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Abstract
In this work, the Taylor series based technique, Analytic Continuation is implemented
to develop a method for the computation of the gravity and drag perturbed State
Transition Matrix (STM) incorporating adaptive time steps and expansion order. Ana-
lytic Continuation has been developed for the two-body problem based on two scalar
variables f and gp and their higher order time derivatives using Leibniz rule. The
method has been proven to be very precise and efficient in trajectory propagation.
The method is expanded to include the computation of the STM for the perturbed
two-body problem. Leibniz product rule is used to compute the partials for the recur-
sive formulas and an arbitrary order Taylor series is used to compute the STM. Four
types of orbits, LEO, MEO, GTO and HEO, are presented and the simulations are
run for 10 orbit periods. The accuracy of the STM is evaluated via RMS error for the
unperturbed cases, symplectic check for the gravity perturbed cases and error prop-
agation for the gravity and drag perturbed orbits. The results are compared against
analytical and high order numerical solvers (ODE45, ODE113 and ODE87) in terms
of accuracy. The results show that the method maintains double-precision accuracy
for all test cases and 1-2 orders of magnitude improvement in linear prediction results
compared to ODE87. The present approach is simple, adaptive and can readily be
expanded to compute the full spherical harmonics gravity perturbations as well as the
higher order state transition tensors.
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Introduction

In Astrodynamics, the State Transition Matrix (STM) of the two-body problem works
as a sensitivity of the current states to the initial conditions. Hence, it computes the
propagation of error of the initial states over time. Computing the STM is ubiquitous
to spaceflight dynamics, navigation and control, [20, 21, 26, 32]. Goodyear pre-
sented an exact analytical solution of the two-body Cartesian STM and the method
is valid for all types of orbits for the attractive force and for the hyperbolic and rec-
tilinear orbits for the repulsive force, [10]. However, it is complicated to introduce
third body effect in this method and the method requires transcendental function
evaluation, [21]. This method has been simplified to increase the numerical effi-
ciency for the Keplerian elliptical orbit, [6, 19]. However, gravity perturbation was
not incorporated in this simplified method, [6]. Recently a decoupled direct method
is developed by Hatten and Russel using fixed step size Runge-Kutta method, [13]. In
this method, first and second order STM is decoupled from the state propagation to
make the procedure computationally efficient. To formulate the STM with Spherical
Harmonic Gravity model, Read et al. applied Modified Chebyshev Picard Iteration
method, [25]. The method is shown to be well suited for parallel implementation
for additional speed of computation. Markley presented a J2 perturbed approximate
Cartesian STM, [21]. This method is also capable of handling the n-body problem.
A major drawback of this method is that it is restricted by short time intervals. It can
compute the J2 perturbation term for only up to 6 second time step.

A geometric method is developed by Gim and Alfriend to derive the STM for
the relative motion including gravitational perturbation, [9]. This method uses the
relationship between the relative states and the differential orbital elements. To
implement the STM in practical engineering applications, Yamanaka and Ankersen
linearized the differential equations of relative motion on elliptical orbits, [35]. This
linearized method is valid for unperturbed elliptical orbits. Koenig et al. derived
the STM using classical Keplerian orbit elements, [18]. They introduced J2 and
differential drag perturbation in their work.

In low earth orbit (LEO), there is another inevitable perturbation, which is atmo-
spheric drag. It depends on the shape, size and orientation of the orbiting body. Drag
perturbation has been extensively studied, [5, 7, 17]. Mavraganis and Michalakis
reviewed drag along with radiation pressure exerted by the major body on the minor
one, [22]. Vallado and Finkleman discussed the sources of uncertainty in the drag
models and evaluated the interrelation among different parameters of the problem,
[34]. The literature is rich with numerical techniques that study the orbit problem in
the presence of perturbations, [33]. More recently, parallel implementation of Mod-
ified Chebyshev Picard iteration on various gravity fields using multiple cores and
Graphic Processing Units (GPUs) are discussed, [1]. Atallah et al. also focused on the
comparison among different numerical integrators for perturbed orbit propagation in
terms of accuracy and efficiency, [2]. The Analytic Continuation method is a numer-
ical integration method that is based on Taylor series expansion and Leibniz product
rule. This method has already been proven to be very precise in solving unperturbed
and J2 − J6 gravity perturbed two-body problem, [16, 31]. Later on, exponential
atmospheric drag model is introduced, [14]. Recently, the method has been further
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developed to handle the full spherical harmonics gravity potential up to 250 degree
and order, [15].

In this paper, the Analytic Continuation Method is used to derive the State Transi-
tion Matrix for the perturbed two-body problem. In “STM Derivation Using Adaptive
Analytic Continuation”, the procedure to derive the drag and gravity perturbed adap-
tive STM is discussed. In “Numerical Simulations”, first results for the unperturbed
case are compared with Lagrange’s F and G solution. Then the method is expanded
for the J2 − J6 gravity perturbation terms and compared against ODE45 (based on
Runge-Kutta (4,5) integration method, [4, 8]), ODE113 (based on variable order
Adams-Bashforth-Moulton predictor corrector method, [27, 28]) and ODE87 (based
on 8-7th order Dormand and Prince formulas, [11, 12, 24]). Atmospheric drag model
is included and error propagation of the states using Analytic Continuation STM
are checked against the results using ODE87. Finally, discussion of the results and
concluding remarks are presented in “Discussion” and “Conclusion”, respectively.

