Skip to main content
Log in

Beyond Glucose: The Dual Assault of Oxidative and ER Stress in Diabetic Disorders

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Diabetes mellitus, a prevalent global health concern, is characterized by hyperglycemia. However, recent research reveals a more intricate landscape where oxidative stress and endoplasmic reticulum (ER) stress orchestrate a dual assault, profoundly impacting diabetic disorders. This review elucidates the interplay between these two stress pathways and their collective consequences on diabetes. Oxidative stress emanates from mitochondria, where reactive oxygen species (ROS) production spirals out of control, leading to cellular damage. We explore ROS-mediated signaling pathways, which trigger β-cell dysfunction, insulin resistance, and endothelial dysfunction the quintessential features of diabetes. Simultaneously, ER stress unravels, unveiling how protein folding disturbances activate the unfolded protein response (UPR). We dissect the UPR's dual role, oscillating between cellular adaptation and apoptosis, significantly influencing pancreatic β-cells and peripheral insulin-sensitive tissues. Crucially, this review exposes the synergy between oxidative and ER stress pathways. ROS-induced UPR activation and ER stress-induced oxidative stress create a detrimental feedback loop, exacerbating diabetic complications. Moreover, we spotlight promising therapeutic strategies that target both stress pathways. Antioxidants, molecular chaperones, and novel pharmacological agents offer potential avenues for diabetes management. As the global diabetes burden escalates, comprehending the dual assault of oxidative and ER stress is paramount. This review not only unveils the intricate molecular mechanisms governing diabetic pathophysiology but also advocates a holistic therapeutic approach. By addressing both stress pathways concurrently, we may forge innovative solutions for diabetic disorders, ultimately alleviating the burden of this pervasive health issue.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Misra A, Gopalan H, Jayawardena R, Hills AP, Soares M, Reza-Albarrán AA, et al. Diabetes in developing countries. J Diabetes. 2019;11(7):522–39. https://doi.org/10.1111/1753-0407.12913.

    Article  PubMed  Google Scholar 

  2. Ali M, Pearson-Stuttard J, Selvin E, Gregg E. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia. 2022;65:13.

    Article  Google Scholar 

  3. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://www.sciencedirect.com/science/article/pii/S0168822719312306.

  4. Tomic D, Shaw J, Magliano D. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18:1–15.

    Article  Google Scholar 

  5. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26(2):77–82. https://doi.org/10.2337/diaclin.26.2.77.

    Article  Google Scholar 

  6. Mather KJ, Bebu I, Baker C, Cohen RM, Crandall JP, DeSouza C, et al. Prevalence of microvascular and macrovascular disease in the Glycemia Reduction Approaches in Diabetes—A Comparative Effectiveness (GRADE) Study cohort. Diabetes Res Clin Pract. 2020;165:108235. https://www.sciencedirect.com/science/article/pii/S016882272030485X. Accessed 7 Sep 2023.

  7. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2011;29(3):116–22. https://doi.org/10.2337/diaclin.29.3.116.

    Article  Google Scholar 

  8. Jaejin An, Gregory A Nichols, Lei Qian, Mercedes A Munis, Teresa N Harrison, Zhuoxin Li, et al. Prevalence and incidence of microvascular and macrovascular complications over 15 years among patients with incident type 2 diabetes. BMJ Open Diab Res Care. 2021;9(1):e001847. http://drc.bmj.com/content/9/1/e001847.abstract. Accessed 7 Sep 2023.

  9. Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv Cardiol. 2008;45:1–16. https://doi.org/10.1159/000115118.

  10. Zare F, Ameri H, Madadizadeh F, Reza AM. Health-related quality of life and its associated factors in patients with type 2 diabetes mellitus. SAGE Open Med. 2020;8:2050312120965314. https://doi.org/10.1177/2050312120965314.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. Biology. 2020;9(9):252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prasathkumar M, Anisha S, Dhrisya C, Becky R, Sadhasivam S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants—a review. Phytomed Plus. 2021;1(2):100029.https://www.sciencedirect.com/science/article/pii/S2667031321000117. Accessed 7 Sep 2023.

  13. Süntar I. Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev. 2020;19:1199–205.

    Article  Google Scholar 

  14. Raza MA, Ur Rehman F, Anwar S, Zahra A, Rehman A, Rashid E, et al. The medicinal and aromatic activities of cinchona: a review. Asian J Adv Res. 2021;8:42–5.

  15. Kennedy DO, Wightman EL. Herbal Extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr. 2011;2(1):32–50. https://www.sciencedirect.com/science/article/pii/S2161831322005622. Accessed 7 Sep 2023.

