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Abstract
With the advent of the Deep Space Atomic Clock, operationally accurate and reliable
one-way radiometric data sent from a radio beacon (i.e., a DSN antenna or other
spacecraft) and collected using a spacecraft’s radio receiver enables the development
and use of autonomous radio navigation. This work examines the fusion of radiometric
data with optical data (i.e. OpNav) to yield robust and accurate trajectory solutions that
include selected model reductions and computationally efficient navigation algorithms
that can be readily adopted for onboard, autonomous navigation. The methodology is
characterized using a representative high-fidelity simulation of deep space cruise,
approach, and delivery to Mars. The results show that the combination of the two data
types yields solutions that are almost an order of magnitude more accurate than those
obtained using each data type by itself. Furthermore, the combined data solutions
readily meet representative entry navigation requirements (in this case at Mars).
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Introduction

With the advent of NASAs Deep Space Atomic Clock (DSAC), operationally accurate
and reliable one-way radiometric data sent from a radio beacon (i.e., a DSN antenna or
other spacecraft) and collected using a spacecraft’s radio receiver enables the devel-
opment and use of autonomous radio navigation [1]. Autonomous navigation using
JPL’s AutoNav software system has been a critical technology for many deep space
missions, including Deep Space 1, Stardust, and Deep Impact [2]. For these missions,
autonomous navigation was conducted using passive optical imaging of nearby bodies
with an on-board camera system (called OpNav). Optical data provides strong angular
information about a spacecraft’s ‘plane-of-sky’ relationship to the object being imaged.
Range (or ‘line-of-sight’) information, orthogonal to the plane-of-sky, is more difficult
to determine from optical data due to the slow rate of angular change seen with
observed bodies. A more direct measure of line-of-sight is obtained with radiometric
tracking of range and Doppler. These measurements complement optical data, and,
when combined, yield a more complete robust solution for a spacecraft’s absolute
position in space. Indeed, the fusion of these two data types is central to an autonomous
deep space navigation capability that would be needed for a wide range of future
missions – examples include autonomous landings on solar system bodies, human
exploration of the Moon, Mars and beyond, and improved navigation efficiency for
orbiters and interplanetary craft.

When considering onboard autonomous navigation, we seek a robust design that
maximizes use of simplified models and requires minimal ground-based calibration
data. To that end, we apply a recently developed type of radiometric measurement,
dubbed one-way charged particle-free (CPF)-phase, that is well suited for onboard use
because it eliminates errors induced by Earth-based ionosphere and space-based solar
plasma charged particles [1]. We will show that this data type can be readily used for
deep space onboard navigation via filter compensation using only long-term model
predicts for troposphere and Earth-orientation parameters. Additionally, we will show
that, with prudent stochastic modeling, simplified spacecraft dynamics models (even
for complex spacecraft that exhibit significant small force perturbations resulting from
unbalanced thrusting by the reaction control system) are also viable for extended,
convergent use by the navigation filter. We have combined the CPF-phase data with
onboard imaging of asteroids to determine an accurate, and robust trajectory determi-
nation capability that could be used to target entry or orbit insertion at planets, such as
Mars. Finally, we examine two approaches towards filtering: one using an iterated
linearized-Kalman filter with mapping (vs smoothing) and the other using an extended
Kalman filter that employs a moving batch window. Both approaches support trajectory
knowledge updates at atmosphere entry that can be used by an onboard guidance
system to flyout delivery errors whereas ground-based navigation updates typically
occur hours prior to entry.

We apply the CPF-phase model because it promises to be a general-purpose
radiometric observable that could prove to be suitable anywhere in the solar system
for onboard deep space navigation while requiring only minimal calibration informa-
tion. We also augment the CPF-phase data with onboard optical data to provide
improved geometric observability and to ensure that the navigation solutions are
strongly sensitive to the target destination. Radio data could serve this purpose if there
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were an emplaced tracking infrastructure at the destination of interest, which may be
true in the future at a destination like the Moon or Mars, but will not in general be true
elsewhere in the solar system. Optical imaging of a target destination is, by definition,
directly sensitive to the target and aids navigation as the spacecraft approaches it.
Additionally, the filtering approaches we propose have been used successfully for
decades in ground-based navigation but modified for onboard use by eliminating
smoothing, thus greatly reducing the operational memory requirements needed. To
make the case for these findings we structure our study around a Monte Carlo
investigation of a realistic Mars navigation scenario. We have selected this because it
is a high interest use case, as well as fundamentally acknowledges that any reduced-
order model implementation of an onboard deep space navigation system will neces-
sarily be tailored to the mission at hand. Hence, while the dynamic model reductions
utilized for the current case may not apply to another completely different application
(say, for instance, a small body tour in the asteroid belt), it does represent an existence
proof that using the combined radio and optical data with the filter method proposed is
sufficient for onboard autonomous navigation for an important case.

Fundamental to any Monte Carlo investigation to confirm reduced-order navigation
models and approaches requires development of a realistic, high-fidelity ‘truth’ model
that represents the expected perturbations to a reference trajectory, the response to these
perturbations with trajectory correction maneuvers, and, ultimately, simulation of a set
of observables that reflect this truth model. That is, we will simulate streams of ‘truth’
measurement data and then process that data on the ‘nominal or reference’ side using
the reduced-order models and the orbit determination filter methods proposed for the
onboard navigation system, and do so with a statistically significant sample size to
make meaningful determinations on the effectiveness of the models and filters. We
structure our approach by first developing the CPF-phase model in some detail, review
the OpNav approach, then describe the Mars use case and the specific model adapta-
tions selected for the case, and the describe the filter methods studied. Finally, the
Monte Carlo simulation results are presented.

Onboard One-Way Radiometric Measurement Models
and Considerations

Determining an accurate spacecraft trajectory requires several characteristic features
from the measurement data: accuracy, precision, diversity, and density. For one-way
data, a stable and accurate clock plays a critical role with the first two items – accuracy
and precision. Diversity and density, while also impacted by onboard clock stability
and accuracy, rely more on the characteristics of the trajectory and radio tracking
sources. Other key factors relate to model uncertainties and their associated stochastic
behavior. All of these issues will be explored when using DSAC as part of an
autonomous navigation system, but to begin, we consider the model for several one-
way radiometric measurement types.

A robust onboard navigation system needs to maximize self-reliance, and be able to
operate for extended periods without calibration and/or model updates. Calibration data that
requires significant ground support, or cannot be obtained in real-time, would limit that
measurement’s utility to support autonomous navigation. Specifically, current high-fidelity
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ground-based two-way radiometric data requires atmospheric media (troposphere and
ionosphere) delay data, high precision Earth orientation data, and range bias data to support
precision orbit determination. One of the most significant error sources for radiometric data
is from charged particle effects (i.e., ionosphere and/or solar plasma) [3]. In this studywe use
a derived one-way radiometric data type, called charged particle-free-phase or CPF-phase,
that minimizes these effects. The model for CPF-phase was first developed in Ely, et al. [1]
and is presented here for completeness.We also develop a set of calibration approaches and/
or filter compensations that are sufficiently accurate for weeks to months at time; hence
minimizing the need for frequent or even daily data calibrations (as would be required with
existing data types and models).