STM Derivation Using Adaptive Analytic Continuation

In the Analytic Continuation technique, two scalar variables are defined as, f = r.r
and gp = f −p/2, where r is the position vector and p is an integer. In the two-body
problem, the acceleration vector is defined as,

r(2)(t) = −μ
r(t)

(r(t).r(t))3/2
(1)

where, r(t) is the position vector at current time and μ is the standard gravitational
parameter.
Next, Leibniz product rule is implemented to derive the recursive formulas for
computing the higher order time derivatives of the variables:

r(n+2)(t) = −μ

n∑

m=0

(
n

m

)
r(m)(t)g

(n−m)
3 (t) (2)

f (n)(t) =
n∑

m=0

(
n

m

)
r(m)(t).r(n−m)(t) (3)

g
(n+1)
p (t) = − 1

f (t)

{
p
2 f (1)(t)g

(n)
p (t) +∑n

m=1

(
n
m

) (p
2 f (m+1)(t)g

(n−m)
p (t)+

f (m)(t)g
(n−m+1)
p (t)

)} (4)

Finally, the higher order time derivatives of the position vector are substituted into
the Taylor series expansion to obtain position and velocity of the next time step as
shown in Eqs. 5 and 6,

r(t + dT ) = r(t) +
n∑

m=1

r(m)(t)
dT (m)

m! (5)

r(1)(t + dT ) = r(1)(t) +
n∑

m=2

r(m)(t)
dT (m−1)

(m − 1)! (6)
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To increase efficiency of computation, adaptive time step and expansion order are
applied to the method, [15]. As in embedded Runge-Kutta methods, the adaptation
is based on defining absolute and relative tolerances, δa and δr , respectively. The
expansion order is then determined from,

N = round(−δf aclog(δ) + kinc) (7)

where, δ is defined as, min(δa, |r|δr) in the first step and max(δa, δa × f ac) in the
subsequent steps. Here, f ac for canonical units is defined as,

f ac = ||r(t0)| − |r(t)|| × DU

10000
(8)

The time step is then determined using,

dT = hf ac × min(dTa, dTb) (9)

where, dTa and dTb are calculated from δ×(N−1)!
|r(N)|1/(N−1)∞

and δ×(N−2)!
|r(N−1)|1/(N−2)∞

, respectively

which represent the last two terms in the Taylor series. The adaptation parameters
δf ac, kinc and hf ac are tuned towards accuracy or speed and to increase the method
robustness to handling different types of orbits.

According to the definition of the STM for the two-body problem, [3, 26]

φ =
[

φ11(t + dT , t) φ12(t + dT , t)

φ21(t + dT , t) φ22(t + dT , t)

]
=
[ ∂r(t+dT )

∂r(t)
∂r(t+dT )

∂r(1)(t)
∂r(1)(t+dT )

∂r(t)
∂r(1)(t+dT )

∂r(1)(t)

]
(10)

where, φ11 is the sensitivity of the next position to the current position, φ12 is the
sensitivity of the next position to the current velocity, φ21 is the sensitivity of the next
velocity to the current position and φ22 is the sensitivity of the next velocity to the
current velocity.
The same approach of the Taylor series expansion of the state variables are followed
to expand the elements of the STM, [29]

φ11(t + dT , t) = ∂r(t + dT )

∂r(t)
= ψr +

n∑

m=1

ψ(m)
r

dT (m)

m! (11)

φ12(t + dT , t) = ∂r(t + dT )

∂r(1)(t)
= ψv +

n∑

m=1

ψ(m)
v

dT (m)

m! (12)

φ21(t + dT , t) = ∂r(1)(t + dT )

∂r(t)
= ψ(1)

r +
n∑

m=2

ψ(m)
r

dT (m−1)

(m − 1)! (13)

φ22(t + dT , t) = ∂r(1)(t + dT )

∂r(1)(t)
= ψ(1)

v +
n∑

m=2

ψ(m)
v

dT (m−1)

(m − 1)! (14)

where, dT is the time step between the current position and the next position and

ψ
(m)
r and ψ

(m)
v are defined as ∂r(m)(t)

∂r(t) and ∂r(m)(t)

∂r(1)(t)
, respectively.
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The partial derivatives of r(t), r(1)(t), f and gp with respect to r(t) and r(1)(t) can
be written as,

∂r(t)
∂r(t) = ∂r(1)(t)

∂r(1)(t)
= I3×3

∂r(t)
∂r(1)(t)

= ∂r(1)(t)

∂r(t)
= 03×3

∂f (t)
∂r(t) = 2r(t)

∂gp(t)

∂r(t) = −p
gp(t)

f (t)
r(t) ∂f (t)

∂r(1)(t)
= ∂gp(t)

∂r(1)(t)
= 01×3

(15)

By substitution, the recursive formulas to calculate partial derivatives of the higher
order time derivatives of the variables, with respect to position and velocity are given
by,

∂r(n+2)(t)

∂χ
= −μ

{
n∑

m=0

(
n

m

)
ψ(m)

χ g(n−m)
p (t) +

n∑

m=0

(
n

m

)
r(m)(t)G(n−m)

pχ

}
(16)

∂f (n)(t)

∂χ
=

n∑

m=0

(
n

m

)
ψ(m)

χ r(n−m)(t) +
n∑

m=0

(
n

m

)
r(m)(t)ψ(n−m)

χ (17)

∂g
(n+1)
p (t)

∂χ(t)
= − 1

f (t)

{
g(n+1)

p Fχ + p

2

(
F (1)

χ g(n)
p (t) + f (1)(t)G(n)

pχ

)

+
n∑

m=1

(
n

m

)
p

2

(
F (m+1)

χ g(n−m)
p (t) + f (m+1)(t)G(n−m)

pχ

)

+
n∑

m=1

(
n

m

)(
F (m)

χ g(n−m+1)
p (t) + f (m)(t)G(n−m+1)

pχ

)}
(18)

where, χ = r(t) or r(1)(t), F
(m)
χ = ∂f (m)(t)

∂χ
and G

(m)
pχ = ∂g

(m)
p (t)

∂χ

Zonal Perturbations

For the J2 − J6 zonal perturbations, the higher order partial derivatives are obtained.
In this section we show the detailed derivation for the J2 perturbation and refer the
reader to the appendix for the detailed derivation of J3 − J6. The J2 acceleration is
given by, [16, 26]

aJ2 = r(2)
J2

(t) = − 3
2J2

(
μ

r2

) ( req
r

)2
⎡

⎣

(
1 − 5( z

r
)2
)

x
r(

1 − 5( z
r
)2
) y

r(
3 − 5( z

r
)2
)

z
r

⎤

⎦

= − 3
2J2μr2

eq

⎡

⎣
xg5 − 5xz2g7

yg5 − 5yz2g7

3zg5 − 5z3g7

⎤

⎦
(19)

where, req is equatorial radius of earth and J2 = 1082.63 × 10−6, [26].
In order to obtain the recursions for the higher order partials, we define a constant,
CJ2 = − 3

