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Abstract
The three Laser Interferometer Space Antenna (LISA) spacecraft are going to be placed
in a triangular formation in an Earth-trailing or Earth-leading orbit. They will be
launched together on a single rocket and transferred to that science orbit using Solar
Electric Propulsion. Since the transfer Δv depends on the chosen science orbit, both
transfer and science orbit have been optimised together. For a thrust level of 90 mN, an
allocation of 1092 m/s per spacecraft is sufficient for an all-year launch in 2034. For
every launch month a dedicated science orbit is designed with a corner angle variation
of 60° ± 1.0° and an arm length rate of maximum 10 m/s. Moreover, a detailed
navigation analysis of the science orbit insertion and the impact on insertion errors
on the constellation stability has been conducted. The analysis shows that Range/
Doppler measurements together with a series of correction manoeuvres at the beginning
of the science orbit phase can reduce insertion dispersions to a level where corner angle
variations remain at about 60° ± 1.1° at 99% C.L. However, the situation can become
significantly worse if the self-gravity accelerations acting during the science orbit phase
are not sufficiently characterised prior to science orbit insertion.

Keywords Formation flying . Laser Interferometer space antenna . Trajectory design .

Trajectory optimisation . Deep space navigation

Introduction

The LISA mission has been selected as the L3 cornerstone mission by the European
Space Agency (ESA) in June 2017 [1, 2]. It will be the first space-based Gravitational
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Wave detector and will explore a new frequency band and therefore be sensitive to
previously undiscovered sources of Gravitational Waves [3]. LISA will be based on
laser interferometry between free-flying test masses inside drag-free spacecraft. In order
to realise that concept, the three LISA spacecraft will be placed into a heliocentric
Earth-trailing or Earth-leading orbit. Together they will form the corners of a nearly
equilateral triangular formation with 2.5 × 106 km arm length [4]: the so-called cart-
wheel formation. Each spacecraft is forced to follow its two test masses along each of
the two laser beam axes they define. The orbits have to be selected such that the
stability of the constellation for the planned mission lifetime of 10 years (4y nominal +
6y extension) is guaranteed. The main preliminary stability requirements are currently.

1. The corner angle variations during 10 years shall not exceed 60° ± 1.0°. This
constraint comes mainly from the limitation of the optical assembly tracking
mechanism (OATM) which ensures that the laser beams point into the correct
direction at all times.

2. The relative velocity (arm length rate) shall not exceed 10 m/s during 10 years
mission duration. This is due to the bandwidth limitation of the interferometric beat
note detection of the system [5].

3. The arm length shall be constrained within 2.5 × 106 km ± 2.5 × 105 km during
10 years. In practice this constraint is never limiting, however.

These stability requirements can be achieved by maximising the distance of the
formation to Earth, and thus minimising its gravitational impact on the formation. On
the other hand, communication requirements place a limit on the maximum Earth
distance, which is currently assumed to be 65 × 106 km. This value, however,
depends on the design of the spacecraft communications system.

It is worth noting that the stated requirement values on corner angle variations and
arm length rate are preliminary and are subject to change as the LISA study progresses.
The approach taken in this paper is to use the values of 60° ± 1.0° and 10 m/s for the
nominal mission design. Insertion dispersions and other random perturbations, howev-
er, may violate these requirements. The next iteration on system level may either relax
the requirements on corner angle variations and arm length rate to fit the existing
trajectory design including dispersions, or the trajectory has to be re-designed to
accommodate the dispersions in the current requirement.

LISA is going to be launched on a single Ariane 64 rocket and transferred to its
operational orbit using Solar Electric Propulsion (SEP). SEP has the advantage of a
more efficient use of propellant mass and thus a higher dry mass fraction compared to
chemical propulsion. Previous trajectory analyses for LISA [6–12] have mainly fo-
cussed on the optimal cartwheel orbit design and less on the transfer. Moreover, the
interdependency between the transfer and the optimal cartwheel orbit has not been
treated before. The present paper is going to discuss the cartwheel orbit design at
different levels of accuracy: Starting from a review of analytical models to finally
presenting fully numerical results for both optimal transfer and cartwheel orbits.

The question of stability of the cartwheel orbit under insertion uncertainties has not
been analysed before to the authors’ knowledge. This is going to be addressed in depth
in the second part of the present paper.
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The document is structured as follows: after a summary of the most important analytical
cartwheel models and results in The Cartwheel Formation - Analytic Models, a fully
numerical simulation of the optimal cartwheel orbit is presented in The Cartwheel Forma-
tion - Fully Numerical Model. Solar Electric Propulsion Transfer will treat the optimisation
of the SEP transfer and the interdependency between the transfer and the cartwheel orbit
design. A full navigation analysis taking into account all major sources of uncertainty will
be presented in Navigation and Insertion Accuracy. Also, the impact of the computed
cartwheel insertion accuracy on the stability of the orbit during 10 years of science phase
will be addressed there. Finally, Conclusions will summarize the main conclusions.

The Cartwheel Formation - Analytic Models

In the following a series of analytic models of the cartwheel formation with increasing
level of fidelity will be discussed.

Linear Two-Body Model

In the two-body problem, the linearised relative motion around a centre on a circular
orbit is described by the Clohessy-Wiltshire equations [13]. Imposing no along-track
drift, these equations have the solution [14, 15]:

x tð Þ ¼ ϱxsin
2π
T

t þ αx

� �
; ð1Þ

y tð Þ ¼ ϱy þ 2ϱxcos
2π
T

t þ αx

� �
; ð2Þ

z tð Þ ¼ ϱzsin
2π
T

t þ αz

� �
; ð3Þ

where x(t), y(t), z(t) are the components of the local orbital frame of the virtual
formation centre as a function of time:

– x= radial (oriented positively from central body to spacecraft)
– z= cross-track (along spacecraft angular momentum vector)
– y= completing the right-handed frame (along-track for a circular spacecraft orbit)

This is illustrated in Fig. 1. T is the orbital period of the circular formation centre orbit
and αx, αz, ϱx and ϱz are integration constants. The relative trajectory described by eqs.
1-3 is an ellipse in the x − y plane and a closed Lissajous figure in 3D since the phases

αx and αz are not equal in general. By additionally imposing αx =αz ≡α0 and ϱz ¼ �ffiffiffi
3

p
ϱx the relative trajectory becomes a circle around the formation centre which is

inclined by 60° w.r.t. the orbital plane of the formation centre. Obviously, there are two
solutions depending on the sign of ϱz. These will be called the clockwise (+) and
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counter-clockwise (−) solutions in this document describing the two possible orienta-
tions of the cartwheel triangle.1

By placing three spacecraft on this circle with a relative phase of 120°, an equilateral

triangle formation with arm length d ¼ 2
ffiffiffi
3

p
ϱx is achieved. Using the above equations,

the heliocentric orbital elements of the three spacecraftcan be derived. They are
summarized in Table 1.

The reference frame of these orbital elements is a heliocentric, ecliptic frame, frozen
at the initial time, t = 0, and with the axes defined as follows:

– x= from Sun to formation centre (clockwise solution) or from formation centre to
Sun (counter-clockwise solution)

– z= along the angular momentum vector of the formation centre
– y= completing the right-handed frame

Note that since the axes are frozen at t = 0, it is an inertial frame.
In order to fix the relative position of the LISA formation with respect to Earth, the

Mean Initial Displacement Angle (MIDA) needs to be chosen as well (cf. section 2.3
for details) as a free parameter to fully define the system. For a model with a circular
Earth orbit, the MIDA is identical to the instantaneous initial displacement angle. The
difference in the case of an elliptic Earth orbit will be clarified in section 2.3. The
choice of MIDA defines the rotation of the reference frame above with respect to the

1 The former solutions (+) appear to be rotating clockwise as observed from the Sun, while the latter (−) have a
counter-clockwise motion. An alternative nomenclature is “outward ascending” for the (+) sign and “outward
descending” for the (−) sign. This nomenclature refers to the direction of the z-motion of the spacecraft when it
is on its way outward.

Fig. 1 Illustration of the local orbital frame
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standard ecliptic reference frame at t = 0. Overall, there are four free continuous and one
discrete free parameter in the system:

1. arm length, d
2. semi-major axis, a
3. right ascension of the ascending node (RAAN) of LISA1, Ω1

4. argument of perihelion (discrete) ω
5. MIDA, θ0

For LISA the semi-major axis would, however, be chosen to be equal to the one of
Earth (at least in the linear two-body model) in order to avoid a relative drift.

Keplerian Two-Body Model

The model described in section 2.1 can be improved by taking into account the non-linear
effects of the Keplerian motion. Still no Earth perturbations are considered here. This is
described in reference [8]. The cited reference also shows that in this approximation the
flexing of LISA’s arms can be minimized by deviating slightly from the 60° triangle
inclination. This deviation is parametrised by the angle, δ. However, it is convenient to
instead use the dimension less parameter δ1 defined by δ=αδ1, withα = d/2a. The optimum
value is shown to be δ1 = 5/8 (this is only true in the Keplerian model). The orbital
parameters can be computed from the formulas given in Table 2 where the eccentric
anomaly, Ek and the mean anomaly,Mk are related by Kepler’s equation:

Ek þ esin Ek ¼ Mk ¼ π−σk tð Þ; k ¼ 1; 2; 3: ð4Þ

And the three clocking angles are defined as:

σk tð Þ ¼ σ0 þ k−1ð Þ 2π
3
−

ffiffiffiffiffiffiffiffiffi
μSun

a3

r
t; k ¼ 1; 2; 3; ð5Þ

where σ0 is called the initial clocking angle.