One-way CPF-phaseΦCPF(t) is a linear combination of the traditional one-way phase
Φ(t) and one-way range R(t) measurements. The one-way phase is a measure of the
difference of two clock signals (called the beat signal and denoted as Δϕ(t)) with one
being the phase of a received radio transmission and the other being the phase of a
locally generated signal within the radio receiver. Without loss of generality, all of the
radiometric models considered in this paper are for one-way data types that originate
from a radio source (ground station, or other satellite) and are received onboard the
spacecraft of interest. As will be seen, this implies that the spacecraft clock (such as
DSAC) participates in formulating the measurement and ‘tagging’ its associated time.
Two-way radiometric models are similar, but distinct. Receiver R’s beat phase ofΔϕ(t)
at the ideal time t is formed as the difference of the transmitted phase ϕT from
transmitter T and the receiver’s reference phase ϕR and takes the form

Δϕ tð Þ ¼ ϕT t−τð Þ−PW tð Þ−ϕR tð Þ
¼ − f Tτ− f T xR tð Þ−xT t−τð Þ½ �−PW tð Þ ð1Þ

where PW(t) represents the ‘phase wind-up’ that results from the relative orientation
changes between the receiving antenna and the transmitting antenna, fT represents the
transmission frequency (for simplicity, any frequency bias that might exist with a
mismatch between transmission frequency fT and the receiver frequency fR has been
set to zero). A clock’s time deviation x from ideal time t is related to its phase using ϕ =
f(t − x); thus, xR is defined as the receiver clock’s time deviation, and xT is the
transmitter clock’s time deviation. The quantity τ is the one-way light time delay from
the phase center of the transmitting antenna to the phase center of the receiving antenna
and is defined as

τ ≡ tR−tT ¼ t−tT ð2Þ

where t ≡ tR. The delay includes the geometric path lengthΔr(t) as well as delays from
other effects including ionosphere I(t), solar plasma S(t), and the troposphere T(t),
yielding

τ tð Þ≅ 1

c
Δr tð Þ−I tð Þ−S tð Þ þ T tð Þð Þ ð3Þ

where, for phase observables, the ionosphere and solar plasma delays appear to
‘shorten’ the path length; thus, the minus sign (in range observables these delays will
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‘lengthen’ the path length).1 In practice, accurate computation of the geometric path
lengthΔr(t)must include the full spacetime geometry effects due to special and general
relativity and complete expressions for these can be found in Moyer [4]. Conceptually,
the geometric path lengthΔr(t) path length is most easily understood via its Newtonian
approximation, which takes the form

Δr tð Þ≅‖rR tð Þ−rT t−τð Þ‖: ð4Þ

The vectors rR and rT represent the position of receiving antenna’s phase center and
transmitting antenna’s phase center, respectively. Note that the preceding model is
generic and the presence of the ionosphere, solar plasma, and troposphere delays are
dependent on whether the signal transits through the respective media. Their compu-
tation is also dependent on the appropriate time of transit; thus, an uplink signal from
the Earth to a spacecraft receiver would evaluate the ionosphere and troposphere transit
at the time t − τ. For this discussion the functional representation of these delays on t is
sufficient, where a more specific calculation must be made at the appropriate time and/
or functional dependency on environment parameters would be substituted.

A receiver measuring the beat phase given in Eq. (1) will introduce other errors such
as: instrument delays, noise, potentially multipath effects, and an integer ambiguity
(representing the number of complete cycles that have occurred since the signal left the
transmitter at the start of the tracking pass). These considerations result in the following
one-way phase measurement model (converted into units of length)

Φ tð Þ≡− c
f T

Δϕ tð Þ
¼ Δr tð Þ þ c xR tð Þ−xT t−τð Þ½ �−I tð Þ−S tð Þ þ T tð Þ þ PW tð Þ þMΦ tð Þ þ bΦR tð Þ þ bΦT−N þ ν tð Þ

ð5Þ

where MΦ(t) is the error due to multipath effects, bΦR tð Þ is the receiver delay, bΦT is the

transmitter delay (assumed static in this discussion, i.e., ḃ
Φ
T ¼ 0), N is the integer phase

ambiguity, and ν(t) is the one-way phase measurement noise. It should also be noted
that the receiver records the measurement with time tag C(t). One-way range collected
by a spacecraft receiver has a model that is very similar in form to the carrier phase
model in Eq. (5) and is formally represented using

R tð Þ ¼ Δr tð Þ þ c xR tð Þ−xT t−τð Þ½ � þ I tð Þ þ S tð Þ þ T tð Þ þ PW tð Þ þMR tð Þ þ bRR tð Þ þ bRT þ ε tð Þ ð6Þ

where the differences between the range expression in Eq. (6) versus the phase in Eq. (5)
include sign changes on the ionosphere and solar plasma delays, different receiver delays
bRR tð Þ (including temperature sensitivities), multipathMR(t), measurement noise ε(t), and no
phase ambiguity. Additionally, since our application is for one-way radiometric data
processing onboard a spacecraft, we have developed a high-fidelity model of representative
onboard oscillator/clocks such as NASA’s DSAC, an Ultra Stable Oscillator (USO), or
Microchip’s Chip Scale Atomic Clock (CSAC). As documented in Ely [6], these onboard

1 As explained in Hofmann-Wellenhof, et al [5]. a electromagnetic signal in a frequency dependent dispersive
media (i.e., ionosphere or solar plasma) produces a positive group delay for ranging code phases and a
decrease in wavelength yielding a decrease in an integrated carrier phase.
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clocks have unique characteristics that must be accounted for in an onboard radiometric
observablemodel and the associated navigation filter that will process this data. In particular,
USOs and CSAC both have long term drift and stochastic instability characteristics that
reduce the accuracy of one-way radiometric data relative to its two-way counterpart that
must be modeled to obtain correct navigation solutions and, because of these characteristics,
often degrading the accuracy of the solutions. On the other hand, DSAC stability is orders of
magnitude better than CSAC and, on timescales longer than several tens of seconds, better
than the most stable USO. As a result, one-way radiometric measurements obtained from a
receiver using DSAC as a reference exhibit accuracy that is on par with the equivalent two-
way radiometric data.