2J2μr2
eq , and 2 new variables, Bp and Cα , as,

Bp = rgp Cα = zα (20)
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The higher order time derivatives of the newly defined variables are given by,

B(n)
p =

n∑

m=0

(
n

m

)
r(m)g(n−m)

p C(n)
α =

n∑

m=0

(
n

m

)
C

(m)
α−1z

(n−m) (21)

Hence, the higher order time derivatives of the J2 perturbation acceleration is
computed as,

a(n)
J2

= r(n+2)
J2

(t) = CJ2

⎧
⎨

⎩

⎡

⎣
1 0 0
0 1 0
0 0 3

⎤

⎦B
(n)
5 − 5

n∑

m=0

(
n

m

)
B

(m)
7 C

(n−m)
2

⎫
⎬

⎭ (22)

The partial derivatives of Eqs. 21 and 22 with respect to position and velocity are
then expressed as,

∂B
(n)
p

∂χ
=

n∑

m=0

(
n

m

)(
∂r(m)

∂χ
g(n−m)

p + r(m) ∂g
(n−m)
p

∂χ

)
(23)

∂C
(n)
α

∂χ
=

n∑

m=0

(
n

m

)(
∂C

(m)
α−1

∂χ
z(n−m) + C

(m)
α−1

∂z(n−m)

∂χ

)
(24)

∂r(n+2)
J2

(t)

∂χ
= CJ2

⎧
⎨

⎩

⎡

⎣
1 0 0
0 1 0
0 0 3

⎤

⎦ ∂B
(n)
5

∂χ
− 5
∑n

m=0

(
n
m

) ( ∂B
(m)
7

∂χ
C

(n−m)
2

+ B
(m)
7

∂C
(n−m)
2
∂χ

)} (25)

where, χ is r(t) or r(1)(t).
Finally, Eq. 25 is added to Eq. 11 through Eq. 14 to obtain the J2 perturbed STM

as,

φ11J2(t + dT , t) = ψr +
n∑

m=1

ψ(m)
r

dT (m)

m! +
n∑

m=1

∂r(m)
J2

(t)

∂r
dT (m)

m! (26)

φ12J2(t + dT , t) = ψv +
n∑

m=1

ψ(m)
v

dT (m)

m! +
n∑

m=1

∂r(m)
J2

(t)

∂r(1)

dT (m)

m! (27)

φ21J2(t + dT , t) = ψ(1)
r +

n∑

m=2

ψ(m)
r

dT (m−1)

(m − 1)! +
n∑

m=2

∂r(m)
J2

(t)

∂r
dT (m−1)

(m − 1)! (28)

φ22J2(t + dT , t) = ψ(1)
v +

n∑

m=2

ψ(m)
v

dT (m−1)

(m − 1)! +
n∑

m=2

∂r(m)
J2

(t)

∂r(1)

dT (m−1)

(m − 1)! (29)

Atmospheric Drag Perturbation

A canon ball drag model is re-derived using analytic continuation method, [14]. The
acceleration for the drag model is given by, [34]

adr = r(2)
dr (t) = −1

2
ρ(r)

CDA

m
v2
rel

vrel

|vrel | = −ρ̃||vrel ||vrel (30)

1417The Journal of the Astronautical Sciences  (2020) 67:1412–1444



where, ρ(r) is the atmospheric density, CD is the drag coefficient, A is the reference
area, and vrel is the relative velocity of the satellite with respect to Earth defined as,

vrel = r(1) − ω⊕ × r =
⎡

⎣
x(1) + yω⊕
y(1) − xω⊕
z(1)

⎤

⎦ (31)

From Eq. 31, the higher order time derivatives of the relative velocity is,

v(n)
rel =

⎡

⎣
x(n+1) + y(n)ω⊕
y(n+1) − x(n)ω⊕
z(n+1)

⎤

⎦ (32)

To calculate the higher order time derivatives of the relative velocity magnitude,
||vrel ||(n), two new variables similar to f and gp, Eqs. 3 and 4, are introduced as,

fvrel = vrel .vrel gvrel = f
(1/2)
vrel = ||vrel || (33)

Applying Leibniz product rule, the higher order time derivatives of the variables in
Eq. 33 are expressed as,

f
(n)
vrel =

n∑

m=0

(
n

m

)
v(m)
rel .v(n−m)

rel (34)

||vrel ||(n+1) = g
(n+1)
vrel = 1

f vrel

{
1
2f

(1)
vrelg

(n)
vrel +

n∑
m=1

(
n
m

) ( 1
2f

(m+1)
vrel g

(n−m)
vrel −

f
(m)
vrelg

(n−m+1)
vrel

)} (35)

ρ(r) is defined according to the Exponential Model of atmospheric density, [33], as

ρ(r) = ρ0e
− hellp−h0

H = ρ0e
Req+h0

H e− |r|
H (36)

where, ρ0 is the nominal density, Req is the equatorial radius of Earth, hellp is the
altitude, h0 is the base altitude, and H is the scale height. From Eqs. 30 and 36, the
equation of ρ̃ is given by,

ρ̃ = 1

2

CdA

m
ρ0e

Req+h0
H e− |r|

H = βe− |r|
H (37)

where, β is a constant. The first order time derivative of ρ̃ is,

ρ̃(1) = − 1

H
ρ̃|r|(1) (38)

Applying Leibniz product rule on Eq. 38 the higher order time derivative of ρ is
derived as,

ρ̃(n+1) = − 1

H

n∑

m=0

(
n

m

)
ρ̃(m)|r|(n−m+1) (39)

The higher order time derivatives of the acceleration due to drag is calculated using,
[14]

a(n)
dr = r(n+2)

dr (t) = −
n∑

i=0

n−i∑

j=0

n!
i!j !(n − i − j)!ρ

(i)||vrel ||(j)v(n−i−j)
rel (40)
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The recursive formula for the partial derivatives of the drag perturbation acceleration
with respect to position and velocity is then expressed as,

∂r(n+2)
dr (t)

∂χ
= −

n∑

i=0

n−i∑

j=0

n!
i!j !(n − i − j)!