Table 1 Heliocentric, ecliptic orbital elements for LISA in the linear model

Element LISA1 LISA2 LISA3

Semi-major axis a = free a a

Eccentricity e=ϱx/a e e

Inclination i ¼ ffiffiffi
3

p
ϱx=a i i

RAAN Ω1=free Ω2 ¼ Ω1 þ 2π
3 Ω3 ¼ Ω1− 2π

3

Argument of Perihelion
ω ¼ π=2 counter−clockwiseð Þ

−π=2 clockwiseð Þ
�

ω ω

Mean Anomaly M1 t ¼ 0ð Þ ¼ π
2 −Ω1 M2 ¼ M1− 2π

3 M3 ¼ M1 þ 2π
3
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The reference frame of the orbital elements in Table 2 is the same as for Table 1 and
defined in section 2.1. Overall, there are now five free continuous and one discrete free
parameter in the system:

1. arm length, d
2. semi-major axis, a
3. inclination parameter, δ1
4. initial clocking angle, σ0 = σ1(t = 0)
5. argument of perihelion (discrete) ω
6. MIDA, θ0

These (except ω) are illustrated in Fig. 2.
While the corner angles in the case of the linear model described in section 2.1 are

constant at 60°, the non-linear effects of the Keplerian model introduce a “breathing” of
the triangle. The resulting evolution of the corner angles, arm length rate and arm
length is shown in Fig. 3 for a = 1 AU, d = 2.5 · 106 km and δ1 = 5/8.

Although this model is lacking the effect of the Earth gravity perturbation, which is
significant for MIDAs close to 20°, it is still useful as an initial guess for an optimisation
using a full numerical model. Moreover, the Keplerian model can be used for the arrival

Table 2 Heliocentric, ecliptic orbital elements for LISA in the Keplerian model

Element LISA1 LISA2 LISA3

Semi-major axis a = free a a

Eccentricity e ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

3α
2 þ 4ffiffi

3
p αcos π

3 þ δ
� �q

e e

Inclination
tan i ¼ 2ffiffi

3
p αsin π

3þδð Þ
1þ 2ffiffi

3
p αcos π

3þδð Þ
h i i i

RAAN Ω1=σ0−π/2 Ω2=σ0+π/6 Ω3=σ0+5π/6

Argument of Perihelion
ω ¼ π=2 counter−clockwiseð Þ

−π=2 clockwiseð Þ
�

ω ω

Mean Anomaly M1(t=0)=π−σ0 M2 ¼ M1− 2π
3 M3 ¼ M1 þ 2π

3

Fig. 2 Illustration of cartwheel parameters in the Keplerian model
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state during the transfer optimisation. This allows for an easy exploration of a large
range of orbit options without previous computationally heavy optimisation of the
science orbit.

Mean Initial Displacement Angle (MIDA)

The MIDA, θ0 defines the location of the centre of the cartwheel with respect to the
Earth (see Fig. 2). A negative MIDA denotes a trailing configuration, a positive MIDA
a leading configuration. The larger the MIDA magnitude, the lesser the gravitational
perturbations of the cartwheel, but the larger the distance to Earth and thus the impact

Fig. 3 Evolution of cartwheel corner angles (top), arm length rate (middle) and arm length (bottom) for the
Keplerian cartwheel model for LISA 1 (blue), LISA 2 (red) and LISA 3 (green)
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on the communications subsystem. Conversely, the smaller the MIDA, the lower the
Δv cost of transfer. A larger MIDA generally also means a higher transfer Δv, due to
the larger difference in semi-major axis of the transfer orbit, if the transfer duration is
kept fixed.

During the science phase the centre of the LISA formation centre moves on a (very
close to) circular orbit around the Sun, while the Earth orbit is eccentric. This leads to a
natural variation of the instantaneous Earth displacement angle of about ±2° over one
year. This fact makes the instantaneous displacement angle an inconvenient design
parameter when different initial times are compared. In order to compare different
launch dates over one year, it is therefore more convenient to use the MIDA, θ0. The
angle averages out the Earth eccentricity by measuring the displacement angle w.r.t. the
“Mean Earth”, a virtual body with the same orbital period as the Earth, but a circular
orbit around the Sun (see also ref. [12]). The orbital elements of the Mean Earth are
summarised in Table 3.

Earth Perturbations and Choice of Initial Semi-Major Axis

The Keplerian model and cartwheel state definition as described in section 2.2
is suitable for use in transfer optimization and as initial guess for the science
orbit optimization. The main perturbation that significantly impacts the LISA
science orbit evolution is the Earth’s gravity. It is not possible to analytically
solve the model when the Earth’s gravity is included. However, there are a few
useful analytical formulas that can be derived to aid the orbit design. These are
described in this section.

The main effect of the Earth’s gravity (besides perturbing the triangular formation) is
a (near) along-track acceleration on the LISA spacecraft which causes a drift in the
LISA semi-major axis. The relative difference in semi-major axis to the one of
the Earth orbit leads to a drift of the Earth distance. This will be analysed in the
following. The rate of change of the semi-major axis is described by Gauss’ variational
eqs. [14]:

da
dt

¼ 2
dRa2esinνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μSuna 1−e2ð Þp þ 2

dTa3 1−e2ð Þ
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μSuna 1−e2ð Þp : ð6Þ

Where dR and dT are the radial and transversal components of the acceleration vector.
Circular orbits are assumed here. θ is assumed small enough such that the radial
component can be neglected. The transversal/along-track acceleration from the Earth’s
Table 3 Orbital elements of the Mean Earth from True Earth

Element

Semi-major axis amean=atrue
Eccentricity emean=0.0

Inclination imean= itrue
RAAN Ωmean=Ωtrue

Argument of Perihelion ωmean=ωtrue

True Anomaly νmean=Mtrue
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gravity perturbation is given by:

dT ¼ μEarth

r2Earth
cos θ=2ð Þ

¼ μEarthcos θ=2ð Þ
4a2sin2 θ=2ð Þ

ð7Þ

Where rEarth is the Earth distance from the constellation centre. The drift rate of the
mean semi-major axis from eq. 6 thus becomes:

da
dt

¼ � μEarthcos θ=2ð Þ
2
ffiffiffiffiffiffiffiffiffiffiffi
aμSun

p sin2 θ=2ð Þ: ð8Þ

The + sign shall be used for the trailing configuration and the – sign for the leading
configuration. Evaluating the equation at a = 1AU and mean Earth displacement angle
θ = θ0 gives sufficiently accurate results if θ is not too far from 20° as a-posteriori
verification shows (cf. Figure 4). In that case, θ is still small enough to justify the
neglect of radial acceleration component. On the other hand, the Earth’s acceleration is
still low enough such that the the evolution of the mean semi-major axis is strictly

linear, i.e. a tð Þ ¼ a0 þ ȧt, with ȧ ¼ const. The evolution of the mean anomaly is
computed by integrating the equation of the mean motion:

M tð Þ ¼ M0 þ
Z t

0

ffiffiffiffiffiffiffiffiffiffi
μSun

a tð Þ3
r

dt

¼ ffiffiffiffiffiffiffiffiffi
μSun

p 2

ȧ
ffiffiffiffiffi
a0

p −
2

ȧ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ ȧ

p
t

 ! ; ð9Þ

Subtracting this from the linear time-evolution of the Earth’s mean anomaly, yields
the time evolution of the mean Earth displacement angle, θ:

θ tð Þ ¼ MEarth tð Þ−M tð Þ
¼ θ0 þ ffiffiffiffiffiffiffiffiffi

μSun
p 2

ȧ
ffiffiffiffiffi
a0

p −
2

ȧ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 þ ȧ

p
t
−

t

ȧ
ffiffiffiffiffiffiffiffiffi
AU3

p
 !