As with their two-way counterparts in use today, the preceding one-way data types
are sufficient in their expressed forms for use in high precision deep space navigation,
but they, like the two-way data, would require daily calibrations for media delays and
Earth orientation to be useful. For onboard use, it is beneficial to minimize the need for
frequent calibration data updates. An immediate consequence of the forms of Eqs. (5)
and (6) is, via a linear combination of the measurements, charged particle effects from
the ionosphere and solar plasma can be removed. In particular, we define the charged-
particle–free (CPF) phase using

ΦCPF tð Þ≡ R tð Þ þ Φ tð Þ
2

; ð7Þ

where the resulting model takes the form

ΦCPF tð Þ ¼ Δr tð Þ þ c xR tð Þ−xT t−τð Þ½ � þ T tð Þ þ PW tð Þ
2

þ M tð Þh i þ bR tð Þh i

þ bTh i− N
2
þ ε tð Þ þ ν tð Þ

2
: ð8Þ

Note that neither charged-particle delays from the ionosphere nor solar corona plasma
effects are present. This eliminates the need to calibrate for these at the expense of an
increased overall noise relative to the phase by itself (DSN-based range measurement
noise typically is 1 to 3 m (1-σ) while the phase noise is 5 mm (1-σ)). More
importantly, the measurement noise is white, while charged-particle stochastic effects
are correlated and have difficult-to-model temporal effects (such as the day/night
cycle). Simpler white noise stochastic modeling yields a more robust filter than one
with complex time dependent stochastic models that require careful tuning (and that
may change over time) for obtaining convergent and correct trajectory solutions.

The effects of the phase ambiguity term can be minimized to the level of the range
error via using the range measurement value at the beginning of a pass to calibrate for
the ambiguity.2 This has the subtle effect of ‘pushing’ range errors (including charged-

2 Note that as an alternative to phase, forming a one-way Doppler measurement using consecutive CPF-phase
measurements could be utilized as it would eliminate the need to determine a phase ambiguity; however, this
would also significantly reduce the sensitivity to the initial clock bias making it more difficult to determine
accurately. A topic of a future study would be to compare use of CPF-phase relative to one-way Doppler
derived from this data.
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particle effects and initial clock offsets) into the range bias, but in a typical multi-hour
pass static range biases are observable (defined as the filter recovering the
injected range bias with errors that are consistent with its estimated uncertainty)
and have been confirmed in the results to be presented. The largest error in the
rescaled bias is an unknown clock bias contained in xR(t) of the onboard clock.
A first estimate of this bias can be ascertained early in the orbit determination
process using a separate clock-only estimator using differences of two-way and
one-way range and Doppler data types. With DSN range data precision at the
several meter level it is reasonable to determine initial clock offsets to <1e-6 s
and with Doppler data types at <0.1 mm/s (typical of the DSN at X-band)
clock rates to ~1e-14 using data differencing techniques and averaging. Once
the clock offset and rate are known, DSAC stability is sufficient to enable
processing the one-way data types similar to their two-way counterparts without
additional clock compensation in the filter (other than estimating the clock bias
states with constrained a priori uncertainties). Additionally, two-way data types
would no longer be needed, and mission navigation could proceed with using
the one-way CPF data type (as will be seen in later analysis). For other choices
of clocks (such as a USO or a CSAC) this would not be the case, and specific
stochastic process filter compensations would be required with periodic clock
recalibrations needed. For this analysis, use of DSAC is assumed. After corre-
lating for the spacecraft clock, a conservative bound for the range bias uncer-
tainty (including charge particle delays at X-band) is 3 m (1-sigma).

Even though CPF-phase removes the first-order effects of charged particles, other
delays and errors remain that need to be addressed, including atmospheric troposphere
delays and high precision Earth orientation parameters:

1. Unlike ionosphere and solar plasma effects, troposphere daily effects (on the order
of a ~ 5 cm delay) are readily dealt with using an appropriately tuned stochastic
model or via increasing the measurement uncertainty of the CPF-phase data. What
remains is a seasonal troposphere delay that can be calibrated using a compact
model in the onboard orbit determination models [7]. A stochastic model for these
delays has been developed by analyzing the statistics (including Allan deviations)
of several months of dry and wet troposphere measured delays, and is in the model
provided in Table 1. Both the wet and dry delays conformed to a first-order Gauss-
Markov process (ECRV) with differing strengths and timescales as listed in the
table.

2. The remaining real-time model considerations are the high precision Earth
orientation models and their impact on an onboard implementation when
daily calibrations for, primarily, Earth pole motion and UT1 time drift are
not available (as would be the case for long periods of autonomous
operations). Kalarus, et al. [8] have thoroughly documented the character-
istics of the high precision Earth orientation calibrations available from the
International Earth Rotation Systems Service (IERS) for reconstruction and
prediction (for periods of up to 500 days). They find that both pole motion
and UT1 predict errors grow unbounded to levels near 8 mas and 4 ms
(1σ) at 30 days, respectively. On a 500-day prediction interval, the errors
grew to 80 mas for pole motion and 80 ms (1σ) for UTI. A real time,
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onboard autonomous navigation system might have to utilize predictive
models for months at a time (depending on the specific mission context).
As with the troposphere delays, the random walk stochastic models listed in
Table 1, based on Kalarus, et al. [8], were compared to several months of
differences between UT1 and pole-motion actual and predicted values with
the stochastic model yielding conservative bounds. With this filter-based
model compensation, it is sufficient to model the Earth orientation using the
International Astronomical Union (IAU) frame definitions [9] which can be
easily implemented for onboard use.

Earth station locations located on a high precision frame have been replaced with
Chebyshev fits of data and placed into the IAU Earth Fixed frame. These fits can be
accomplished to a prescribed accuracy. For the current application, all three participat-
ing DSN stations have been fit to better than centimeter accuracy with the resulting
two-month station ‘trajectories’ taking only 76Kb of space. In summary, the CPF-phase
data type is ideal for onboard, autonomous use because it inherits the fundamental
precision of the DSN radiometric data types (at approximately 50 cm) and only requires
calibration models that can be predicted for months ahead – that is, no daily calibration
data is needed.

The truth models and associated errors used to generate the CPF-phase measurement
realizations for the later Monte Carlo studies are summarized in Table 1. Later tables
will provide the associated modeling and filter design used for the onboard navigation.

Onboard Optical Imaging (OPNAV)

Recently, Broschart, et al. [10] did an exhaustive study of kinematic positioning in the
solar system using camera images (also known as OpNav) of main belt asteroids and

Table 1 Truth Models for CPF-phase and Associated Earth-centric Model Effects

Parameter Truth Model including Injected 1σ Errors

Phase noise White noise at 4.24 mm

Range noise White noise at 1 m

Range Bias 2 m bias applied at start of each DSN pass +
ionosphere effects at X-band from observed delays

Clock Bias 1.e-6 s (assumes clock calibration)

Frequency Bias 1.e-14 (assumes clock calibration)

Stochastic Frequency White Frequency (WF) Noise Sequence with AD = 3e-15 @ 1-day

Earth troposphere delays Long period model effects
Daily Dry Delay ECRV= 2 cm with τ = 3 h
Daily Wet Delay ECRV= 5 cm with τ = 0.75 h

Earth UT1 errors Random walk with σ(30 days) = 4 milli ‐ seconds

Earth (X, Y) pole motion errors Random walk with σ(30 days) = 8 milli ‐ arcseconds

Station Locations Surveyed DSN station locations located in a high precision
Earth body fixed frame with precision, nutation, UT1,
and pole motion effects with injected errors consistent
with the fully correlated station covariance

The Journal of the Astronautical Sciences (2021) 68:300–325 307



developed a heuristic algorithm for selecting asteroids that could be adapted for use in
autonomous deep space navigation to define asteroid imaging schedules. The algorithm
factors asteroid brightness, camera quality, and asteroid location uncertainties to
determine which asteroids to image based on certain heuristic cost functions. Part of
the work surveyed the distribution and characteristics of the asteroids for use in
navigation. Some particular features that are noteworthy include:

1. There are over 50 K known and mapped bright main belt asteroids with magni-
tudes (M) < 14.9; hence, making them potential targets for navigation grade
cameras and to use as optical ‘beacons’ for navigation.

