm}\), distributing, and rearranging yields

$$\begin{aligned} \begin{aligned} {\mathbf {L}}_{gC2}=&\frac{\mu {\mathbf {r}}_{{\mathcal {B}}}^{\times }}{\left( {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}\right) ^{\frac{1}{2}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n} \frac{Q_{n,p}^{C}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\int _{{\mathcal {B}}}\Bigg [\delta {\mathbf {r}}_{{\mathcal {B}}}\delta {\mathbf {r}}_{{\mathcal {B}}}^{T}\hat{{\mathbf {e}}}_{3}-\dots \\ {}&\frac{\left( n+3\right) \left( {\mathbf {r}}_{{\mathcal {B}}}^{T}\hat{{\mathbf {e}}}_{3}\right) }{\Vert {\mathbf {r}}\Vert ^{2}}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T} {\mathbf {r}}_{{\mathcal {B}}}-\frac{\left( {\mathbf {r}}_{{\mathcal {B}}}^{T}\hat{{\mathbf {e}}}_{3}\right) }{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}\delta {\mathbf {r}}_{{\mathcal {B}}} \delta {\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}} \Bigg ]dm \end{aligned} \end{aligned}$$

Evaluating the integrals gives the final form of Eq. (18e).

$$\begin{aligned} \begin{aligned} {\mathbf {L}}_{gC2}=&\frac{\mu {\mathbf {r}}_{{\mathcal {B}}}^{\times }}{({\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}})^{\frac{1}{2}}}\sum _{n=1}^{\infty }\sum _{p=0}^{n}\frac{Q_{n,p}^{C}}{\Vert {\mathbf {r}}\Vert ^{n+3}}\Bigg [\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) \hat{{\mathbf {e}}}_{3}-\dots \\ {}&{\mathbf {r}}_{{\mathcal {B}}}^{T}\hat{{\mathbf {e}}}_{3}\left( \frac{1}{2}\text {tr}({\mathbf {J}}){\mathbf {I}}_3-{\mathbf {J}}\right) \left( \frac{(n+3)}{\Vert {\mathbf {r}}\Vert ^{2}}{\mathbf {I}}_3+\frac{1}{{\mathbf {r}}_{{\mathcal {B}}}^{T}{\mathbf {A}}_{3}{\mathbf {r}}_{{\mathcal {B}}}}{\mathbf {A}}_{3}\right) {\mathbf {r}}_{{\mathcal {B}}}\Bigg ] \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCann, B., Nazari, M. Analysis of the Impact of Orbit-Attitude Coupling at Higher-Degree Potential Models on Spacecraft Dynamics. J Astronaut Sci 69, 955–987 (2022). https://doi.org/10.1007/s40295-022-00335-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00335-x

Keywords

Navigation