; ð10Þ

with ȧ given by eq. 8. The mean Earth distance can be then computed from the
geometric relation

rEarth tð Þ ¼ 2asin θ tð Þ=2ð Þ ð11Þ

The cases where the time evolution of rEarth, has a turning point are the most interesting
ones, because they lead to the least difference between the minimum and maximum
Earth distance during a given mission time: e.g. for a trailing configuration the initial
semi-major axis is chosen slightly smaller than 1 AU causing an initial decrease of
rEarth. After the turning point is reached at 1 AU semi-major axis, the Earth distance
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Fig. 4 Evolution of mean semi-major axis, a (left), mean Earth displacement angle, θ (middle) and mean
Earth range, rEarth (right), according to approximate equations of section 2.4 (blue) for four different MIDA
values: −20∘, −16∘, +16∘, +20∘ (from top to bottom). The green lines show the comparison with a numerical
propagation. The dashed green lines show the true Earth range for the plots on the right
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increases again and reaches its maximum value at the end of the mission. In order to
write eq. 10 in a form that illustrates this insight clearly, a Taylor expansion can be
performed in both the semi-major axis change fraction, a

:
t

a0
, and the deviation of the

initial semi-major axis from 1 AU: ϵ=1 − a0/AU

θ tð Þ ¼ θ0 þ 2

3

ffiffiffiffiffiffiffiffiffiffi
μSun

AU3

r
ϵt−

3

4

ffiffiffiffiffiffiffiffiffiffi
μSun

AU5

r
a
�
t2: ð12Þ

In this form it is clear that the evolution of the mean Earth displacement angle, θ, as a
function of time is a parabola. The θ value reached after the science phase duration,Δt,
is thus basically determined by the choice of the initial semi-major axis, a0. Conversely,
this allows computing the initial semi-major axis, a0, from the maximum allowed mean
Earth displacement angle, θ(Δt), which occurs at the end of mission, by solving eq. 12
for a0:

a0 ¼ AU 1−
2

3

ffiffiffiffiffiffiffiffiffiffi
AU3

μSun

s
θ Δtð Þ−θ0

Δt
−
a: Δt
2AU

0
@

1
A: ð13Þ

θ(Δt) is computed from the maximum allowed mean Earth distance. Since for LISA the
constraint on the maximum Earth distance is typically on the true Earth distance and not
the mean one, the constant maximum difference between the Earth’s mean and true
anomaly of almost 1° has to be taken into account when computing θ(Δt). With some
margin, a value of 1.2° has been found to work well for the considered range of MIDAs.

θ Δtð Þ ¼ � 2sin2
rmax

2AU
−1:2°

� 	
; ð14Þ

where rmax is the maximum allowed true Earth distance. A graphical representation of
eqs. 6, 10 and 11 for a number of different MIDA values and rmax = 65 · 106km is
shown in Fig. 4. The parabolic shape of the mean Earth displacement angle, θ, and
mean Earth range evolution is clearly visible and the time where the turning point
occurs depends on the choice of the MIDA. The maximum mean Earth range is always
reached at the end of mission. The comparison with an exact numerical propagation of
the LISA formation centre is also shown. For the numerical propagation the same final
θ value is imposed as for the analytic solution, eq. 14. Note that even for the numeric
solution the maximum true Earth distance is not exactly 65 · 106km. This is because the
constraint is put on the mean Earth distance in this section whereas the actual constraint
is on the true Earth distance. This discrepancy can be refined during the actual numeric
science orbit optimisation.

Equation 13 is particularly useful as it provides an initial guess for the initial
semi-major axis of the cartwheel orbit and can also be used in conjunction with
the Keplerian model from section 2.2 for defining the target orbit in the transfer
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optimization. For the sake of reference, Table 4 shows the initial semi-major axis
values for a number of MIDA values and the comparison with numerically
computed (exact) values. Note that for MIDA values below ±11°, the constraint
on the maximum Earth distance cannot be met any more because initial Earth
perturbation is too strong.

The Earth’s gravity also has a strong effect on the breathing of the cartwheel and
significantly alters the evolution shown for the Keplerian model in Fig. 3. This
breathing can only be controlled by a careful adjustment of the initial conditions which
will be described in the following section.

The Cartwheel Formation - Fully Numerical Model

In order to design a realistic cartwheel trajectory, a fully numerical model is
required. The dynamical model used here takes into account the point mass gravity
of the Sun and all relevant planetary bodies (Mercury, Venus, Earth, Moon, Mars,
Jupiter, Saturn). Solar radiation pressure (SRP) and other non-gravitational accel-
erations are not taken into account as they will be compensated by LISA’s Drag
Free and Attitude Control System (DFACS) [16–18]. This is because the spacecraft
trajectories follow the trajectories of the internal test masses which are influenced
by gravitational forces only. The effect of the self-gravity acceleration will be
discussed later in section 3.2.

Optimisation for 10 Years of Science Phase

The six-parameter Keplerian cartwheel model described in section 2.2 serves as an
initial guess for the optimisation. All these parameters, except for the clocking angle,

Table 4 Optimal values for initial mean semi-major axis according to eq. 13 and numerically computed value
as a function of MIDA, θ0. The maximum true Earth distance assumed to compute these values is rmax = 65 ·
106km

MIDA θ0 [deg] Optimal initial mean s.m.a.,
a0 (analytical) [km]

Optimal initial s.m.a.,
a0 (numerical) [km]

Difference [km]

−21.5 149,460,810.7 149,465,317.9 −4507.2
−20.0 149,471,018.3 149,480,920.1 −9901.8
−18.0 149,471,856.4 149,491,557.8 −19,701.4
−16.0 149,451,018.2 149,483,335.6 −32,317.4
−14.0 149,395,265.5 149,437,283.5 −42,018.0
−12.0 149,279,463.8 149,237,493.4 41,970.4

+12.0 149,916,277.6 149,983,666.7 −67,389.1
+14.0 149,800,475.9 149,765,150.1 35,325.8

+16.0 149,744,723.2 149,716,965.5 27,757.7

+18.0 149,723,885.0 149,707,659.9 16,225.1

+20.0 149,724,723.1 149,717,633.0 7090.1

+21.5 149,734,930.7 149,732,902.6 2028.1
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σ0, are considered “design parameters” here. The assumptions for the values of theses
parameters used in this section are shown in Table 5. Note that the scientific require-
ments allow for a range of MIDAs (including Earth-leading configuration) and also for
the counter-clockwise option. These options have been analysed internally at ESA, but
will not be presented in this paper for brevity. The clocking angle, σ0, is considered
fixed in the current section as well, but will be used as a free parameter during the
transfer optimisation described in section 4.2. It is assumed (and verified a-posteriori)
that the success of the cartwheel optimisation does not significantly depend on the
initial guess of σ0.

The objective of the cartwheel optimisation is to adjust the initial conditions such
that the breathing of the operational triangle is controlled within the allowed parameter
ranges over 10 years mission time. The optimisation is carried out by allowing all 18
parameters of the initial cartwheel state (3 × 6 Keplerian state parameters) to be adjusted
by the optimiser within a user-defined narrow band around the first guess. The initial
epoch is fixed and not optimised. There are various ways to formulate the problem.
Here the approach of using a constant cost function and adding the stability require-
ments as constraints has been used. Thus, it is a pure feasibility problem. The assumed
constraint definitions are summarised in Table 6.

The propagation of the initial state was carried out using a Runge-Kutta (8)7 dense
stepper [19, 20]. It also propagates the state transition matrix which is used together
with an in-house automatic differentiation software to obtain analytical partials for the
optimisation. For the actual optimisation SNOPT [21] is called via the optimisation
framework PyGMO [22] from Python. The minimum and maximum values over the
mission time used for the constraints evaluation (Table 6) are obtained from sampling
the trajectory with a step size of 10 days.

The resulting evolution of the cartwheel geometry is shown in Fig. 5. It can be seen
that the corner angles and arm length rates can be constrained within the required
windows over the considered mission time of 10 years. The evolution of the Earth
range shows a characteristic profile where the maximum distance of 65 · 106 km to the
formation centre is reached at the end of mission. It is a result of the initial semi-major
axis choice (cf. section 2.4) which leads to an initial drift towards Earth followed by a
turning point. Note that the initial semi-major axis determines the Earth distance profile
and thus the overall impact of the Earth perturbation on the formation stability.
Relaxing the maximum allowed Earth distance decreases the Earth perturbation and
thus allows choosing more narrow windows for the corner angles and arm length rates.

Table 5 Assumptions for cartwheel design parameters serving as initial guess

Parameter Value

Arm length, d 2.5 ·106 km

Semi-major axis, a 149480920.1 km (from Table 4)

Inclination parameter, δ1 5/8

Argument of Perihelion, ω −π/2
MIDA, θ0 −20°
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Table 6 Constraints in the cartwheel optimisation problem

Constraint Allowed range

Corner angles [59.0°,61.0°]

Arm lengths [2.25 Mkm - 2.75 Mkm]

Arm length rates [−10 m/s,10 m/s]

MIDA [19.9°,20.1°]

Earth distance of cartwheel centre <65·106 km

Fig. 5 Evolution of the cartwheel formation over 10 years in a fully numerical model
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E.g. by increasing the maximum Earth distance constraint from 65 · 106 km to 75 ·
106 km it is possible to reduce the corner angle variations from ±1.0° to ±0.75°.

Figure 6 shows the evolution of the Keplerian elements during the 10 years science
phase. The drift of the semi-major axes due to the Earth’s influence is apparent.
Moreover, the initial values of the other elements are seen to be close to the initial
guess determined by the Keplerian model (cf. section 2.2), but drifting away due to the
third body perturbations.

The initial Keplerian parameters of the cartwheel orbit shown in Figs. 5 and 6 are
given in Table 7 for reference.

Naturally, the chosen MIDA also has a strong impact on the obtainable corner angle
variations, because it determines the initial strength of the Earth’s gravitational pertur-
bation. A parametric analysis on different MIDA values is shown in Fig. 7. For MIDA
values, ∣θ0 ∣ < 14° it was very difficult to achieve convergence at all therefore the
solutions don’t appear in the plot.