2. These asteroids are between 2 and 4 AU from the Sun and have a typical position
uncertainty of <100 km, and almost all are <200 km. The asteroid ephemerides are
sufficiently well known that this error is commensurate or smaller relative to other
errors.

Additionally, representative navigation cameras examined by Broschart, et al. [10]
could be lumped into three categories consisting of low-end, mid-range, and high-
end camera features as noted in Table 2. FOV is the camera field-of-view, Θ is field of
view of one camera pixel (called the IFOV),Mmax is the maximum apparent magnitude
of the asteroid that can be detected, ψmin is the minimum allowable sun-spacecraft-
asteroid angle allowable. Finally, the camera pixel array’s horizontal and vertical
measurement uncertainty σs selected for each camera was 0.25 that is a conservative
bound factoring errors from in center finding, camera calibrations, and camera pointing.

For the current study, we have selected a gimballed, high-end camera system to pair
with the CPF-phase measurements. When the camera images an asteroid it will be
projected onto its 2-d focal plane that is then digitally sampled by an array of detectors.
This results in a set of horizontal and vertical coordinates for the center of figure of all
the detectable asteroids (and other bright bodies) in the camera’s field of view. The
pixel coordinates of an asteroid, coupled with asteroid ephemeris knowledge, and
camera pointing can be used to determine the spacecraft position relative to the imaged
bodies; thus, using it for spacecraft navigation. The optical measurement model adapted
for use is documented by Owen [11] and is part of the JPL’s operational Monte
navigation software system [12–14]. The use of the gimbal enables the spacecraft to
point the camera without changing attitude, thus enabling the spacecraft to image as
needed without interrupting other operations. Prior onboard operational experience
with optical data has shown that, in most cases, the image pointing direction can be
ascertained using the known star background to a micro radian accuracy [15]. This has
been assumed in our simulation with pointing errors injected at this level. Use of this

Table 2 Range of Optical Camera Properties [10]

Navigation Camera Class FOV (deg) Θ μradð Þ Mmax ψmin degð Þ

Low-end 26.9 128 9.5 30

Mid-level 7.0 60 10.5 30

High-end (selected for this study) 0.6 10.0 13.5 30
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approach also implies that attitude information is not required; however, in the event
that orientation determination is not possible an explicit interface to the spacecraft for
its attitude and the camera gimbal pointing angles would be needed. Also, for this study
we are only imaging bodies that appear as point sources in the focal plane (i.e., they are
distant enough that the center of figure can be determined easily within a pixel).
Asteroid ephemeris errors are included in the simulated truth trajectories for the
asteroids while the onboard filter model will either ignore these errors (when processing
both CPF-phase and OpNav data) or consider them (when processing OpNav data
only).

Onboard Model Considerations and Filter Design Using a Mars
Navigation Case Study

In addition to minimizing the need for frequent calibration data updates, another
objective in implementing an autonomous navigation system is to minimize model
complexity to reduce computational burden while still maintaining sufficient
trajectory accuracy and solution robustness. For example, high fidelity ground-
based deep space navigation utilizes complex spacecraft shape models and reflec-
tive properties to accurately capture solar radiation pressure effects. Beyond
complexity, these models are also dependent on having knowledge of spacecraft
attitude at all times to accurately determine solar radiation pressure forces. As a
potential onboard model simplification, we consider the possibility of replacing an
attitude dependent, complex spacecraft shape model with a simpler attitude-free,
average solar-oriented area and compensate for the fidelity reduction using process
noise acceleration parameters in the navigation filter to maintain convergence. We
also explore the question of whether a simple generic three-axis stochastic accel-
eration can be used to maintain filter convergence in the presence of unknown
small accelerations that result from having imperfect model information. We
address the feasibility of this, other reduced-order model considerations, and
navigation filter design by focusing on a realistic scenario of navigating a space-
craft to Mars.

The late-cruise, approach, and entry navigation of the recent Mars InSight lander is
a representative (and extensible) use case for determining a set of models and
developing a navigation filter design that would be suitable for onboard navigation.
We select this because it is a mission that demonstrates the state of the art in deep
space navigation, and there is a wealth of recent data for use in validating our results.
Our truth simulations use the models and error assumptions that the InSight naviga-
tion team utilized in their navigation system design as documented by Abilleira [16]
with the exception that the reaction control system (RCS) small forces values selected
for this study were used earlier in the project. The nominal InSight trajectory for
launch on May 5, 2018 is shown in Fig. 1. We have selected the last 45 days (after
TCM-3) and ending at entry (defined at a 126 km altitude and nominally with a Mars
centered, inertial speed of 5.76 km/s) as the period for our investigation since this
represents the most dynamic phase of the trajectory where specific entry flight path
angle constraints need to be achieved. In particular, InSight’s delivery and knowledge
requirements were:
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1. Delivery entry flight path angle (EFPA) should be −12° ± 0.21° (3-σ),
2. Knowledge of the delivered EFPA must be within ±0.15° (3-σ).

Using simulated truth trajectories and measurement data derived from the InSight
models we have been able to develop autonomous navigation model and filter designs
to achieve InSight’s Mars atmosphere delivery objectives while minimizing model
complexity and retaining solution robustness. Indeed, the navigation simulation tool
used to develop the autonomous navigation model and filter designs was validated
using the InSight navigation plan results and the associated high-fidelity models
available in Monte. In the remainder of this section we analyze the specific adaptations
needed for an onboard autonomous navigation to be able to support deep space
navigation in at least the Mars navigation case being considered here.

Simplifying the Spacecraft Shape and Associated Solar Pressure Modeling

The pre-launch high-fidelity InSight shape model consists of many components that require
their own reflectivity parameters and nominal orientations.3 The shape model has five

Fig. 1 InSight trajectory for launch on May 5, 2018 from Abilleira [16]. The period of investigation in this
study is the last 45 days beginning after TCM-3 and ending at entry on Nov 26, 2018

3 During actual flight, the InSight navigation team switched the SRP model from a component model to one
based on spherical harmonics.
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components representing the solar arrays, the launch vehicle adapter on the cruise stage, the
cruise stage outer ring, and the backshell (two components). The InSight cruise configura-
tion is illustrated in Fig. 2. The models include diffuse and specular reflectivity coefficients
for each component. For the period being investigated, InSight maintains its orientation such
that the normal to the solar arrays is oriented towards the Sun while still allowing access to
the Earth via theMGA. The result is a relatively constant solar oriented area, which suggests
that an aggregate area, single component spherical shape might be adequate for an onboard
spacecraft shape representation. In addition to its simplicity, this model is also attractive as it
is independent of attitude, thus eliminating the need for real-time attitude information from
the spacecraft. For the InSight example, assuming a constant solar-oriented area yielded
three axis solar radiation pressure accelerations that differed from the truth by less than 1.5%
resulting in acceleration difference magnitudes of <5e-13 km/s [2]. The acceleration
differences exhibited biased values in each direction (i.e., non-zero mean value) with
aperiodic variations around each bias. This suggests that a bias and stochastic acceleration
model might support compensation for these differences, which is explored and confirmed
in this study.