  16. Kumar A, Konar A, Garg S, Kaul SC, Wadhwa R. Experimental evidence and mechanism of action of some popular neuro-nutraceutical herbs. Neurochem Int. 2021;149:105124. https://www.sciencedirect.com/science/article/pii/S0197018621001704. Accessed 7 Sep 2023.

  17. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants. 2017;6(4):42.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parveen A, Jin M, Kim SY. Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy. Phytomedicine. 2018;39:146–59. https://www.sciencedirect.com/science/article/pii/S0944711317301927. Accessed 7 Sep 2023.

  19. Duke S, Pan Z, Bajsa-Hirschel J. Proving the mode of action of phytotoxic phytochemicals. Plants. 2020;9:1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wan MLY, Co V, El-Nezami H. Dietary polyphenol impact on gut health and microbiota. Crit Rev Food Sci Nutr. 2020;61:1–22.

    Google Scholar 

  21. Desborough MJR, Keeling DM. The aspirin story—from willow to wonder drug. Br J Haematol. 2017;177(5):674–83. https://doi.org/10.1111/bjh.14520.

    Article  PubMed  Google Scholar 

  22. Shanks GD. Historical review: problematic malaria prophylaxis with quinine. Am J Trop Med Hyg. 2016;95(2):269–72. http://europepmc.org/abstract/MED/27185766. Accessed 7 Sep 2023.

  23. Gachelin G, Garner P, Ferroni E, Tröhler U, Chalmers I. Evaluating Cinchona bark and quinine for treating and preventing malaria. J R Soc Med. 2017;110:31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules. 2022;29(9):2901.

    Article  Google Scholar 

  25. Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Therap. 2002;96(2):67–202. https://www.sciencedirect.com/science/article/pii/S016372580200298X. Accessed 7 Sep 2023.

  26. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://www.sciencedirect.com/science/article/pii/S0308814622004939. Accessed 7 Sep 2023.

  27. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013;34(31):2436–43. https://doi.org/10.1093/eurheartj/eht149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Volpe CMO, Villar-Delfino PH, dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2):119. https://doi.org/10.1038/s41419-017-0135-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Papachristoforou E, Lambadiari VA, Maratou E, Makrilakis K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with oxidative stress and diabetic complications. J Diabetes Res. 2020;2020:7489795. https://doi.org/10.1155/2020/7489795.

  31. Wang J, Yang X, Zhang J. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells. Cell Signal. 2016;28(8):1099–104. https://www.sciencedirect.com/science/article/pii/S0898656816301085. Accessed 7 Sep 2023.

  32. Burgos-Morón E, Abad-Jiménez Z, Martínez de Marañón A, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative Stress, ER stress, and inflammation in type 2 diabetes: the battle continues. J Clin Med. 2019;8(9):1385.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mustapha S, Mohammed M, Azemi AK, Jatau AI, Shehu A, Mustapha L, et al. Current status of endoplasmic reticulum stress in type II diabetes. Molecules. 2021;26(14):4362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 2022;13:157–74.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sidarala V, Kowluru A. The regulatory roles of mitogen-activated protein kinase (MAPK) pathways in health and diabetes: lessons learned from the pancreatic β-Cell. Recent patents on endocrine, metabolic & immune drug discov. 2016;10(2):76–84. http://www.eurekaselect.com/article/79113. Accessed 9 Sep 2023.

  36. Chau GC, Im DU, Kang TM, Bae JM, Kim W, Pyo S, et al. mTOR controls ChREBP transcriptional activity and pancreatic β cell survival under diabetic stress. J Cell Biol. 2017;216:2091–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect. 2021;10(8):R213–28. https://doi.org/10.1530/EC-21-0260.

  38. Santos C, Tanaka L, Wosniak Junior J, Laurindo F. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal. 2009;11:2409–27.

    Article  CAS  PubMed  Google Scholar 

  39. Bhattarai K, Riaz T, Kim HR, Chae HJ. The aftermath of the interplay between the endoplasmic reticulum stress response and redox signaling. Exp Mol Med. 2021;53:151–67. Accessed 9 Sep 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3):145–55. https://www.sciencedirect.com/science/article/pii/S075333220300043X. Accessed 9 Sep 2023.

  41. Zito E, Melo EP, Yang Y, Wahlander Å, Neubert TA, Ron D. Oxidative Protein Folding by an Endoplasmic Reticulum-Localized Peroxiredoxin. Molecular Cell. 2010;40(5):787–97. https://www.sciencedirect.com/science/article/pii/S1097276510008488. Accessed 9 Sep 2023.