Spacecraft Self-Gravity

The analysis in the previous section neglected one important dynamical effect, namely
the spacecraft self-gravity. This is an effective acceleration component acting on the
spacecraft resulting from the DFACS following the motion of the two internal test
masses which are not located precisely in the centre of mass of the spacecraft. The
DFACS is the control system in LISA used to establish drag-free operation: a housing
around the test masses shields them from external non-gravitational forces, like SRP,
and senses the relative position of test mass and spacecraft. A control system then
commands the spacecraft thrusters to follow the free-falling mass. This is required since

Fig. 6 Evolution of the cartwheel orbital elements in the ecliptic frame over 10 years in a fully numerical
model
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the test masses are allowed to be influenced by gravitational forces only. More
information on the DFACS can be found in [16–18].

To understand the effect of self-gravity, first consider a single test mass which is
offset from the spacecraft centre of mass. The mass of the spacecraft will exert a small
gravitational force on the test mass and will cause it to move towards the spacecraft
centre of mass. This motion will be detected by the internal interferometers (between
the test mass and the spacecraft) and the DFACS will command the thrusters to
accelerate the spacecraft into the opposite direction such that the test mass effectively
does not move with respect to the spacecraft. This acceleration produced by the
DFACS has an impact on the spacecraft trajectory and needs to be modelled in the
trajectory optimisation.

Now LISA does not have one, but two test masses per spacecraft and the situation
becomes slightly more complicated: since the two test masses are at different locations
with respect to the spacecraft centre of mass, there will also be a relative gravitational
(gradient) acceleration between them (in addition to the common-mode acceleration
described above). It is thus not possible for the DFACS to follow both test masses at the
same time if both are free-falling. The solution is to only have the test masses free-
falling along one space dimension (along the laser arm). The self-gravity acceleration

Table 7 Initial osculating keplerian state in EME2000 for the cartwheel orbit obtained in the fully numerical
model. The reference epoch is 2035–08-15 T12:00:00 TDB

Spacecraft LISA1 LISA2 LISA3

Semi-major axis [km] 149,461,821.067 149,458,004.472 149,458,683.642

Eccentricity [−] 0.0048903 0.0047861 0.0047896

Inclination [deg] 22.9818 23.7923 23.5280

RAAN [deg] −0.3933 −0.7788 1.1782

Argument of perihelion [deg] 108.5557 131.5359 −11.3762
True anomaly [deg] −165.1558 75.9475 −46.9373

Fig. 7 Achievable corner angle variations for cartwheel orbits with different MIDA values. The mean arm
length and maximum Earth distance are kept at 2.5 · 106 km and 65 · 106 km, respectively
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on the test masses perpendicular to their laser arm directions is compensated using
electrostatic actuators. The reaction forces of these electrostatic actuations on the
spacecraft also need to be compensated by the DFACS. This adds another component
to the net spacecraft acceleration and needs to be taken into account in the orbit
propagation. To summarize, there are two self-gravity acceleration components: a
common-mode component, which is also present with only one test mass, and a
differential component which results from a relative acceleration between the test
masses.

The total self-gravity acceleration depends on the spacecraft configuration
which is not known at this point of the project. Theoretically, it can be directed
along any of the three spacecraft axes. For simplicity, an analysis has been
conducted with a self-gravity acceleration only towards the cartwheel centre
(cf. Figure 8). A more detailed Monte-Carlo analysis allowing any direction for
the acceleration will be presented in section 5.5.

Moreover, due to fuel depletion the magnitude of the acceleration is not constant
during the mission time. A detailed model of the acceleration history is yet to be
developed and is not subject of the present paper. For simplicity, the current
assessment considers acceleration levels changing from −2 nm/s2 (start of
mission) to +2 nm/s2 (end of mission) where a positive value means an
acceleration towards the cartwheel centre. Also the range of −4 nm/s2 (start of
mission) to +4 nm/s2 (end of mission) has been looked at for comparison. The state
from Table 7 has been propagated taking into account these accelerations and a
comparison of the corner angles and arm lengths rate evolution is shown in Figs. 9
and 10, respectively.

The first case shows a mild violation of the corner angle constraints of ±1.0° allowed
variation. In the second case the violation becomes more severe. Note that no further
optimisation has been conducted here. Once a more detailed model of the self-gravity

Fig. 8 Schematic representation of the LISA formation and direction of the self-gravity acceleration. In reality
the self-gravity acceleration can be directed in any of the three spacecraft axes

418 The Journal of the Astronautical Sciences  (2021) 68:402–443



acceleration history is available, it can be implemented as part of the optimisation
procedure described in section 3.1. It is expected that accelerations of the levels
considered here can be compensated for by a further adjustment of the initial cartwheel
state and a stable formation within the requirements can be achieved.

Fig. 9 Corner angles evolution (top) and arm length rate evolution (bottom) for added self-gravity acceleration
linearly varying from −2 nm/s2 to +2 nm/s2 in the direction of the cartwheel centre

Fig. 10 Corner angles evolution (top) and arm length rate evolution (bottom) for added self-gravity acceler-
ation linearly varying from −4 nm/s2 to +4 nm/s2 in the direction of the cartwheel centre
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It is considered more problematic if the self-gravity acceleration has a significant
unknown contribution (along all three axes). Such a contribution can lead to a violation
of the formation constraints, because it cannot be taken into account operationally in the
final manoeuvre optimisation at the time of cartwheel orbit insertion. Its effect will be
assessed in section 5.5.

Station Keeping

Nominally, no station keeping manoeuvres are foreseen during the 10 years science
phase. The operational orbit and insertion conditions are required to be designed such
that the requirements on the corner angle variations and arm length rates are fulfilled.
Whether this is possible or not mainly depends on the chosen MIDA value as was
shown in Fig. 7. The plot shows that if the corner angles are required to stay within a
±1.0° window, the MIDA cannot be below ±20°. However, going to lower MIDA
values would have the advantage of a reduced transfer Δv (cf. section 4.2). Therefore,
if MIDA values lower than ±20° shall be employed, station keeping is required. Note
again that these conclusions hold for a maximum allowed Earth distance of 65 × 106

km. For larger values of that constraint it should be possible to reduce the MIDA below
±20° without requiring station keeping.

Different station keeping strategies are possible. Manoeuvres imply an interruption
of the science operations, and require a re-acquisition of the formation. Therefore, it is
desirable to minimize the number of manoeuvres and also perform them simultaneous-
ly with all 3 spacecraft, if possible. Gaps in the science operations of longer than one
week per year are not permitted. The simplest station keeping strategy that complies
with these requirements is to place simultaneous manoeuvres after regular time inter-
vals. The minimum number of manoeuvres required to stabilize the orbit for 10 years as
a function of the MIDA value is shown in Fig. 11 (left).

The right panel in that figure shows the total required station keeping Δv. For each
manoeuvres three free parameters were introduced in the cartwheel optimisation
process. The corner angles were required to stay in a window of ±1.0°. No additional
objectives like change of the Earth range drift rate were imposed. The manoeuvres were
equally spaced in time during the 10 years science duration, i.e. for the case of 2
manoeuvres, they take place 3.33 and 6.66 years after science orbit insertion. The

Fig. 11 Number of required station keeping manoeuvres (left) and total station keeping Δv (right) as a
function of the MIDA
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manoeuvre times were not optimised and for each case the minimum number of
manoeuvres were used that achieved the objective of maintaining the orbit within the
requirements. Note that there is an outlier for the θ0 = − 14° case. This is most likely
due to the simple manoeuvre strategy where the manoeuvre times are not optimized.
For all the other cases a station keeping budget of 10 m/s per spacecraft is sufficient. In
case theΔv budget requires going below a MIDA of ±20°, it is recommended to not go
lower than ±16°, which still is possible with a single station keeping manoeuvre after
5 years. Note however, this does not yet include perturbations that come from science
orbit insertion accuracy. That contribution has been analysed in more detail in section
5.4 and 5.5.

Solar Electric Propulsion Transfer

The current section is going to describe the transfer from launch to cartwheel orbit
insertion using Solar electric propulsion (SEP). Since the transfer Δv depends on the
cartwheel clocking angle at the time of insertion (cf. section 4.2), both transfer and
science phase cannot be strictly separated. Section 4.2 will describe the method that
was used to take the interconnection into account.

Direct Escape Launch

A joint launch of all three spacecraft from Kourou into direct escape is the current
baseline for ESA. Currently, an all-year launch period is targeted. In order to limit the
number of required launcher programs to one, a single separation state (defined in the
Earth-fixed) frame has been assumed. Since at the time of this analysis the trajectory
analysis from the launch service provider is still under consolidation, a GTO-like
escape has been assumed. For simplicity, the assumed orbital parameters at virtual
perigee2 are defined in the inertial EME2000 reference frame and are summarised in
Table 8. The RAAN is a free optimisation parameter and can be fixed by the
appropriate choice of the lift-off hour.

After separation from the launcher upper stage, the three spacecraft follow indepen-
dent trajectories, which initially will still be closely grouped.