(
∂ρ(i)

∂χ
||vrel ||(j)v(n−i−j)

rel

+ρ(i) ∂||vrel ||(j)

∂χ
v(n−i−j)
rel + ρ(i)||vrel ||(j) ∂v(n−i−j)

rel

∂χ

)
(41)

where, ∂ρ(n)

∂χ
,

∂v(n)
rel

∂χ
and ∂||vrel ||(n)

∂χ
are calculated separately as shown in the Appendix.

∂r(n+2)
dr (t)

∂r(t) and
∂r(n+2)

dr (t)

∂r(t)(1) are then added to Eqs. 26 to 29 to include drag perturbation in
computing the STM.

Algorithms 1 – 3 in the Appendix show the steps for the full implementation of
the analytic continuation method to compute the J2 −J6 and drag perturbed STM for
the two-body problem.

Numerical Simulations

In this section, numerical results are presented for the derived STM via the Analytic
Continuation technique for 4 orbits as shown in Table 1. Each orbit is propagated for
10 orbit periods.

First, Analytic Continuation is utilized to compute the STM for the unperturbed
orbits and compared versus the closed-form solution by Battin, [3], via computing
the RMS error. Next, J2 − J6 perturbation is added and the STM computed with
Analytic Continuation is compared against MATLAB ODE45, ODE113 and ODE87
in terms of accuracy via the symplectic check. Finally, an exponential drag model is
added to the J2 −J6 perturbed STM and the results are compared against ODE87 via
error propagation. All codes are written and compiled using MATLAB R2019a and
canonical units. To compare the numerical results, three different methods are used;
calculation of RMS error, the symplectic check and error propagation of the states.

RMS Error for the Unperturbed STM

The RMS Error for each element of the STM in the time domain of 10 orbit peri-
ods is computed from the difference between the elements of the unperturbed STMs

Table 1 Orbits used for numerical simulation

Orbit type a, m e f , deg i, deg ω, deg 
, deg tp , s

LEO 7.3090 × 106 0.1 0 60 30 45 6.2187 × 103

MEO 1.0964 × 107 0.4 0 60 30 45 1.1425 × 104

GTO 2.6353 × 107 0.6 0 60 30 45 4.2574 × 104

HEO 2.6999 × 107 0.7 0 60 30 45 4.4152 × 104
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computed using Battin’s method, [3], and the Analytic Continuation technique as
shown in Eq. 42.

Eij =
√√√√

N∑

k=1

(Mijk − Lijk)2/n (42)

where, M ijk and Lijk are (i,j)th terms of the STM at k-th time step from Battin’s
method, [3] and Analytic Continuation method, respectively, Eij is the RMS Error of
the (i,j)th term of the unperturbed STM and N is the total number of steps.

The RMS errors for the 36 elements of the STM are calculated using Eq. 42 for
the four orbit test cases and the results are shown in Tables 2, 3, 4 and 5, [30].

Symplectic Error for the Gravity Perturbed STM

The symplectic nature of the J2 −J6 perturbed STM is examined and elements of the
error matrix are plotted versus orbital periods. The matrix [φ] is called symplectic, if
it satisfies Eq. 43, [26]

[φ]T [J ][φ] = [J ] (43)

where, [φ] is the STM and [J ] is a skew-symmetric matrix defined by,

[J ] =
[

03×3 I3×3
−I3×3 03×3

]
(44)

The absolute error in the symplectic nature of the J2−J6 perturbed STM is calculated
by Eq. 45, [25]

[Esym.] =
∣∣∣[φ]T [J ][φ] − [J ]

∣∣∣ (45)

where, [Esym.] is the symplectic error matrix.
For the J2 − J6 perturbed cases, the results of the 10 orbit periods of the elements

of the [Esym.] matrix of every step using Analytic Continuation method are compared
with the results using ODE87, ODE113 and ODE45. In this case, the initial and final
time is provided to the solvers and the flexibility is given to the methods to select
the time steps for the calculation. The results of the four different orbits are plotted
as scattered points versus orbital period as shown in Figs. 1, 2, 3, 4, 5, 6, 7 and 8.
Next, the gravity perturbed STM is generated up to 1,000 orbit periods using Analytic
Continuation and compared against the results of ODE87, ODE113 and ODE45. The
comparison results are shown in Figs. 9, 10, 11 and 12 via the average of the 36

Table 2 RMS error of the elements of the unperturbed STM of LEO orbit using analytic continuation
method

1.0321×10−14 1.1407×10−14 1.1602×10−14 3.0963×10−15 2.0116×10−15 1.9838×10−15

1.1549×10−14 1.0611×10−14 1.1140×10−14 1.8159×10−15 2.7891×10−15 1.9482×10−15

1.1558×10−14 1.1194×10−14 1.2449×10−14 1.9529×10−15 2.1390×10−15 3.1526×10−15

4.1929×10−14 5.0363×10−14 5.2110×10−14 9.9586×10−15 1.1175×10−14 1.1535×10−14

5.3762×10−14 4.3015×10−14 4.6076×10−14 1.1310×10−14 1.0214×10−14 1.0811×10−14

4.9465×10−14 4.8024×10−14 5.0345×10−14 1.1488×10−14 1.0872×10−14 1.2112×10−14
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Table 3 RMS error of the elements of the unperturbed STM of MEO orbit using analytic continuation
method