Small Forces Modeling

Because the InSight cruise stage maintains attitude with a three-axis unbalanced
thruster control system, there are numerous (almost continuous) small translational

Fig. 2 InSight Cruise Configuration [16]
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forces perturbing the trajectory resulting from InSight’s attitude maintenance [16]. Like
SRP, these small forces impact not only the trajectory, requiring periodic trajectory
correction maneuvers, but knowledge errors as these small forces degrade overall
trajectory estimation and prediction. The InSight project, via experience with the Mars’
Phoenix mission that used a similar spacecraft, generated a model with aggregate bias
accelerations in each spacecraft body fixed axis direction. The initial bias values were
uncertain as well as the associated thrust direction. On top of these initial uncertainties
the acceleration magnitudes varied stochastically. As with SRP, we are investigating
the ability to replace a tuned body-fixed three axis random bias and stochastic model
with a simpler generic model that can robustly maintain filter convergence while still
providing sufficient trajectory estimation accuracy to support navigation requirements
(i.e., delivery to the top of the Martian atmosphere). The truth acceleration profile used
in this study is an earlier version used by the InSight navigation team. Details of these
accelerations and the other spacecraft truth models are listed in Table 3.

Trajectory Correction Maneuver (TCM) Targeting and Errors

In the period being investigated (i.e., the last 45 days prior to entry) there are three
maneuver opportunities: TCM-4 at E-15 days, TCM-5 at E-8 days, and TCM-6, the
final maneuver, at E-22 h. These maneuvers are needed to correct for all of the
trajectory perturbations that result from modeling errors from solar pressure, small
forces, orbit knowledge errors and execution errors propagating from prior TCMs.
Since the current studies focus is on orbit determination and not on the most efficient
targeting method, the selected targeting algorithm used for determining the TCMs that

Table 3 Truth Dynamic Models for the Mars Approach Spacecraft

Parameter Truth Model Injected Error (1σ)

Initial Position Targeted for each simulated truth
trajectory to achieve Mars entry
conditions.

10 km (consistent with a converged
handoff from ground-based navi-
gation)

Initial Velocity Targeted for each simulated truth
trajectory to achieve Mars entry
conditions.

1 cm/s (consistent with a converged
handoff from ground-based navi-
gation)

Solar Pressure Model Spacecraft (SC) with 5 shape
components and separate
reflective properties

SC Area Scale Factor (SF) Random
Bias = 10%

SC Area SF Exponentially
Correlated
Random Variable (ECRV) = 3%
with τ = 7 days

Small Forces SC x-accel = 6.6e-12 km/s2

SC y-accel = 8.8e-14 km/s2

SC z-accel = −3.9e-14 km/s2

Accel SF Random Bias = 3%
Accel Pointing Random Bias = 3°
Accel SF White Noise = 5%

Trajectory Correction
Maneuvers

Realized delta-V varies with
each trajectory.

Gates Model delta-V Errors: [17]
8.95 mm/s magnitude additive
0.667% magnitude SF
13.5 mm/s direction additive
0.00472 rad pointing
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guide the separate truth trajectories to achieving the entry condition is a robust, capable
nonlinear least squares optimization algorithm developed by Hanson and Krogh [18].
For simplicity, the targeting is fixed-time, which usually results in higher delta-V costs
(more on this later when discussing EFPA results). It is the aim of future work to move
to time-variable targeting to minimize TCM magnitudes and switch to a simpler
targeting method using K-matrices as described by Maize [19] and demonstrated by
JPL’s legacy AutoNav system during Deep Space 1 cruise navigation [20].

Other Models

The other relevant solar system models that an onboard navigation system must use
when propagating trajectories, computing observables, and other relevant quantities
(such as Mars entry target conditions) include planet, satellite, and asteroid ephemer-
ides and their associated body properties (like mass). Of course, the knowledge of these
quantities is imperfect and, as with the other errors discussed previously, they have
been injected into the truth simulation. Note that the imaging campaign with the OpNav
camera includes 37 different main belt asteroids. These were arrived at by the heuristic
asteroid selection algorithm developed by Broschart [10] as being a judicious choice for
this trajectory that factors asteroid brightness, camera quality, and asteroid locations
plus their associated uncertainties to arrive an optimal mix of asteroids. Additionally,
Phobos and Deimos, Mars’moons, are imaged by the camera – this becomes especially
valuable as the spacecraft nears Mars since, with the precise knowledge of Phobos and
Deimos orbits relative to Mars, these images provide strong target-relative information.
Table 4 has a list of the models, errors, and asteroids.

Radio Tracking and Imaging Campaign

Traditionally in the late cruise near 45 days prior to entry of a Mars lander, DSN
tracking is increased to continuous 24/7 support. That is, as each of the DSN stations

Table 4 Truth Models for Solar System Bodies

Parameter Truth Model Injected Error (1σ)

Earth/Mars
Ephemeris

JPL DE430 DE430 correlated covariance for
Earth and Mars

Mars GM DE430 value 2.8e-4 km3/s2

Phobos/Deimos
Ephemeris

JPL MAR097 0.5 km in each position
component

Asteroid
Ephemeris

PDS asteroid database for the following asteroids:
2,000,258, 2,004,483, 2,000,140, 2,000,269, 2,001,550,

2,002,577, 2,005,142, 2,002,839, 2,001,432,
2,001,946, 2,000,030, 2,001,627, 2,000,070,
2,000,043, 2,000,172, 2,000,173, 2,000,694,
2,000,951, 2,025,916, 2,001,987, 2,000,198,
2,001,224, 2,000,204, 2,001,235, 2,000,852,
2,000,598, 2,000,475, 2,000,606, 2,000,352,
2,000,353, 2,002,406, 2,001,006, 2,000,112,
2,000,498, 2,000,115, 2,001,147, 2,000,253

PDS asteroid database correlated
covariance for each asteroid
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rotates into view of the lander a DSN antenna at the complex will collect two-way
Doppler and range data between the station and the spacecraft. Typically, only one
antenna is in view at a time. However, when two DSN antennas at different complexes
are in view of the spacecraft, this data can be augmented with Delta Differenced One-
Way Range (DDOR) data (providing ‘plane of sky’ information to complement the
‘line of sight’ data from range and Doppler).