The SEP is assumed to be used at the earliest 30 days after launch in order to allow
for sufficient commissioning time. The actual start time of the first manoeuvre follows
from the parametric optimization process of each orbit and can take place much later
than 30 days after launch.

Simultaneous Optimisation of Transfer and Science Orbit

The simplest strategy would be to completely decouple the transfer optimisation from
the cartwheel orbit optimisation and assume a transfer to a fixed cartwheel orbit.
However, the transfer Δv is expected to depend on the chosen cartwheel orbit, in
particular the initial clocking angle, σ0. This dependency for the February 2034 launch

2 The state at virtual perigee is obtained by a Keplerian backwards propagation of the launcher separation state
to perigee.
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will be discussed in more detail in section 4.3 and shown in Fig. 16. Since an end-to-
end optimisation in the full dynamical model may be difficult to implement in a robust
way, the following three-stage strategy has been employed:

1. Assume a Keplerian cartwheel orbit and optimise the transfer with the clocking
angle, σ0 as a free parameter.

2. Optimise the cartwheel orbit with full dynamics for the obtained σ0 value.
3. Re-optimise the transfer assuming the obtained cartwheel orbit as fixed.

The change in transfer Δv between stage 1 and stage 3 is expected to be small which
will be confirmed later on. Stage 2 has already been discussed in section 3. The
following will focus on stage 1.

The individual manoeuvre time-line is optimized for each spacecraft such that its
target orbit is met with minimal propellant expenditure. All three spacecraft need to be
optimised together since they share the launch vehicle and therefore their (free) launch
RAAN needs to be the same. A transfer duration of less than 540 days is targeted. This
constraint implies that transfers with more than one revolution around the Sun cannot
be used. During SEP operations, the Sun aspect angle (SAA, defined as the angle
between the direction of the current thrust acceleration vector and the direction from the
spacecraft towards the Sun) must remain within a range of 90° ± 40°. This is required in
order to guarantee sufficient illumination of the solar arrays, knowing that the solar
array normal is perpendicular to the thruster direction.

The starting assumptions for the SEP transfer to the cartwheel orbits are listed in
Table 9. In order to account for outages during thrust arcs due to ground communica-
tions and contingencies, a duty cycle of 90% has been assumed. This has been modelled
simply as a factor on the nominal available thrust level. Hereafter always the effective
thrust level (i.e. nominal thrust times duty cycle) will be used to label cases.

The assumedwetmass is compatiblewith anAriane 64 launcher performance of 7000 kg
into direct escape with an infinite velocity of 300 m/s [23]. The maximumΔv of the three
spacecraft is used as an objective function during the optimisation process. This number is
relevant for the tank sizing since all three spacecraft are going to be built identically.

The transfer has been transcribed to a multiple shooting problem allowing up to four
thrust arcs per spacecraft. The thrust direction of each thrust arc is parametrised by two
angles and their rates which are free parameters. The thrust magnitude has

Table 8 Assumptions on the escape trajectory in EME2000 reference frame

Parameter Value

Perigee radius 6628.14 km

Infinite velocity 300 m/s

Inclination 7.0°

RAAN free

Argument of perigee 180.0°

True anomaly 0.0°
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been assumed constant. WORHP [24] has been used from PyGMO [22] as an
optimisation algorithm. Initial guesses for the optimisation have been generated based
on simple Lambert arc solutions with impulsive manoeuvres. Starting from these, a
series of optimisation runs have been conducted for each trajectory, successively
decreasing the thrust magnitude to the target value of 81 mN. Moreover, the transfer
optimisation has first been done for each spacecraft individually keeping the launch
RAAN and the clocking angle fixed to the initial guess value. In a second step the
launch RAAN and the clocking angle have been freed and all three spacecraft have
been re-optimised together to arrive at a globally optimal transfer solution.

February 2034 Launch to MIDA= − 20° Cartwheel

To illustrate the SEP transfer in detail, the launch epoch of 2034-02-21 12:00 is chosen
as an example. In a later analysis of 12 representative launch epochs per year the
February launch turns out to be the sizing case for 2034 in terms of Δv. The targeted
operational orbit is one with a MIDA of −20° with parameter assumptions as shown in
Table 5. Up to four thrust arcs are allowed for the 1-revolution transfer. The SEP
transfer trajectory for an effective thrust of 81 mN is shown in Fig. 12 (left) in the
Ecliptic Reference Frame of epoch 2000. The right plot in the Earth local orbital frame
illustrates the path that LISA takes w.r.t. Earth. The Earth local orbital frame is
defined as follows:

– X-axis along the Sun-Earth line
– Z-axis along the Earth angular momentum vector
– Y-axis completing the right-handed system

For the Earth-trailing option the transfer will always first increase the semi-major
axis in order to achieve the correct phasing. This implies that the spacecraft can pass
through eclipses by the Earth in the early transfer phase especially for launch dates
close to the equinoxes. The transfer in February is eclipse-free. The evolution of the
orbital elements for the March launch are shown in the Fig. 13. The arrival state fulfils

Table 9 Assumptions for SEP transfers

Quantity Value

Wet mass 2200 kg

Nominal thrust level 90 mN

Duty cycle 90%

Effective thrust level 90 mN×90% =81 mN

Specific impulse 1660 s

Minimum Sun aspect angle (SAA) during thrust 50°

Maximum SAA during thrust 130°

Minimum time until first thrust arc 30 days

Maximum transfer duration 540 days
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the conditions described in section 2.2. The evolution of the geometry w.r.t. to the Sun
and Earth is shown in Fig. 14. The Earth eclipse margin is an angle quantifying the
eclipse condition. If this angle becomes negative, the spacecraft enters eclipse. The
thrust aspect angles evolution (middle right) show that the angular rates required for the
spacecraft are very low and thus no operational issues are expected.

An important aspect for communications is the pointing direction of the High-Gain
Antenna (HGA). For this analysis it is assumed that the antenna is mounted on the
opposite side from the solar array which is facing the spacecraft +Z axis. Therefore, if
the HGA elevation becomes too large, the field of view is obstructed by the spacecraft.
A maximum allowed elevation of +25° is assumed for the time being. The attitude of
the spacecraft during transfer is assumed as follows:

– During thrust arcs the acceleration vector is always along the spacecraft +Y axis.
– The Sun incident angle on the spacecraft +Z axis (solar array) is maximized. For

coast arcs this means that the Sun direction is always along the +Z axis.
– The spacecraft X axis completes the right-handed system.

During coast arcs this attitude is not completely fixed because a freedom to rotate the
spacecraft around the Z axis remains. This implies that the HGA azimuth is not fixed.
Figure 15 shows the HGA azimuth and elevation evolution during transfer. It is clearly
visible that the prohibited elevation range above +25° is violated for a large part of the
transfer. This is a general feature of transfers to Earth-trailing orbits, because for the initial
part of the transfer both Sun and Earth are in the same direction as seen from the spacecraft.
This is can be seen in Fig. 12 (right). Various options for solving this problem are discussed,
e.g. interruption of thrust arcs for Earth communications or use of LowGain Antennas. For
transfers to an Earth leading orbit the HGA elevation is usually not a problem.

Fig. 12 Trajectory plots for the February launch transfer in the Ecliptic Frame (left) and the Earth local orbital frame
(right). The Earth orbit is displayed in blue, thrust arcs are red and the arrival points are indicated by red circles
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Sensitivity on the Initial Cartwheel Clocking Angle

As already mentioned in section 4.2, a key question for the design of the transfer
trajectory is whether the operational orbit can be assumed as fixed for all launch dates
or whether a custom operational orbit has to be designed as a function of the launch
date. The MIDA, arm length and argument of perihelion are considered as (fixed)

Fig. 13 Evolution of the osculating orbital elements for the February launch option
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design parameters. The initial semi-major axis is mainly fixed by the maximum Earth
distance constraint (cf. section 2.4) and the inclination parameter, δ is used to adjust the
stability of the cartwheel geometry within narrow limits. Therefore, the only significant
impact on the transfer Δv is expected from the initial cartwheel clocking angle, σ0.

Fig. 14 Evolution of the Earth, Sun and thrust direction geometry for the February launch option
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In order to assess the impact of this parameter on the transfer, a series of transfers
similar to the one described in section 4.3, have been computed, but varying the fixed
value for the initial clocking angle. Figure 16 (left) shows the transfer Δv of the three
LISA spacecraft as a function of the initial clocking angle. A clear pattern is
recognisable, which basically repeats after 120° due to the symmetry of the
formation. The difference between the largest and smallest maximum Δv is about 80
m/s. This shows that the clocking angle has to be optimized together with the transfer,
in order to achieve the optimal Δv for the propellant tank sizing. The plot also shows
that an indication of the clocking angle being optimal is that theΔv values of two LISA
spacecraft is identical while the Δv for the remaining spacecraft is below that value.
Conversely, if all three spacecraft have different transfer Δv, it is an indication that the
clocking angle has not been chosen optimally. For the transfer described in section 4.3
the clocking angle has been optimised along with the transfer and therefore the
maximum transfer Δv is close to 1100 m/s.