  42. Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, et al. Chapter Five - Glutathione as a Marker for Human Disease. In: Makowski GS, editor. Advances in clinical chemistry. Elsevier; 2018. 141–59. https://www.sciencedirect.com/science/article/pii/S0065242318300398. Accessed 9 Sep 2023.

  43. Tu B, Weissman J. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004;164:341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onoue T, Goto M, Tominaga T, Sugiyama M, Tsunekawa T, Hagiwara D, et al. Reactive oxygen species mediate insulin signal transduction in mouse hypothalamus. Neurosci Lett. 2016;619:1–7. https://www.sciencedirect.com/science/article/pii/S0304394016301410. Accessed 9 Sep 2023.

  45. Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473:528–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maamoun H, Abdelsalam S, Zeidan A, Korashy H, Agouni A. Endoplasmic reticulum stress: a critical molecular driver of endothelial dysfunction and cardiovascular disturbances associated with diabetes. Int J Mol Sci. 2019;20:1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SAGM, Smith DEC, et al. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys. 2013;67(2):341–52. https://doi.org/10.1007/s12013-011-9297-y.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5. https://doi.org/10.1038/nature09663.

    Article  CAS  PubMed  Google Scholar 

  49. Higashi Y, Maruhashi T, Noma K, Kihara Y. Oxidative stress and endothelial dysfunction: clinical evidence and therapeutic implications. Trends Cardiovasc Med. 2014;24(4):165–9. https://www.sciencedirect.com/science/article/pii/S1050173813001643. Accessed 9 Sep 2023.

  50. Dana T, Graves RAK. Diabetic complications and dysregulated innate immunity. FBL. 2008;13(4):1227–39.

    Google Scholar 

  51. Gonzalez LL, Garrie K, Turner MD. Type 2 diabetes-An autoinflammatory disease driven by metabolic stress. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2018;1864(11):3805–23. https://www.sciencedirect.com/science/article/pii/S0925443918303272. Accessed 9 Sep 2023.

  52. Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front Immunol. 2020;11:1582. https://doi.org/10.3389/fimmu.2020.01582.

  53. Kumar G, Dey SK, Kundu S. Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci. 2020;259:118377. https://www.sciencedirect.com/science/article/pii/S0024320520311309. Accessed 9 Sep 2023.

  54. Munteanu C, Rotariu M, Turnea MA, Anghelescu A, Irina A, Dogaru G, et al. Topical reappraisal of molecular pharmacological approaches to endothelial dysfunction in diabetes mellitus angiopathy. Curr Issues Mol Biol. 2022;44:3378–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins–molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal. 2013;19(13):1539–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc Pharmacol. 2015;71:40–56. https://www.sciencedirect.com/science/article/pii/S1537189115000427. Accessed 9 Sep 2023.

  57. Tonelli C, Chio IIC, Tuveson D. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2017;29:1727–45.

    Article  PubMed  Google Scholar 

  58. Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 2015;4:381–98. https://www.sciencedirect.com/science/article/pii/S2213231715000178. Accessed 9 Sep 2023.

  59. Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–28. https://doi.org/10.1083/jcb.201708007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim YS, Gupta Vallur P, Phaëton R, Mythreye K, Hempel N. Insights into the dichotomous regulation of SOD2 in cancer. Antioxidants. 2017;6(4):86.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Teo Z, Tham YC, Yu M, Chee M, Rim T, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128:1580–91.

    Article  PubMed  Google Scholar 

  62. Kovacova A, Shotliff K. Eye problems in people with diabetes: more than just diabetic retinopathy. Pract Diabetes. 2022;39(1):34–39a. https://doi.org/10.1002/pdi.2378.

    Article  Google Scholar 

  63. Wykoff CC, Khurana RN, Nguyen QD, Kelly SP, Lum F, Hall R, et al. Risk of blindness among patients with diabetes and newly diagnosed diabetic retinopathy. Diabetes Care. 2021;44(3):748–56. https://doi.org/10.2337/dc20-0413.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mazhar K, Varma R, Choudhury F, McKean-Cowdin R, Shtir C, Azen S. Severity of diabetic retinopathy and health-related quality of life the Los Angeles Latino Eye Study. Ophthalmology. 2010;118:649–55.

    Article  PubMed  Google Scholar 

  65. Jampol L, Glassman A, Sun J. Evaluation and care of patients with diabetic retinopathy. N Engl J Med. 2020;382:1629–37.

    Article  CAS  PubMed  Google Scholar 

  66. American Optometric Association. Evidence-based optometry guideline development group. Eye care of the patient with diabetes mellitus. American Optometric Association; 2019.