1.3001×10−14 1.2968×10−14 1.3815×10−14 5.3630×10−15 4.1199×10−15 3.5938×10−15

1.2966×10−14 1.2538×10−14 1.4639×10−14 4.2915×10−15 5.8364×10−15 3.7207×10−15

1.3809×10−14 1.4671×10−14 1.6078×10−14 3.6011×10−15 3.4896×10−15 5.9507×10−15

5.6135×10−14 5.9875×10−14 6.4843×10−14 1.3514×10−14 1.3916×10−14 1.4804×10−14

6.0697×10−14 5.5575×10−14 6.3070×10−14 1.3909×10−14 1.3552×10−14 1.5129×10−14

6.3330×10−14 6.3677×10−14 6.7548×10−14 1.4793×10−14 1.5162×10−14 1.1771×10−14

elements of the symplectic error matrix, Esym., versus orbital period. The Analytic
Continuation is then used to propagate the STMs of the four orbit types for 10,000
orbit periods. The average symplectic check results at per orbit is used and the results
are shown in Fig. 13. When performing these symplectic error calculations, both
relative and absolute tolerance are set to 10−13 to get the highest possible accurate
results for the STM generation from the MATLAB ODE suite.

Error Propagation for Gravity and Drag Perturbed STM

To check the error propagation of the states using the STM, first the trajectory, xi , is
computed with a nominal set of initial conditions, Table 1. A perturbation is intro-
duced to the initial states as shown in Table 6. Linear prediction is used to compute
the trajectory, x̂i , at the desired time steps using the STM as shown in Eq. 46. The
“true” trajectory is propagated separately using the perturbed initial conditions. The
error is then computed as the difference between the true states, x⊗i , and the predicted
states x̂i , [9]. The error propagation compares J2 − J6 gravity and drag perturbed
Analytic Continuation results for the four orbit types in Table 1 against ODE87 for
10 orbit periods. The results of the error propagation of the position and velocity are
shown in Figs. 14, 15, 16, 17, 18, 19, 20, and 21.

δxi = [φi−1]δxi−1
x̂i = xi + δxi

Errori = x⊗i − x̂i

(46)

Table 4 RMS error of the elements of the unperturbed STM of GTO orbit using analytic continuation
method

5.7472×10−14 5.6612×10−14 6.0073×10−14 4.6730×10−14 5.1744×10−14 3.5453×10−14

5.6596×10−14 5.3806×10−14 6.2004×10−14 5.3259×10−14 3.9513×10−14 4.6154×10−14

6.0043×10−14 6.2014×10−14 6.9477×10−14 3.6157×10−14 4.4593×10−14 6.4106×10−14

1.4040×10−13 1.4312×10−13 1.6615×10−13 6.1345×10−14 6.1973×10−14 6.6039×10−14

1.4460×10−13 1.3571×10−13 1.4333×10−13 6.1956×10−14 5.9009×10−14 6.5825×10−14

1.6240×10−13 1.4051×10−13 1.5874×10−13 6.6002×10−14 6.5827×10−14 7.6861×10−14
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Table 5 RMS error of the elements of the unperturbed STM of HEO orbit using analytic continuation
method

3.1151×10−12 3.0525×10−12 3.5452×10−12 8.5518×10−13 9.4291×10−13 7.4181×10−13

3.0536×10−12 3.0748×10−12 3.2955×10−12 9.7523×10−13 7.4920×10−13 8.9767×10−13

3.5437×10−12 3.2934×10−12 3.4803×10−12 7.8115×10−13 8.9159×10−13 1.1442×10−12

1.9463×10−11 2.0158×10−11 2.1143×10−11 3.4252×10−12 3.3592×10−12 3.8517×10−12

2.0477×10−11 1.7508×10−11 1.9179×10−11 3.3607×10−12 3.3031×10−12 3.5563×10−12

2.0899×10−11 1.8752×10−11 2.0422×10−11 3.8501×10−12 3.5538×10−12 3.8493×10−12

Discussion

As shown in Tables 2 to 5 the unperturbed STMs computed via the Analytic Contin-
uation technique maintained 11 - 16 digits of accuracy in the RMS error across all 36
elements for all types of orbits when compared against the analytic solution by Bat-
tin, [3]. The check is performed for 10 orbit periods and the RMS error is computed
for each element at each time step.

Fig. 1 STMs symplectic check vs orbital period using Analytic Continuation and ODE87 for gravity
perturbed LEO
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Fig. 2 STMs symplectic check vs orbital period using ODE113 and ODE45 for gravity perturbed LEO

Fig. 3 STMs symplectic check vs orbital period using Analytic Continuation and ODE87 for gravity
perturbed MEO
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Fig. 4 STMs symplectic check vs orbital period using ODE113 and ODE45 for gravity perturbed MEO

Fig. 5 STMs symplectic check vs orbital period using Analytic Continuation and ODE87 for gravity
perturbed GTO
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Fig. 6 STMs symplectic check vs orbital period using ODE113 and ODE45 for gravity perturbed GTO

Fig. 7 STMs symplectic check vs orbital period using Analytic Continuation and ODE87 for gravity
perturbed HEO
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Fig. 8 STMs symplectic check vs orbital period using ODE113 and ODE45 for gravity perturbed HEO

0 100 200 300 400 500 600 700 800 900 1000
Orbital Revolution

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

A
v
e

ra
g

e
 S

y
m

p
le

c
ti
c
 C

h
e

c
k

LEO ORBIT

Analytic Continuation
ODE87
ODE113
ODE45

Fig. 9 STMs average symplectic check vs orbital revolution using Analytic Continuation, ODE87,
ODE113 and ODE45 for gravity perturbed LEO
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Fig. 10 STMs average symplectic check vs orbital revolution using Analytic Continuation, ODE87,
ODE113 and ODE45 for gravity perturbed MEO
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Fig. 11 STMs average symplectic check vs orbital revolution using Analytic Continuation, ODE87,
ODE113 and ODE45 for gravity perturbed GTO
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Fig. 12 STMs average symplectic check vs orbital revolution using Analytic Continuation, ODE87,
ODE113 and ODE45 for gravity perturbed HEO
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Table 6 Initial states and initial perturbations of the orbits