Figure 16 (right) shows the sum of theΔv of all three LISA spacecraft as a function
of the clocking angle, which is relevant for computing the total wet mass on the

Fig. 15 HGA pointing evolution for the February launch option

Fig. 16 Transfer Δv as function of the arrival orbit initial clocking angle. Individual LISA spacecraft (left)
and sum of all LISA spacecraft (right)
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launcher. Here the variation is less prominent, but still amounts to about 80 m/s for
between the worst and the best clocking angle value. Note that the minima for the Δv
sum (right) don’t occur at the same clocking angle as for the maximumΔv value (left).

Full Year 2034 Launch Period

Over the year a seasonal variation in the transfer Δv is expected mainly for two
reasons: the true anomaly of the Earth at departure and the relative geometry of the
Earth equator to the ecliptic. The total Δv is shown in Fig. 17 (left). The sizing case
happens in February which amounts to 1092 m/s without margin (cf. section 4.3). Note
that the difference in Δv between optimisation stages 1 and 3 (cf. section 4.2) was
found to be below 12 m/s for all months in 2034. For the February launch the difference
is 7 m/s. Therefore, even running only stage 1 yields an excellent estimate on the
transferΔv. The transferΔv depends on how much the initial ecliptic RAAN has to be
adjusted during the transfer of the individual spacecraft. Since the RAANs of the three
spacecraft in the target orbit are separated by 120°, there can be significant differences
between the three spacecraft. Note that the labelling LISA1/LISA2/LISA3 is arbitrary
and can change between two months.

The total transfer duration varies between 440 days and 540 days over the
year and between the three spacecraft as shown in Fig. 18 (left). The total thrust-
on time fraction, shown in Fig. 18 (right), follows the same functional behaviour
as the Δv and has a maximum of about 70% in February. Reducing the thrust
level below the 81 mN is therefore expected to make these transfer opportunities
more difficult to achieve.

In order to illustrate the difference of the instantaneous initial Earth displacement
angle versus the MIDA, these two parameters are plotted for the whole launch period in
Fig. 19. As explained in section 2.3, the initial Earth displacement angle (left) experi-
ences a variation of about ±2° over the year while the MIDA stays constant at −20°. The
slight deviation of the MIDA from −20° between the different launch opportunities
stems from the fact that for the sake of simplicity the value of MIDA= − 20° was
imposed 400 days after launch for all launch dates. Since the transfer duration varies

Fig. 17 SEP TransferΔv (left) and final mass (right) for 2034 MIDA= − 20∘ clockwise. The crosses indicate
actually computed cases. The lines are only drawn to guide the eye
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between the different launch opportunities, the actually achieved MIDA has a
(negligible) variation.

The ranges of Sun aspect angles are always within the allowed range between 50°

and 130°, as shown in Fig. 20. In most cases either the lower or the upper constraint is
active.

In order to assess the dependency of theΔv on the thrust capability of the spacecraft,
several cases with a reduced thrust level have been analysed. The results for (effective)
thrust levels 81 mN, 72 mN, 64 mN and 54 mN are shown next to each other in Fig. 21.
Besides of increasing the requiredΔv, the effect of the lower thrust is also to reduce the
number of launch opportunities. For 54 mN it is quite difficult to achieve convergence
at all. Therefore, this option is not very robust and thus not recommended.

So far only transfers to an Earth-trailing orbit have been discussed. The analysis for a
Earth-leading orbit has also been conducted but will not be presented in detail here for
the sake of brevity. The main difference in the transferΔv is the change in the seasonal
variation: The sizing case for a MIDA of +20° occurs in August instead of February and
amounts to 1253.3 m/s. This fact can be exploited in order to reduce the overall sizing
Δv by combining launches to trailing and leading orbits depending on the launch
month: In the Summer months a launch to a trailing orbit is preferable while in the
Winter months a leading orbit yields the lower transfer Δv [12].

Fig. 18 SEP transfer duration (left) and percentage of thrust-on time (right) for 2034 MIDA= − 20∘ clockwise

Fig. 19 Instantaneous initial Earth displacement angle (left) and MIDA (right) for 2034 MIDA=− 20∘ clockwise
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Navigation and Insertion Accuracy

This section is presenting all the analyses related to orbit navigation and guidance of the
LISA spacecraft during transfer and cartwheel orbit insertion. A key question to be
answered here is: how precisely can the three LISA spacecraft be inserted into the cartwheel
formation and how does the error impact the stability of the cartwheel? The first part of that
question is going to be answered by the presented navigation analysis, the second part by a
Monte-Carlo analysis that uses the output dispersionmatrix from the navigation as an input.

Fig. 20 Ranges of Sun aspect angles of the acceleration vector for SEP transfers in 2034MIDA=− 20∘ clockwise

Fig. 21 Total Δv for different thrust level values for 2034 MIDA= − 20∘ clockwise
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The idea of a navigation analysis is to simulate all ground-based (and potentially inter-
spacecraft) measurements as well as orbit correction manoeuvres that will take place during
the operations phase. Generally speaking, there are two key outputs of such an analysis that
quantify the orbit accuracy that can be reached:

1. Knowledge: the difference between the true spacecraft state and the estimated
spacecraft state. This is mainly a function of the measurement accuracy and
geometry of the ground-based Range and Doppler observations, but is also influ-
enced by noise processes like the SEP acceleration or SRP.

2. Dispersion: the difference between the true spacecraft state and the reference
spacecraft state. This is mainly a result of manoeuvre execution errors, but is also
influenced by the state knowledge: the dispersion can never get lower than the
knowledge at a given epoch, because the precision to which manoeuvres are
computed by Flight Dynamics can never exceed the state knowledge on which
these computations are based.

Both figures are generally described by covariance matrices and are typically shown in
the local orbital frame of the spacecraft.

A navigation analysis can be broken down into two parts: the covariance analysis,
which mainly deals with the knowledge and the guidance analysis which mainly deals
with the dispersion. Since, however, both are inter-linked, iterations between the two
are needed until convergence of all covariance matrices and the manoeuvre budget is
reached.

All analyses in this chapter are based on the reference trajectory with launch in
March 2034. Similar results are expected for any other transfer.

Table 10 Summary of all uncertain parameters that appear in the covariance analysis

Parameter A-priori 1−σ Status

LISA 1,2,3 states 1000 km, 3 m/s spherical estimated

Guidance manoeuvres Output from guidance analysis estimated

SEP acceleration (white) noise 1% magnitude, 0. 5° direction estimated

SRP (white) noise 1% of computed magnitude estimated

Generic non-gravitational acceleration noise 5·10−12 km/s2 estimated

Ground station position bias 30 cm spherical considered

Range observation bias 10 m considered

Table 11 Summary of all observation assumptions in the covariance analysis

Observation Random noise Measurement interval Data cut-off Ground Station

Range 2 m 1 h 4 days Cebreros DSA

Doppler 0.3 mm/s
(60 s count time)

10 min 4 days Cebreros DSA
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Covariance Analysis Assumptions

The covariance analysis uses a Square-Root-Information Filter (SRIF) to process all
available observation types and compute the covariance matrix of all estimated param-
eters. Some uncertain parameters in the problem are not estimated (i.e. their a-priori
covariance is chosen not to be affected by the observations processing), but their
uncertainty still needs to be taken into account. These parameters are called consider
parameters. A summary of all uncertain parameters is given in Table 10.

Observations are used by the filter to improve the knowledge of the estimated
parameters. Currently, only ground-based Range and Doppler measurements are as-
sumed. All observation assumptions are summarized in Table 11.

All other assumptions related to the covariance analysis are summarized in Table 12.
In order to simulate the orbit determination process done in operations as closely as

possible, a sliding window is used as an orbit determination arc. This means for every
solution epoch measurements 14 days before the corresponding data cut-off epoch are
processed (4 days for Range and Doppler). The obtained covariance matrix is then
mapped forward to the solution epoch. The process is repeated for the considered range
of solution epochs and the resulting knowledge evolution is plotted in a graph. This
procedure is illustrated in Fig. 22.

Guidance Analysis Assumptions

The purpose of the guidance analysis is to determine to which extent the spacecraft
state dispersion can be reduced by manoeuvres using the state estimation from the
covariance analysis as input. To this end, guidance manoeuvres are scheduled that
target the reference state at a pre-defined epochs. For simplicity, the current implemen-
tation of the analysis assumes impulsive guidance manoeuvres although LISA is only
equipped with SEP. This approach is justified since the resulting Δv per manoeuvre is
expected to be small, which is confirmed a-posteriori. Therefore, these guidance
manoeuvres can also be performed by the SEP with roughly the same Δv by simply

Table 12 Other assumptions related to covariance analysis

Quantity Value

Minimum spacecraft elevation above the ground station horizon 15 deg

Orbit determination arc length 14 days, sliding window

Ground station contact time per 7 days per spacecraft 8 h.
Scheduling based on priority in the order
LISA1, LISA2, LISA3

Fig 22 Illustration of orbit determination process using a sliding window
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extending the burn duration. During the nominal trajectory design a duty cycle of 90%
on the thrust availability has been taken in order to accommodate (amongst other
things) such guidance manoeuvres even if they happen during a deterministic thrust arc
(cf. Table 9). If due to extended guidance thrust arcs tracking periods fall into the time
of thrusting, a different ground station scheduling can be considered. If that’s not
possible, a deterioration of the tracking performance is expected. This is, however, only
expected to be a problem for the large correction manoeuvres, TCM1 and TCM3. E.g, a
1 m/s guidance manoeuvre will have a duration of about 6 h when executed with the
SEP which can easily be accommodated by an adaptation of the ground station
schedule.