For our onboard navigation case, we replace the two-way range and Doppler with
uplink-only one-way CPF-phase and start with this level of support (tracking contin-
uously) but then consider the impact of reducing the DSN support to two hours of
transmission from one station per day (vs 24/7 support). Since DDOR is by definition a
ground-based data type, it is not considered – instead we use the onboard optical data as
a complementary data type. We include only uplink one-way CPF-phase tracking from
the in view DSN stations (using a traditional 10° elevation mask). The selected DSN
antennas include DSS-15 at Goldstone, California, DSS-45 at Madrid, Spain DSS-65 at
Canberra, Australia for the case with continuous tracking. An intriguing question to
examine is the impact of reducing this level of tracking. We do so by presenting results
when the tracking support is reduced to a single antenna (DSS-65) at 2 h per day, which
represents a ~ 91% reduction in tracking time.

Turning to the onboard, gimbaled camera’s imaging campaign, there are four
separate cadences that have been programmed. Beginning at E-45 days, 9 to 10
different asteroids (from the set 37 asteroids identified in Table 4) are imaged every
5 days and Phobos and Deimos are imaged every day. The particular asteroids selected
for imaging have been determined by a heuristic algorithm developed by Broschart
[10]. At E-12, the asteroid imaging frequency increases to 10 daily while Phobos and
Deimos also continue to be imaged daily. Then at E-8, the frequency increases to every
6 h. Finally, at E-2 days it is every hour until entry. The images of one target are taken
in bursts of 5 images as aid in reducing measurement noise.

Filter Algorithm Selection and Filter Design

The state-of-art navigation filter method for deep space navigation with decades of
successful use is the batch sequential linearized Kalman filter (LKF) with iteration
using fixed-interval backwards smoothing [21, 22]. Note, iteration is defined as
incorporating the LKF solution for an initial state (based on processing an arc of data
in a forward pass) into the reference initial state, repropagating the trajectory and
variational equations, and then reprocessing the data arc to determine a new trajectory
solution. The process repeats to convergence or after a specified number of iterations.
To ensure numerical stability the filter must be implemented in a factorized form such
as UD or in an upper-triangular Square Root Information Array (SRIF). These methods
are well known and have been thoroughly documented in Bierman [21] and imple-
mented in Monte for operational use [12]. It should be noted that the arrival of multiple
measurements, at differing times, and with gaps requires modifications to the typical
Kalman filtering algorithms which has been documented in Ely [6] and utilized in this
study.

A specific question to assess regarding modifications to this traditional filter ap-
proach that would make it better suited for onboard use is whether iteration and/or
smoothing are required or can a simple forward filter processing multi-week arcs
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(45 days in the present case) of observables produce convergent results? Because of
significant nonlinearities, it was found that an iterated filter is indeed required and that
forward filtering-only with an LKF (with no iteration) yielded biased and divergent
solutions. A derivative question to ask, if iteration is required, is smoothing (when
stochastic parameters are present) required as well or would backwards mappings
suffice? Backwards smoothing to an initial state to iterate an LKF requires significant
runtime memory resources that grows with the length and amount of measurement data
being processed. Even though efficient smoothing algorithms exist and have been
implemented in Monte (see Beirman [22]), they fundamentally require significant
storage (relative to a forward filter that is saving only selected solution and covariance
data). For an onboard implementation that must iterate, is it possible to linearly map
(using the state transition matrix) the LKF solution at the end of a data arc back to the
initial epoch, add this to the nominal initial state, and then iterate with the mapped state
(vs a smoothed initial state)? Mapping using the state transition matrix is more efficient
than smoothing (a single matrix multiply vs many) and doesn’t require any additional
onboard storage, as the variational equations have already been propagated and stored
for use in the forward LKF run. The answer to this question is indeed yes, and will be
explored in the results.

Another question to ask is can an extended Kalman filter (EKF) be adapted so that
iteration is not required? Recall, that the traditional EKF re-linearizes the nominal
trajectory using the filter solution after processing each measurement. The deep space
navigation problem is not well suited to this as a single measurement typically does not
contain sufficient information to yield solutions with enough accuracy to maintain a
stable EKF recursion. This will be quantified later in the results for the EKF simula-
tions. Rather an arc of measurement data must be processed so that sufficient orbit
knowledge is gained with the result that the EKF recursion remains stable and yields
statistically consistent solutions. In the results, this variant of the EKF is analyzed and
compared with the iterated LKF (that maps rather than smooths).

Finally, a pragmatic concern is selecting an optimal data arc length for the LKF
before moving the window forward and processing the next arc of data. This selection
will need to account for critical events such as TCMs or as delivery to the entry
condition nears. Another consideration is there may be insufficient data between the
final TCM and entry for a full LKF iteration that initializes with full uncertainties and
may need to initialize with the prior covariance (hence, becoming an EKF). These
considerations will be examined in future work.

Results and Discussion

The preceding analysis on eliminating calibration data for CPF-phase, reduced-order
dynamic modeling for SRP and small forces has led to filter compensation by
expanding the onboard filter state to compensate for these modeling errors using
stochastic process noise models. An immediate consequence of using reduced-order
modeling is the filter cannot be optimally tuned because of the mismatch in the
underlying nonlinear models. A simple strategy to account for this mismatch that
maintains filter convergence is to apply process noise at values larger than would be
required if the truth and nominal nonlinear models did match. In the current application,
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this approach was selected by adding generic 3-axis stochastic discrete white noise
acceleration parameters to the filter state to compensate for the simplifications used by
the onboard modeling (i.e. replacing the multi-component spacecraft model with an
attitude independent sphere) and any realized stochastic effects imparted in the truth
SRP and small forces from the RCS. A significant finding with this was, if the truth
stochastic processes had a non-zero mean, that estimating for these mean values as
biases was important for maintaining convergence during the iteration process. This
manifested itself specifically in the current scenario with need to include SRP scale
factor bias estimation. The onboard filter configuration that was determined to provide
the best performance in the presence of these model reductions is listed in Table 5.

Onboard model, CPF-phase only, iterated LKF no smoothing We begin by presenting
the Mars approach and entry current state navigation errors and uncertainties when
using only CPF-phase data (no OpNav data present) in the case when there is a
continuous broadcast of uplink carrier and range signals from whichever of DSS-15/
45/65 is in view. The filter model represents the onboard case using only reduced order
dynamic models, simple Earth orientations, fitted Earth station trajectories, and pre-
dicted long period calibration data for troposphere, UT1, pole motion and using only
and predicted calibration data (we’ll refer to this as the onboard model). The Monte
Carlo simulation includes 200 realizations of truth trajectories and the associated set of

Table 5 Onboard Navigation Filter Configuration

Parameter Filter Parameter Model Type Uncertainty/Strength (1σ)

Initial Position Dynamic 1000 km in each component

Initial Velocity Dynamic 1 km/s

Solar Pressure Scale Factor Bias 11%

3-Axis Acceleration Noise Discrete White Noise 1.e-12 km/s2 per day scaled and applied
on a 1-h interval in each direction
(see Ely [23] p. 309 for details on
scaling discrete white noise).