Orbit type Initial states Initial perturbations

LEO P0, m [2.8654 5.1911 2.8484]×106 δP0, m [2.8654 5.1911 2.8484]
V0, m/s [−5.3862 −0.3867 6.1232]×103 δV0, m/s [−0.0054 −0.0004 0.0061]

MEO P0, m [2.8654 5.1911 2.8484]×106 δP0, m [2.8654 5.1911 2.8484]
V0, m/s [−6.0765 −0.4363 6.9078]×103 δV0, m/s [−0.0061 −0.0004 0.0069]

GTO P0, m [4.5916 8.3184 4.5644]×106 δP0, m [4.5916 8.3184 4.5644]
V0, m/s [−5.1317 −0.3684 5.8338]×103 δV0, m/s [−0.0051 −0.0004 0.0058]

HEO P0, m [3.5283 6.3921 3.5074]×106 δP0, m [3.5283 6.3921 3.5074]
V0, m/s [−6.0343 −0.4332 6.8598]×103 δV0, m/s [−0.0060 −0.0004 0.0069]

The symplectic check is used for accuracy verification when gravitational pertur-
bations, J2 − J6, are considered. Analytic Continuation is compared against ODE45,
ODE113 and ODE87. For LEO, Figs. 1 and 2, Analytic Continuation, maintained
double precision accuracy for the full 10 orbit periods, whereas all other integrators
lost between 4 - 6 digits of accuracy towards the end of the simulations. In terms of
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Fig. 14 Linear prediction position error(m) vs orbital revolution using Analytic Continuation and ODE87
for gravity and drag perturbed LEO
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Fig. 16 Linear prediction position error(m) vs orbital revolution using Analytic Continuation and ODE87
for gravity and drag perturbed MEO

1430 The Journal of the Astronautical Sciences  (2020) 67:1412–1444



0 2 4 6 8 10
Orbital Revolution

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01
V

e
lo

c
it
y
 E

rr
o

r 
(m

/s
)

Analytic Continuation

x
y
z

0 2 4 6 8 10
Orbital Revolution

-0.15

-0.1

-0.05

0

0.05

0.1

V
e

lo
c
it
y
 E

rr
o

r 
(m

/s
)

ODE87

x
y
z

Fig. 17 Linear prediction velocity error(m/s) vs orbital revolution using Analytic Continuation and
ODE87 for gravity and drag perturbed MEO
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Fig. 18 Linear prediction position error(m) vs orbital revolution using Analytic Continuation and ODE87
for gravity and drag perturbed GTO

1431The Journal of the Astronautical Sciences  (2020) 67:1412–1444



0 2 4 6 8 10
Orbital Revolution

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
V

e
lo

c
it
y
 E

rr
o

r 
(m

/s
)

Analytic Continuation

x
y
z

0 2 4 6 8 10
Orbital Revolution

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

V
e

lo
c
it
y
 E

rr
o

r 
(m

/s
)

ODE87

x
y
z

Fig. 19 Linear prediction velocity error(m/s) vs orbital revolution using Analytic Continuation and
ODE87 for gravity and drag perturbed GTO
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Fig. 20 Linear prediction position error(m) vs orbital revolution using Analytic Continuation and ODE87
for gravity and drag perturbed HEO
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Fig. 21 Linear prediction velocity error(m/s) vs orbital revolution using Analytic Continuation and
ODE87 for gravity and drag perturbed HEO

accuracy, ODE87 performed the best relative to ODE113 and ODE45, and ODE113
marginally outperformed ODE45. However, for ODE87, ODE113 and ODE45, the
accumulation of truncation and round-off errors are evident in the loss of accuracy as
the simulation time increases, whereas for Analytic Continuation, the ability to adapt
to arbitrary order in the Taylor series enabled it to maintain double precision through-
out the simulation. As the eccentricity, and consequently the nonlinearity, [23], is
increased, the accuracy of ODE87, ODE113 and ODE45 degrades over the 10 orbit
periods, whereas Analytic Continuation maintains double precision for MEO, GTO
and HEO as shown in Figs. 3 to 8. The Analytic Continuation method is then used
to generate STMs up to 1,000 orbit periods and compared against ODE87, ODE113
and ODE45 using the average symplectic error of the STMs, as shown in Figs. 9
to 12. Results for 1000 orbits and beyond (Fig. 13) show that the Analytic Continua-
tion method is able to maintain double precision in the symplectic check whereas the
other methods lost between 10 - 12 digits of accuracy at 1000 orbits. It has to be noted
that all numerical integration methods, including Analytic Continuation, were set to
the lowest absolute and relative tolerance which explains the similarity in results of
ODE45, ODE113 and ODE87 at 1000 orbits. If tolerances were to be set to their
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default values the lower order methods (particularly ODE45) will lose an additional
4-5 orders of magnitude when compared with ODE87. Finally, in the case of drag per-
turbation, linear prediction is used to verify the results where Analytic Continuation
is compared against ODE87 for the four types of orbits. From the results presented in
Figs. 14 to 21, Analytic Continuation outperforms ODE87 in linear prediction error
in all test cases. For the LEO case, Analytic Continuation is two orders of magnitude
more accurate compared to ODE87 in position, Fig. 14, and three order of magnitude
in velocity, Fig. 15. For MEO and GTO, Analytic continuation achieved one order of
magnitude more accuracy in position and velocity, Figs. 16 to 19. Finally, for HEO,
Analytic Continuation is shown to be 3 - 4 times more accurate as shown in Figs. 20
and 21 for position and velocity, respectively. We attribute the significant improve-
ment in LEO results to the higher effect drag perturbation has on LEO versus the
other orbits which take advantage of the more accurate STM produced by Analytic
Continuation to produce better linear prediction results.