Table 13 summarises the general assumptions for the guidance analysis.
For the cartwheel insertion analysis the Trajectory Correction Manoeuvre (TCM)

schedule is centred on the cartwheel arrival date, which is defined at the end of the last
thrust arc. Since the last thrust arc ends at a different epoch for all three spacecraft, we
use the latest date of the three as a reference, which is 2035-09-12 12:00:00 for the
reference trajectory used here. In order to accommodate enough time for ground station
observations and ground processing between the manoeuvres, they are scheduled every
14 days as shown in Table 14. For simplicity, currently all three spacecraft are assumed
to execute the TCMs at the same epochs.

Figure 23 shows a graphical representation of the manoeuvre schedule for the three
spacecraft, also showing the SEP thrust arcs. This illustrates that only for LISA2 the
first two TCMs happen during an SEP thrust arc. Due to SEP noise these manoeuvres
are expected to be much less efficient than for LISA1 and LISA3 where they happen
during a coast arc. In that sense LISA2 will represent the sizing/worst case in terms of
insertion accuracy. On the other hand, the analysis for LISA1 and LISA3 will show
how much can be gained by not doing any guidance manoeuvres during thrust arcs for
the cartwheel insertion. The targeting strategy is based on the idea that in order to match
both position and velocity of the cartwheel state at the end of the sequence, at least two

Table 13 Assumptions for guidance analysis

Quantity Value

Initial dispersion for cartwheel insertion 200 km, 2 m/s spherical

Initial epoch 2035-07-26 00:00:00

Guidance manoeuvre mechanisation error 1−σ 1% magnitude, 0.5° direction, 1 mm/s minimum

Table 14 TCM schedule for cartwheel insertion

Manoeuvre name Manoeuvre epoch Target and epoch

TCM1 2035-08-15 12:00:00 Position at 2035-09-12 12:00:00

TCM2 2035-08-29 12:00:00 Position at 2035-09-12 12:00:00

TCM3 2035-09-12 12:00:00 Position at 2035-10-10 12:00:00

TCM4 2035-09-26 12:00:00 Position at 2035-10-10 12:00:00

TCM5 2035-10-10 12:00:00 Velocity at 2035-10-10 12:00:00
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TCMs are needed: the first one will match the position only and the second one will
match the velocity. However, due to manoeuvre execution error, the match will never
be exact. Therefore, two manoeuvres are assumed for each target point, a larger and a
smaller one. Finally, TCM5 is an additional manoeuvre to clean up any residual
velocity dispersion.

Navigation Results

Figure 24 shows the knowledge evolution of both position and velocity in the local
orbital frame for all three LISA spacecraft (3 − σ values). The initially large covariance
is reduced as soon measurements are taken (indicated by shaded vertical bars). This
happens with a latency of 4 days due to the data cut-off. When no measurements are
taken, the knowledge slowly degrades owing to the natural dynamics as well as the
system noise. The impact of the noise is particularly strong for LISA2 which is the only
spacecraft that has an SEP thrust arc in the considered time period. Jumps in the
velocity knowledge are also caused by the guidance manoeuvres, TCM1 - TCM5. The
along-track component in most cases is the one with the best knowledge. This is
because of the measurement geometry: in a trailing/leading orbit ground-based Range
and Doppler always measure the along-track component directly. The signature in an
extended Doppler measurement arc imparted by the Earth’s rotation also measures the
plane-of-sky components. However, the vertical component (= cross-track) is not
measured well if the spacecraft is located close to zero declination w.r.t. the Earth’s
equator, which is the case here. This is generally known as the zero
declination problem. A way to significantly improve the plane-of-sky resolution, is to
useΔDOR measurements. As will be shown in section 5.4, the along-track knowledge
is the driving one for the cartwheel stability. Therefore, ΔDOR measurements are not
required here.

The knowledge covariance is used to determine guidance manoeuvres in order to
reduce the initially large dispersion. The post-manoeuvre dispersion resulting from the
guidance analysis are shown in Fig. 25. One can see how the dispersion is gradually
improved as more guidance manoeuvres are executed. The state components with the
best knowledge also end up with the least dispersion.

Finally, Tables 15, 16 and 17 present the stochastic manoeuvre budget resulting
from the guidance analysis. It is clear that TCM1 and TCM3 are the largest manoeuvres
because they are the first manoeuvres for each of the two target points. TCM2, TCM4
and TCM5 are follow-up manoeuvres which merely clean up the mechanisation error

Fig. 23 Illustration of cartwheel insertion TCM strategy. The green arrows indicate the targeting point of the
TCMs. TCM5 targets the velocity vector at its epoch
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of the previous manoeuvres. For the fuel tank sizing the 99% CL value shall be taken
which amounts to 18.3 m/s per spacecraft. This value is still preliminary since the initial
dispersion used here was guessed and does not originally come from the launcher
dispersion and an end-to-end navigation analysis. This end-to-end navigation analysis

Fig. 24 Knowledge covariance evolution of all three LISA spacecraft for Range and Doppler (8 h per week
per s/c)
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shall also use continuous SEP guidance manoeuvres. Possibly, part of the corrections
can then be absorbed into the deterministic thrust arcs.

Cartwheel Stability under Insertion Dispersions

A key aspect for the LISA operational orbit design is the question whether the
formation stability can be maintained given the insertion accuracies. The current section

Fig. 25 Post-TCM dispersion of all three LISA spacecraft for Range and Doppler (8 h per week per s/c)
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uses the dispersion matrices at the end of the insertion sequence that are a product of the
navigation analysis, section 5.3, in order to do a Monte-Carlo analysis. The three
spacecraft states after the last TCM are sampled and propagated for 10 years. 10,000
samples are used.

The resulting dispersions are presented in Fig. 26. The left plot shows the distribu-
tion of maximum arm length rate vs. maximum corner angle deviation from 60°. The
distribution of the maximum arm length deviation from 2.5 · 106 km vs. the time spent
in a formation with at least one corner angle exceeding the 60° ± 1° range is shown on
the right. Apparently, the deviation of the samples is well controlled for the key
parameters (arm length rate and corner angle deviation). The duration spent in a
formation violating the corner angle requirement is below one year in more than
99% of the cases. The maximum Earth distance is not affected at all by the insertion
inaccuracies, as expected.

A more quantitative summary of the analysis is given in Table 18. The 99%
C.I. quantities are recommended to be used as reliable benchmarks of the
expected variation. These don’t differ very much from the requirements of 10
m/s arm length rate and 1° corner angle deviation. Note that the computation of
time spent in a formation where at least one of the three corner angles is outside
the 60° ± 1° range is based on a time discretisation step of 2 days. Therefore, the
given number has an intrinsic error coming from the discretisation. The order of
this error is 2 days times the number of intervals where a corner angle exceeds
the allowed range.

Table 15 Stochastic manoeuvre budget for LISA1

Maneuver Mean (m/s) Std (m/s) 90% (m/s) 95% (m/s) 99% (m/s)

TCM1 5.555 2.348 8.653 9.723 12.046

TCM2 0.211 0.103 0.345 0.399 0.527

TCM3 2.351 0.983 3.675 4.094 4.965

TCM4 0.092 0.044 0.149 0.171 0.224

TCM5 0.051 0.024 0.084 0.096 0.124

TOTAL 8.259 3.372 12.773 14.264 17.46

Table 16 Stochastic maneuver budget for LISA2

Maneuver Mean (m/s) Std (m/s) 90% (m/s) 95% (m/s) 99% (m/s)

TCM1 5.56 2.372 8.662 9.777 11.985

TCM2 0.493 0.25 0.837 0.967 1.24

TCM3 2.451 1.032 3.836 4.301 5.173

TCM4 0.621 0.338 1.095 1.276 1.65

TCM5 0.378 0.213 0.673 0.789 1.029

TOTAL 9.502 3.383 13.998 15.438 18.324
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Cartwheel Stability Including Unknown Self-Gravity Accelerations

The picture changes if one adds the uncertainty from the acceleration component
due to the spacecraft self-gravity. The effect of a known deterministic self-gravity
acceleration has been analysed in section 3.2. In reality, the magnitude and
direction of the self-gravity acceleration will depend on the spacecraft configura-
tion, component placement tolerances and fuel depletion. This is not known at this
point. In any case, the will be a remaining unknown component of the self-gravity
acceleration even after the launch of LISA. The current section will analyse the
impact of such an unknown component. For the current analysis it has been
assumed that this unknown component has a Gaussian distribution with a standard
deviation of 1 nm/s2 per spacecraft axis. It has been assumed constant in the
spacecraft-fixed frame during the mission time. This is an oversimplification and
represents a conservative case until it can be better quantified how this accelera-
tion changes over the mission time. The results presented in Fig. 27 and Table 19
and show a substantial increase both in the corner angle deviation and in the arm
length rate compared to those in section 5.4.