Clock Offset Bias 1 μs

Clock Rate Bias 1.e-14

Phase Ambiguity (& Range Bias) Per Pass Bias 3 m

Mars GM Consider 0.00028 km3/s2

Earth Pole Motion Random Walk 2.4e-11 rad/s1/2 (~ 8 mas/30 days)

Earth UT1 Random Walk 2.5e-6 s/s1/2 (~ 4 ms/30 days)

Earth Station Locations Bias 10 cm in each component

Dry Troposphere Delay ECRV 2 cm with τ = 3 h

Wet Troposphere Delay ECRV 5 cm with τ = 0.75 h

Earth &Mars Ephemerides Consider DE430 Earth-Mars Covariance

Phobos & Deimos Ephemerides Consider 0.5 km in each position component

Asteroid Ephemerides Off (radio/optical combined)
Consider (optical only filter)

PDS Correlated Covariance (position
components uncertainties <100 km
for all selected asteroids with some
as low as 6 km)
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CPF-phase observables generated in each realization. In each realization, the onboard
filter model is the LKF and starts with the same nominal reference trajectory and
processes the data from the realization, and iterates for 3 times. The final iterated
current state position errors and associated uncertainties in each position component
and associated RSS (in the lower right) are presented in Fig. 3. Shown are the 1-σ and
3-σ uncertainty bounds as well as the filter solution error obtained by differencing the
filter solutions (+ reference trajectory) with the truth trajectory. Also listed in the results
are statistics of the percentage that a filter solution exceeds the 1-σ and the 3-σ bounds.
In the present case, this is 11% and 0.015%, respectively, from a population of 649,200
samples. Assuming ergodic processes and statistics that conform to a normal distribu-
tion, one expects 1-σ exceedances to be <31.7% of the time and 1-σ exceedances to be
<0.3% of the time, which is true for this case. Another observation with these results is
as the spacecraft nears Mars the errors grow until the final few hours when the
uncertainties (and errors) drop to less than 150 m. The growth in the error/
uncertainty is due primarily to the degrading Earth UT1 and pole motion knowledge
when using the months-long predicts. The sudden drop in trajectory uncertainty in the
final hours prior to entry is due to the increased information content of the observable
as the Mars-centric hyperbolic trajectory changes significantly.

Ground-based model, CPF-phase only, iterated LKF with smoothing It is useful to
examine a case that is processing the same data but utilizes the full, high-fidelity
spacecraft models, all available daily troposphere delay data, and full high precision
Earth frame modeling with UT1 and pole motion daily calibration data (we’ll refer to
this as the ground-based model). In other words, processing the data as if this were
ground-based data. With this comparison, we can ascertain the impact of reducing
model order and using model predicts vs daily calibration data. The results for this case
are shown in Fig. 4. We see that maximum 1-σ and 3-σ uncertainties have dropped
from 30 km and 90 km, respectively, at 950 h exhibited in Figs. 3 to 20 km and 60 km.

Fig. 3 Mars approach and entry position errors for 200 realizations and uncertainties (1-sigma dark orange, 3-
sigma brickred) for case with only uplink one-way CPF-phase data from the DSN when using the onboard
model and an iterated LKF with no smoothing
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This indicates that the model fidelity reductions employed yield about a 50% increase
in overall position uncertainty over most of the cruise. Yet, even with the uncertainty
increase seen with the onboard model over much of the cruise, navigation state
knowledge at atmosphere entry between the onboard model and that obtained with
the high-fidelity ground-based models is similar (hence there is little loss of knowledge
at entry when using the onboard, simplified models).

Onboard model, Optical-only, iterated LKF no smoothing The next case examines the
case when using only the gimballed camera OpNav data imaging the 37 asteroids

Fig. 4 Same example as shown in Fig. 3 except using high fidelity, ground-based model and iterated LKF that
does smooth

Fig. 5 Mars approach and entry position errors with only optical imaging of asteroids and Phobos and Deimos
when using the onboard model and an iterated LKF with no smoothing. Additionally, to maintain solution
consistency with the uncertainties the asteroid trajectory uncertainties are considered
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(listed in Table 4) while enroute to Mars as well as Phobos and Deimos. In order to
keep the filter errors in line with the formal statistics it is required that the asteroid
ephemeris errors need to be considered. This increases the complexity of the onboard
filter, but is still tractable (considering the 37 asteroids adds 222 partials that needed to
be computed and then used in the consider calculations). The results for this case are
shown in Fig. 5. It is clear that the filter errors are consistent with the formal
uncertainties with exceedances well below the normal distribution assumptions. Note
that sawtooth pattern is a result of imaging every five days, so that between image
periods the trajectory errors grow, and then improve when images are taken.

Fig. 6 Mars approach and entry position errors with CPF-phase from the DSN and optical imaging of
asteroids and Phobos and Deimos when using the onboard model and an iterated LKF with no smoothing

Fig. 7 Mars approach and entry velocity errors with CPF-phase from the DSN and optical imaging of
asteroids and Phobos and Deimos when using the onboard model and an iterated LKF with no smoothing
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Comparing with the onboard model and CPF-phase only case (Fig. 3), the position
formal uncertainties for the optical case are 2 to 3 times larger for most of the cruise,
but, as is typical of OpNav, improve as the spacecraft nears Mars. Indeed, at entry the
uncertainties are on the order of ~2 km (3-σ) – compared to <150 m (3-σ) for the CPF-
phase data only case. Note that with both the CPF-phase only and the optical-only
cases, the EFPA knowledge conditions are achieved, but the delivery conditions proved
more difficult to meet and were not satisfied. We’ll see next that the combination of the
two data types yields sufficient trajectory knowledge to support both the EFPA delivery
and knowledge requirements.

Onboard model, CPF-phase combined with optical, iterated LKF no smoothing We
now examine the combination of both data types – CPF-phase and optical – with the
onboard processing model. One key difference with the onboard filter model used in
this case, relative to the optical-only case, is the asteroid ephemeris errors are not

Fig. 8 Mars entry flight path angle as a function of data cut off prior to entry. Top plot is spans from entry-
16 days to entry. The bottom plot is for the final two days. Note that the vertical green dash-dot line represents
the onboard DCO (just before TCM-6) for the delivery EFPA requirement and the vertical yellow dash-dot
line represents the DCO (at entry) for the knowledge EFPA
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considered (they are compensated for via use of a conservative image pixel noise
value). The reason for doing this is to further simplify the onboard filter. As indicated at
the start of this paper, each data type has different geometric sensitivities that are
complementary, and should, when combined, improve solutions relative to either alone.
The Monte Carlo position errors and associated uncertainties are shown in Fig. 6 and
the velocity errors/uncertainties in Fig. 7. Comparing with CPF-phase-only position
results in Fig. 3 and the optical-only position results in Fig. 5, the combined data results
in Fig. 6 are far more accurate (note that all the position uncertainty results have been
plotted on the same scale for clarity). Indeed, the combined results quickly achieve
<20 km uncertainties (3-σ) in each component, and by the last week <10 km (3-σ). The
entry knowledge is <200 m (3-σ) – a slight degradation from the CPF-phase-only but
not significant (the degradation results from considering Phobos/Deimos errors when
processing the image data and impacts the Mars-centric state knowledge). Finally, note
that there were no perceptible ill effects for not considering the asteroid ephemeris
errors.