Conclusion

In this work, the State Transition Matrix of the perturbed two body problem is derived
using the higher order Analytic Continuation technique. All the higher order partial
derivatives are computed recursively by utilizing Leibniz rule and scalar variables
transformations. The recursive relations shown for J2 − J6 and drag perturbations
can be readily generalized for arbitrary order perturbations, [15]. Simulation results
are presented for four different types of orbits: LEO, MEO, GTO and HEO, for up to
10,000 orbit periods and compared with ODE45, ODE113 and ODE87. For all cases,
Analytic Continuation STM maintains machine precision that is enabled by the adap-
tation scheme combined with the ability of computing arbitrary higher order partials.
The cases presented include unperturbed orbits where the RMS error for each ele-
ment of the STM is computed and compared against Lagrange’s F and G solution.
For the gravity perturbed cases, the accumulation of truncation and round-off errors
in ODE45, ODE113 and ODE87 is observed whereas Analytic Continuation main-
tained double-precision accuracy. Finally, with the introduction of drag, the STM
computed via Analytic Continuation is shown to outperform ODE87 (in terms of
accuracy) for all the test cases in linear prediction results.

The present method for computing the STM is simple, highly accurate and can be
readily expanded to include higher order perturbations. The same recursions can also
be expanded to compute the higher order state transition tensors. Areas that will be
explored in future research.
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Appendix

Recursive Relations for J2 − J6 and Drag Perturbations

In this section, the recursive relations of the J3 − J6 perturbed acceleration are pre-
sented along with the derivation of the partial derivatives for the STM computation.
The J3 − J6 perturbation accelerations are defined as,
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where, CJ3 , CJ4 , CJ5 , and CJ6 are defined as,
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Bp and Cα are defined in Eq. 20, req is the equatorial radius of the Earth and the
values of J3 − J6 are given by, [26],

J3 = −2.52 × 10−6 J4 = −1.61 × 10−6

J5 = −0.15 × 10−6 J6 = 0.57 × 10−6 (52)

The higher order time derivatives of the J3−J6 perturbation accelerations are derived
as,
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r(n+2)
J4

= CJ4

⎧
⎨

⎩

⎡

⎣
3 0 0
0 3 0
0 0 15

⎤

⎦B
(n)
7 −

⎡

⎣
42 0 0
0 42 0
0 0 70

⎤

⎦
n∑

m=0

(
n

m

)
B

(m)
9 C

(n−m)
2

+63
n∑

m=0

(
n

m

)
B

(m)
11 C

(n−m)
4

}
(54)

r(n+2)
J5

= CJ5

⎧
⎨

⎩

⎡

⎣
105 0 0
0 105 0
0 0 315

⎤

⎦
n∑

m=0

(
n

m

)
B

(m)
9 z(n−m)

−
⎡

⎣
630 0 0
0 630 0
0 0 945

⎤

⎦
n∑

m=0

(
n

m

)
B

(m)
11 C

(n−m)
3

+ 693
n∑

m=0

(
n

m

)
B

(m)
13 C

(n−m)
5 −

⎡

⎣
0
0
15

⎤

⎦ g
(n)
7

⎫
⎬

⎭ (55)
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r(n+2)
J6

= CJ6

⎧
⎨

⎩

⎡

⎣
35 0 0
0 35 0
0 0 245

⎤

⎦B
(n)
9 −

⎡

⎣
945 0 0
0 945 0
0 0 2205

⎤

⎦
n∑

m=0

(
n

m

)
B

(m)
11 C

(n−m)
2

+
⎡

⎣
3465 0 0
0 3465 0
0 0 4851

⎤

⎦
n∑

m=0

(
n

m

)
B

(m)
13 C

(n−m)
4 − 3003

n∑

m=0

(
n

m

)
B

(m)
15 C

(n−m)
6

⎫
⎬

⎭

(56)

The partial derivatives of the higher order time derivatives in Eqs. 53 to 56 are
recursively computed as,

∂r(n+2)
J3

∂χ
= CJ3

⎧
⎨

⎩−
⎡

⎣
15 0 0
0 15 0
0 0 30

⎤

⎦
n∑

m=0

(
n

m

)(
∂B

(m)
7

∂χ
z(n−m) + B

(m)
7

∂z(n−m)

∂χ

)

+35
n∑

m=0

(
n

m

)(
∂B

(m)
9

∂χ
C

(n−m)
3 + B

(m)
9

∂C
(n−m)
3

∂χ

)
+
⎡

⎣
0
0
3

⎤

⎦ ∂g
(n)
5

∂χ

⎫
⎬

⎭
(57)

∂r(n+2)
J4

∂χ
=CJ4

⎧
⎨

⎩

⎡

⎣
3 0 0
0 3 0
0 0 15

⎤

⎦ ∂B
(n)
7

∂χ
−
⎡

⎣
42 0 0
0 42 0
0 0 70

⎤

⎦
n∑

m=0

(
n

m

)(
∂B

(m)
9

∂χ
C

(n−m)
2

+B
(m)
9

∂C
(n−m)
2

∂χ

)
+ 63

n∑

m=0

(
n

m

)(
∂B

(m)
11

∂χ
C

(n−m)
4 + B

(m)
11

∂C
(n−m)
4

∂χ

)}

(58)

∂r(n+2)
J5

∂χ
= CJ5

⎧
⎨

⎩

⎡

⎣
105 0 0
0 105 0
0 0 315

⎤

⎦
n∑

m=0

(
n

m

)(
∂B

(m)
9

∂χ
z(n−m) + B

(m)
9

∂z(n−m)

∂χ

)

−
⎡

⎣
630 0 0
0 630 0
0 0 945

⎤

⎦
n∑

m=0

(
n

m

)(
∂B

(m)
11

∂χ
C

(n−m)
3 + B

(m)
11

∂C
(n−m)
3

∂χ

)

+693
n∑

m=0

(
n

m

)(
∂B

(m)
13

∂χ
C

(n−m)
5 + B

(m)
13

∂C
(n−m)
5

∂χ

)
−
⎡

⎣
0
0
15

⎤

⎦ ∂g
(n)
7

∂χ

⎫
⎬

⎭
(59)
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∂r(n+2)
J6

∂χ
= CJ6

⎧
⎨

⎩

⎡

⎣
35 0 0
0 35 0
0 0 245

⎤

⎦ ∂B
(n)
9

∂χ
−
⎡

⎣
945 0 0
0 945 0
0 0 2205

⎤

⎦
n∑

m=0

(
n

m

)