As mentioned in the introduction, insertion dispersions currently violate the nominal
preliminary requirements on corner angle variations and arm length rates (60° ± 1.0°

and 10 m/s maximum). During the pending next iteration at system level it is going to
be decided whether the spacecraft design allows for a relaxation of these requirements

Table 17 Stochastic maneuver budget for LISA3

Maneuver Mean (m/s) Std (m/s) 90% (m/s) 95% (m/s) 99% (m/s)

TCM1 5.612 2.412 8.865 9.984 12.159

TCM2 0.22 0.106 0.357 0.411 0.547

TCM3 2.369 0.998 3.707 4.165 4.998

TCM4 0.096 0.046 0.157 0.182 0.232

TCM5 0.057 0.028 0.096 0.11 0.14

TOTAL 8.355 3.45 13.0 14.539 17.592

Fig 26 Formation stability for MIDA= − 20∘ Range, Doppler case
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in order to fit the current trajectory design including dispersions. Alternatively, the
trajectory design has to be adapted such that the 60° ± 1.0° and 10 m/s requirements are
met even with insertion dispersions. There are two ways how this could be achieved:

3. Increasing the MIDA value will reduce the Earth perturbations on the constellation
and thus decrease the corner angle variations and arm length rates (see also Fig. 7).
The downside of this is an increase of transfer Δv.

4. Increasing the allowed maximum Earth range (e.g. to 75 × 106 km) will also reduce
the overall impact of Earth perturbations and allow for a compliant design. This
will have an impact on the spacecraft communications system.

A combination of all options is, of course, also possible.

Cartwheel Stability per Component

Finally, in this section the importance of the initial spacecraft dispersion along the
individual axes is analysed. To this end, instead of using the dispersion matrices
coming from the navigation analysis, as was described in section 5.3, a fixed value
along the different axes in the local orbital frame is assumed while the other axes
covariances are set to zero. Additionally, a case with a spherical position or velocity

Table 18 Formation stability statistics for MIDA= − 20° Range, Doppler case

Minimum Maximum

Overall Min./Max. Armlength [km] 2,438,701.1 2,536,232.5

99% C.I. of Min./Max. Armlength [km] 2,441,140.4 2,531,975.9

Overall Min./Max. Armlength Rate [m/s] −10.90 10.01

99% C.I. of Min./Max. Armlength Rate [m/s] −9.94 9.99

Overall Min./Max. Corner Angle [deg] 58.806 61.199

99% C.I. of Min./Max. Corner Angle [deg] 58.890 61.103

99% C.I. Time spent beyond 60°±1.0° [days] 230

Fig 27 Formation stability for MIDA= − 20∘ Range, Doppler case with self-gravity accelerations
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dispersion is run to compare the other cases to. The resulting statistics are summarized
in Table 20.

From these results it is clear that the dominant contributions to the de-stabilization of
the cartwheel are the radial position dispersion and the along-track velocity dispersion.
These are the components which are associated with the semi-major axis. The cross-
track component has the smallest contribution. Considering that ground-based Doppler
observations mainly measure the along-track velocity component for LISA, this is a
very favourable result. AddedΔDOR measurements will therefore offer only a limited
benefit.

To understand the dynamics a little better, cases have also been analysed where the
initial dispersion was set to zero in all six state components and only self-gravity
acceleration along individual axes has been added. The results for the self-gravity
accelerations defined in the local orbital frame are shown in Table 21.

It is clear from these results that again the main contribution to the cartwheel de-
stabilization comes from the along-track acceleration component. In contrast to an
initial along-track velocity dispersion, a constant along track acceleration has a much
stronger impact on the formation stability. The radial and in particular the cross-track
acceleration have a minor impact. Since, however, the self-gravity accelerations are tied

Table 19 Formation stability statistics for MIDA= − 20° Range, Doppler case with added random self-gravity
accelerations

Minimum Maximum

Overall Min./Max. Armlength [km] 2,427,721.9 2,550,716.5

99% C.I. of Min./Max. Armlength [km] 2,436,408.7 2,542,065.1

Overall Min./Max. Armlength Rate [m/s] −12.95 11.35

99% C.I. of Min./Max. Armlength Rate [m/s] −11.04 10.16

Overall Min./Max. Corner Angle [deg] 58.207 61.817

99% C.I. of Min./Max. Corner Angle [deg] 58.507 61.527

99% C.I. Time spent beyond 60°±1.0° [days] 512

Table 20 Statistics of different cases with pre-defined initial dispersion along individual axes

Case 99% C.I. of Min./Max. Armlength Rate [m/s] 99% C.I. of
Min./Max. Corner Angle [°]

200 km along-track (1−σ) −8.76 10.08 58.965 61.054

200 km cross-track (1−σ) −8.53 10.06 58.984 61.033

200 km radial (1−σ) −28.32 22.09 57.007 63.111

1 cm/s spherical (1−σ) −12.83 10.96 58.536 61.484

1 cm/s along-track (1−σ) −12.81 10.99 58.533 61.479

1 cm/s cross-track (1−σ) −8.51 9.95 58.988 61.031

1 cm/s radial (1−σ) −8.58 10.01 58.981 61.038

200 km spherical (1−σ) −28.10 21.75 56.993 63.035
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to the spacecraft-fixed frame, the analysis was repeated defining constant accelerations
in the frame where:

– X - along the formation centre
– Z - perpendicular to cartwheel plane
– Y - completing the right-handed frame

Results are shown in Table 22. Because the spacecraft frame is rotating with a period of
a year, there is no constant along-track acceleration. Therefore, the overall impact is
milder than observed in the local orbital frame. The X and Y components show the
strongest contribution to the cartwheel de-stabilization.

Conclusions

After a review of analytic models for the LISA cartwheel formation, a fully numerical
optimisation analysis of both the transfer and science phase has been presented. The
interdependency of both mission phases via the cartwheel clocking angle has been taken
into account. The SEP transferΔv varies depending on the launch month in 2034. But for
the sizing month an allocation of 1092 m/s per spacecraft is sufficient with the assumptions
taken. For the science orbit, with the assumed arm length of 2:5 x106 km andMIDA=−20°,
a corner angle variation of close to 60° ± 1.0° during 10 years is feasible.

The expected cartwheel insertion accuracy has been estimated in a full navigation
analysis where the most important sources of error have been taken into account. An

Table 21 Statistics of different cases with zero initial dispersion and constant self-gravity accelerations along
individual axes in the local orbital frame

Case 99% C.I. of Min./Max. Armlength Rate
[m/s]

99% C.I. of Min./Max. Corner Angle
[°]

1 nm/s2 along-track (1−σ) −102.70 93.57 49.118 72.127

1 nm/s2 cross-track (1−σ) −8.49 9.96 58.988 61.031

1 nm/s2 radial (1−σ) −9.80 9.97 58.847 61.153

1 nm/s2 spherical (1−σ) −103.49 93.20 49.193 72.208

Table 22 Statistics of different cases with zero initial dispersion and constant self-gravity accelerations along
individual axes in the spacecraft-fixed frame

Case 99% C.I. of Min./Max. Armlength
Rate [m/s]

99% C.I. of Min./Max. Corner
Angle [°]

1 nm/s2 x-s/c (1−σ) −9.26 9.97 58.713 61.351

1 nm/s2 y-s/c (1−σ) −9.69 9.96 58.651 61.358

1 nm/s2 z-s/c (1−σ) −9.61 9.96 58.867 61.131

1 nm/s2 spherical (1−σ) −10.49 10.10 58.523 61.513
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accuracy of the order of O 10 km; 5 mm=sð Þ (along-track and radial) and O
100 km; 50 mm=sð Þ (cross-track) are achievable with Range/Doppler and several weeks
of insertion sequence using 18 m/s per spacecraft. The radial position error and along-track
velocity error are the driving ones for the stability of the subsequent science cartwheel orbit.

With the obtained insertion dispersion, a Monte-Carlo analysis has been conducted to
analyse the impact on the corner angle variations during 10 years of science phase. If the
self-gravity accelerations are perfectly known at the time of cartwheel insertion, the
expected deterioration of corner angle variations is about 60° ± 1.1° at 99% C.L. violating
the current requirement. The arm length rate is hardly impacted. However, if there is a
remaining unknown constant component of the self-gravity accelerations of the order of
1 nm/s2, the impact on the corner angle variations and arm length rate is significant. This
underlines the importance of a good characterisation of the self-gravity accelerations prior to
launch. Ways of dealing with the current requirements violation have been discussed.

In the frame of the currently ongoing Phase A, the following future Mission
Analysis work is envisioned:

– Implementing the pending system level iteration on the cartwheel stability
requirements.

– A better objective function for the cartwheel orbit optimisation: not applying strict
constraints on the corner angles and arm length rates, but rather maximising the
mission time spent within the allowed bands.

– Cartwheel orbit optimisation including spacecraft self-gravity.
– Relaxation of the maximum Earth distance constraint taking into account the actual

achievable data rate as a function of the Earth distance.
– Implementation of a variable thrust model for the transfer optimisation. Instead of a

constant thrust value, variations of the thrust as a function of Sun distance and SAA
shall be taken into account.
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