Maintaining improved position and velocity knowledge should aid in minimizing
required delta-V capacity. However, more important is the ability of the onboard
navigation to meet the entry flight path angle (EFPA) delivery and knowledge require-
ments for safe Mars atmosphere entry. Recall that in this case delivery errors need to be
<0.21° (3-σ). This needs to be achieved by the data cut-off for the final TCM (E-22 h),
and knowledge errors from the final navigation state need to be <0.15° (3-σ). For
ground-based navigation the data cut off for delivery is 1 day before TCM-6 (at
E-22 h); however, for onboard navigation this cut-off can be just prior to the maneuver
because there is no latency from light time delays or ground-based processing time.
Likewise, knowledge errors for ground-based navigation are usually based on the last
navigation state obtained at E-6 h and then uploaded to the spacecraft whereas, with
onboard navigation, this final state occurs at entry. This represents one of the chief
advantages of onboard navigation, having the ability to use navigation knowledge in
near real-time vs using solutions with significant latencies. The EFPA as a function of
the data cut off (DCO) time prior to entry is shown in Fig. 8 with the bottom plot
showing a zoom of the final two days. The results in the final day show that all the
realization errors (except for one) and associated 3-σ uncertainties lie within the 0.21°
delivery limit by the time of TCM-6 (E-22 h). One artifact of using fixed-time targeting
is delta-Vs are typically larger in magnitude then with time-variable targeting and,
hence, have overall larger execution errors. The EFPA results are dominated by these
execution errors; hence, by going to time-variable targeting it is expected that the 3-σ
delivery EFPA uncertainties at TCM-6 would fall below the requirement with more
margin. EFPA knowledge requirements are easily met, and, at <0.01° (3-σ), are order
of magnitude better than required.

Onboard model, CPF-phase combined with optical, EKF This case is the same as the
prior one, but the filter algorithm is now the EKF. As mentioned previously, for an
EKF to remain convergent with this class of problem small arcs of data must be
processed prior to re-linearizing the reference with the filter solution. For our EKF
implementation, we define a data arc as a set number of measurements (vs a period of
time). We parametrically explored the number measurements required to achieve
consistent and predictable converged filter behavior. We started with 10 measurements,
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but it quickly became evident this was insufficient (all filters diverged). At 25 mea-
surements the solutions became well behaved, and produced error statistics for position
and velocity that were consistent with the formal uncertainties. The larger the number,
the more efficient the filtering approach became. This is because each relinearization
forces reintegration, which utilizes computational resources. However, too many mea-
surements and the arc becomes too long and nonlinearities begin to affect convergence,
for the current case this was observed at 2000 measurements. Hence, selecting a value
between 25 and 2000 would yield accurate answers. For the present case, 500 was

Fig. 9 Mars approach and entry position errors with CPF-phase from the DSN and optical imaging of
asteroids and Phobos and Deimos when using the onboard model and an EKF with relinearization after every
500 measurements are processed

Fig. 10 Mars approach and entry position errors with CPF-phase for only 2 h/day from DSS-65 and optical
imaging of asteroids and Phobos and Deimos when using the onboard model and an iterated LKF with no
smoothing
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selected as the best compromise between accuracy and efficiency. It should be noted
that this number is now a design parameter, and a different scenario would likely yield
a different optimal number of measurements to process before relinearizing. The results
for the EKF are shown in Fig. 9. Compared with the results from the LKF in Fig. 6,
there is no substantial difference, and indicates that an EKF is a viable alternative to the
iterated LKF. However, our experience with this example shows that selecting an EKF
requires analysis of a minimal data arc that would be needed to maintain convergence.
Additionally, we did encounter some examples with particular realizations that had n-
sigma early excursions, that the EKF never recovered, while the iterated LKF with no
smoothing always did. Early analysis by Ely [24] examining a Mars orbiting case with
onboard models also suggested that the EKF would diverge when initial errors were
significant. These observations lead us to recommend the iterated LKF with no
smoothing over the EKF for this application.

Onboard model, reduced CPF-phase combined with optical, iterated LKF no
smoothing In this final case we examine the impact of reducing the uplink radio
tracking from 24/7 to 2 h once per day from a selected DSN station (in this case
DSS-65 provides the best observability). One change is we did include asteroid
ephemeris estimation into the filter to reduce an observed sensitivity to these errors
(the trajectory errors began exceeding the 3-sigma bounds more frequently than typical)
in the final days prior to entry. The position errors and uncertainties are shown in
Fig. 10. It is evident that there is no significant degradation in performance except in
the final day with a small peak in uncertainty. We hypothesize that adding more
tracking in the final day would improve accuracy and solution robustness. But even
with that additional tracking, this case shows that tracking time could be significantly
reduced relative to typical normal ground-based navigation and still safely achieve
Mars entry.

Conclusion

In this work we have shown that a novel one-way radiometric data type, called CPF-
phase, is suitable for onboard autonomous navigation because it eliminates charged
particle effects, a key error source affecting deep space orbit determination. When this
data is derived from an onboard, high precision clock, such as DSAC, analysis has
shown that minimal calibration data is needed to successfully use it for accurate
onboard navigation. Also shown is use of available predictive, long-period models
for the Earth troposphere and orientation combined with appropriate filter compensa-
tion models to account for real time effects from these errors proved sufficient for
maintaining navigation filter convergence.

The research also examined dynamic model simplifications to further simplify the
onboard modeling and computations required for effective and accurate autonomous
navigation. A representative, high fidelity simulation of Mars cruise and entry naviga-
tion was used for evaluating the efficacy of the model considerations. It was found that
simplified models are viable in this context, indeed with simple filter process noise
compensation a simple ‘cannon ball’model of the spacecraft was sufficient for meeting
Mars’ entry requirements when sufficient measurement data is available.
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Filter implementation considerations between using an iterated LKF or an EKF were
examined and both were found to be suitable. For the LKF with iteration, it was shown
that simply backwards mapping a final state solution to the initial state for iteration
versus backwards smoothing to the initial state was satisfactory. This simplification
significantly reduces onboard memory and processing requirements. While for the
EKF, some batch processing of measurements is still required for maintaining solution
convergence where the batch length is a design parameter.

Coupling one-way CPF-phase with onboard optical imaging from a gimbaled
camera yields navigation solutions for a Mars lander that are sufficiently accurate to
enter the Martian atmosphere. Indeed, the combination of the two data types yields
solutions that are nearly an order of magnitude more accurate than either by itself. The
result is a robust onboard navigation approach that is naturally fault tolerant in the event
there are issues with one of the measurement sources. Furthermore, these navigation
results are possible while using reduced order models and an iterated LKF without
smoothing, making the approach amenable for implementation on a resource
constrained spacecraft computing system.
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