×
(

∂B
(m)
11

∂χ
C

(n−m)
2 + B

(m)
11

∂C
(n−m)
2

∂χ

)
+
⎡

⎣
3465 0 0
0 3465 0
0 0 4851

⎤

⎦
n∑

m=0

(
n

m

)

×
(

∂B
(m)
13

∂χ
C

(n−m)
4 + B

(m)
13

∂C
(n−m)
4

∂χ

)

−3003
n∑

m=0

(
n

m

)(
∂B

(m)
15

∂χ
C

(n−m)
6 + B

(m)
15

∂C
(n−m)
6

∂χ

)}

(60)
where, χ is r(t) or r(1)(t).

For the drag perturbation, the partial derivatives of the higher order time deriva-
tives of ρ, vrel and ||vrel || are computed as,

∂ρ(n+1)

∂χ
= − 1

H

n∑

m=0

(
n

m

)(
∂ρ(m)

∂χ
|r|(n−m+1) + ρ(m) ∂|r|(n−m+1)

∂χ

)
(61)

∂v(n)
rel

∂χ
= ∂r(n+1)(t)

∂χ
+
⎡

⎣
0 1 0
−1 0 0
0 0 0

⎤

⎦ ∂r(n)(t)

∂χ
ω⊕ (62)

∂f
(n)
vrel

∂χ
=

n∑

m=0

(
n

m

)(
∂v(m)

rel

∂χ
v(n−m)
rel + v(m)

rel

∂v(n−m)
rel

∂χ

)
(63)

∂||vrel ||(n+1)

∂χ
= ∂g

(n+1)
vrel

∂χ
=− 1

fvrel

{
g

(n+1)
vrel Fvrelχ + p

2

(
F

(1)
vrelχg

(n)
vrel + f

(1)
vrelG

(n)
vrelχ

)

+
n∑

m=1

(
n

m

)
p

2

(
F

(m+1)
vrelχ g

(n−m)
vrel + f

(m+1)
vrel G

(n−m)
vrelχ

)

+
n∑

m=1

(
n

m

)(
F

(m)
vrelχg

(n−m+1)
vrel + f

(m)
vrelG

(n−m+1)
vrelχ

)}

(64)
where, v(n)

rel , f
(n)
vrel , g

(n+1)
vrel and ρ(n+1) are defined in Eqs. 32, 34, 35, and 39,

respectively. F
(m)
vrelχ = ∂f

(m)
vrel

∂χ
and G

(m)
vrelχ = ∂g

(m)
vrel

∂χ
.
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The Taylor series expansions for the perturbed STM sub-blocks can be then
expressed as,

φ11(t + dT , t) = ψr +
n∑

m=1

(
ψ(m)

r

dT (m)

m! + ∂r(m)
J2

(t)

∂r
dT (m)

m! + ∂r(m)
J3

(t)

∂r
dT (m)

m!

+ ∂r(m)
J4

(t)

∂r
dT (m)

m! + ∂r(m)
J5

(t)

∂r
dT (m)

m! + ∂r(m)
J6

(t)

∂r
dT (m)

m! + ∂r(m)
dr (t)

∂r
dT (m)

m!

)

(65)

φ12(t + dT , t) = ψv +
n∑

m=1

(
ψ(m)

v

dT (m)

m! + ∂r(m)
J2

(t)

∂r(1)

dT (m)

m! + ∂r(m)
J3

(t)

∂r(1)

dT (m)

m!

+∂r(m)
J4

(t)

∂r(1)

dT (m)

m! + ∂r(m)
J5

(t)

∂r(1)

dT (m)

m! + ∂r(m)
J6

(t)

∂r(1)

dT (m)

m! + ∂r(m)
dr (t)

∂r(1)

dT (m)

m!

)

(66)

φ21(t+dT , t)=ψ(1)
r +

n∑

m=2

(
ψ(m)

r

dT (m−1)

(m−1)! + ∂r(m)
J2

(t)

∂r
dT (m−1)

(m−1)! + ∂r(m)
J3

(t)

∂r
dT (m−1)

(m−1)!

+∂r(m)
J4

(t)

∂r
dT (m−1)

(m−1)! + ∂r(m)
J5

(t)

∂r
dT (m−1)

(m−1)! + ∂r(m)
J6

(t)

∂r
dT (m−1)

(m − 1)! +
∂r(m)

dr (t)

∂r
dT (m−1)

(m−1)!

)

(67)

φ22(t + dT , t) = ψ(1)
v +

n∑

m=2

(
ψ(m)

v

dT (m−1)

(m − 1)! + ∂r(m)
J2

(t)

∂r(1)

dT (m−1)

(m − 1)!

+∂r(m)
J3

(t)

∂r(1)

dT (m−1)

(m − 1)! + ∂r(m)
J4

(t)

∂r(1)

dT (m−1)

(m − 1)! + ∂r(m)
J5

(t)

∂r(1)

dT (m−1)

(m − 1)!

+∂r(m)
J6

(t)

∂r(1)

dT (m−1)

(m − 1)! + ∂r(m)
dr (t)

∂r(1)

dT (m−1)

(m − 1)!

)

(68)

where, ψ
(m)
r and ψ

(m)
v are defined as ∂r(m)(t)

∂r(t) and ∂r(m)(t)

∂r(1)(t)
, respectively.

Algorithms for Implementing Analytic Continuation

In this section, Algorithm 1 - Algorithm 3 are presented for the implementation of the
present Analytic Continuation Method. In Algorithm 1 the derivation of the unper-
turbed STM is shown. Algorithm 2 presents the derivation of the J2 − J6 perturbed
STM. Finally, Algorithm 3 includes the J2−J6 and drag perturbed STM computation
via the Analytic Continuation method.
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