    Google Scholar 

  67. Fenwick E, Cheng G, Man R, Khadka J, Rees G, Wong TY, et al. Inter-relationship between visual symptoms, activity limitation and psychological functioning in patients with diabetic retinopathy. Br J Ophthalmol. 2018;102:948–53.

    Article  PubMed  Google Scholar 

  68. Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol. 2021;17(4):195–206. https://doi.org/10.1038/s41574-020-00451-4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ansari P, Tabasumma N, Snigdha NN, Siam NH, Panduru RVNRS, Azam S, et al. Diabetic retinopathy: an overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology. 2022;3(1):159–75. https://www.mdpi.com/2673-4540/3/1/11. Accessed 9 Sep 2023.

  70. Mansour S, Browning D, Wong K, Flynn H, Bhavsar A. The evolving treatment of diabetic retinopathy. Clin Ophthalmol. 2020;14:653–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nanegrungsunk O, Au A, Sarraf D, Sadda S. New frontiers of retinal therapeutic intervention: a critical analysis of novel approaches. Ann Med. 2022;54:1067–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Behl T, Kotwani A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol Res. 2015;99:137–48. https://www.sciencedirect.com/science/article/pii/S1043661815001115. Accessed 9 Sep 2023.

  73. Nian S, Lo ACY, Mi Y, Ren K, Yang D. Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis. 2021;8(1):15. https://doi.org/10.1186/s40662-021-00239-1.

    Article  Google Scholar 

  74. Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2016;255:1–6.

    Article  Google Scholar 

  75. Wei L, Sun X, Fan C, Li R, Zhou S, Yu H. The pathophysiological mechanisms underlying diabetic retinopathy. Front Cell Dev Biol. 2022;10:963615. https://doi.org/10.3389/fcell.2022.963615.

  76. Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2015;1852(11):2474–83. https://www.sciencedirect.com/science/article/pii/S0925443915002227. Accessed 9 Sep 2023.

  77. Fei Z, Gao W, Xu X, Sheng H, Qu S, Cui R. Serum superoxide dismutase activity: a sensitive, convenient, and economical indicator associated with the prevalence of chronic type 2 diabetic complications, especially in men. Free Radic Res. 2021;55(3):275–81. https://doi.org/10.1080/10715762.2021.1937146. Accessed 9 Sep 2023.

    Article  CAS  PubMed  Google Scholar 

  78. Kwong-Han K, Zunaina E, Hanizasurana H, Che-Badariah AA, Che-Maraina CH. Comparison of catalase, glutathione peroxidase and malondialdehyde levels in tears among diabetic patients with and without diabetic retinopathy. J Diabetes Metab Disord. 2022;21(1):681–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qayyum N, Haseeb M, Kim MS, Choi S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int J Mol Sci. 2021;22:2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40. https://doi.org/10.1038/ni.1831.

    Article  CAS  PubMed  Google Scholar 

  81. Royle P, Mistry H, Auguste P, Shyangdan D, Freeman K, Lois N, et al. Pan-retinal photocoagulation and other forms of laser treatment and drug therapies for non-proliferative diabetic retinopathy: systematic review and economic evaluation. Health Technol Assess (Winchester, England). 2015;19:1–248.

    Article  Google Scholar 

  82. Ene-Iordache B, Perico N, Bikbov B. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): a cross-sectional study. Lancet. 2016;4:e307–19.

    Google Scholar 

  83. Rodriguez F, Lee D, Santos M, Beetel R, Vasey J, Bailey R, et al. Real-world diagnosis and treatment of diabetic kidney disease. Adv Therapy. 2021;38:4425–41.

    Article  CAS  Google Scholar 

  84. Chiang CK, Wang CC, Lu TF, how Hk, Sheu M, Liu SH, et al. Involvement of endoplasmic reticulum stress, autophagy, and apoptosis in advanced glycation end products-induced glomerular mesangial cell injury. Sci Rep. 2016;6:34167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cunard R. Endoplasmic reticulum stress in the diabetic kidney, the good, the bad and the ugly. J Clin Med. 2015;4(4):715–40. https://www.mdpi.com/2077-0383/4/4/715.

  86. Fan Y, Lee K, Wang N, He JC. The role of endoplasmic reticulum stress in diabetic nephropathy. Curr Diab Rep. 2017;17(3):17. http://europepmc.org/abstract/MED/28271468.

  87. Krümmel B, Plötz T, Jörns A, Lenzen S, Mehmeti I. The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated beta-cell death. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2021;1867(6):166114. https://www.sciencedirect.com/science/article/pii/S0925443921000478.

  88. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337.

    Article  PubMed  Google Scholar 

  89. Raghavan S, Vassy JL, Ho Y, Song RJ, Gagnon DR, Cho K, et al. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8(4): e011295. https://doi.org/10.1161/JAHA.118.011295.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mosenzon O, Cheng A, Rabinstein A, Sacco S. Diabetes and stroke: what are the connections? J Stroke. 2023;25:26–38.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus. Circulation. 2016;133(24):2459–502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;1(1):1. https://doi.org/10.1186/1475-2840-1-1.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus-atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020;21(5):1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur Heart J [Internet]. 2008;29(2):270–6. https://doi.org/10.1093/eurheartj/ehm342.

    Article  PubMed  Google Scholar 

  95. Westermeier F, Riquelme J, Pavez Giani M, Garrido Moreno V, Diaz A, Verdejo H, et al. New molecular insights of insulin in diabetic cardiomyopathy. Front Physiol. 2016;7:125. https://doi.org/10.3389/fphys.2016.00125.

  96. De Geest B, Mishra M. Role of oxidative stress in diabetic cardiomyopathy. Antioxidants. 2022;11(4):784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sienes Bailo P, Llorente Martín E, Calmarza P, Montolio Breva S, Bravo Gómez A, Pozo Giráldez A, et al. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. 2022;3(4):342–50. https://doi.org/10.1515/almed-2022-0111.

  98. Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr Clin Res Rev. 2018;12(3):455–62. https://www.sciencedirect.com/science/article/pii/S1871402117304654. Accessed 9 Sep 2023.

  99. Parim B, Sathibabu Uddandrao VV, Saravanan G. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev. 2019;24(2):279–99. https://doi.org/10.1007/s10741-018-9749-1.

    Article  PubMed  Google Scholar 

  100. Jeong EM, Chung J, Liu H, Go Y, Gladstein S, Farzaneh-Far A, et al. Role of mitochondrial oxidative stress in glucose tolerance, insulin resistance, and cardiac diastolic dysfunction. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2016;5(5):e003046. https://doi.org/10.1161/JAHA.115.003046.

  101. Jelinek M, Jurajda M, Duris K. Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke. Antioxidants (Basel). 2021;10(12):1886. http://europepmc.org/abstract/MED/34942989. Accessed 9 Sep 2023.

  102. Li W, Yang SH. Targeting oxidative stress for the treatment of ischemic stroke: upstream and downstream therapeutic strategies. Brain Circ. 2016;2:153–63.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Schmidt H, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, et al. Antioxidants in translational medicine. Antioxid Redox Signal. 2015;23:1130–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sofiullah SSM, Murugan DD, Muid SA, Seng WY, Kadir SZ, Abas R, et al. Natural bioactive compounds targeting nadph oxidase pathway in cardiovascular diseases. Molecules. 2023;28(3):1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Memon MA, Khan RN, Riaz S, Ain QU, Ahmed M, Kumar N. Methylglyoxal and insulin resistance in berberine-treated type 2 diabetic patients. J Res Med Sci. 2018;23:110. http://europepmc.org/abstract/MED/30693045. Accessed 9 Sep 2023.

  106. Liu J, Feng L, Ma D, Zhang M, Gu J, Wang S, et al. Neuroprotective effect of paeonol on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. Neurosci Lett. 2013;549:63–8. https://www.sciencedirect.com/science/article/pii/S0304394013005491. Accessed 9 Sep 2023.

  107. Choy KW, Lau YS, Murugan D, Mustafa MR. Chronic treatment with paeonol improves endothelial function in mice through inhibition of endoplasmic reticulum stress-mediated oxidative stress. PLoS One. 2017;12(5):e0178365. http://europepmc.org/abstract/MED/28562691. Accessed 9 Sep 2023.

  108. Al-Taher AY, Morsy MA, Rifaai RA, Zenhom NM, Abdel-Gaber SA. Paeonol attenuates methotrexate-induced cardiac toxicity in rats by inhibiting oxidative stress and suppressing TLR4-induced NF-κB inflammatory pathway. Dobrzyn A, editor. Mediat Inflamm. 2020. https://doi.org/10.1155/2020/8641026.

    Article  Google Scholar 

  109. Ahmad A, Mishra RK, Vyawahare A, Kumar A, Rehman MU, Qamar W, et al. Thymoquinone (2-Isopropyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: chemistry and biological effects. Saudi Pharm J. 2019;27(8):1113–26. https://www.sciencedirect.com/science/article/pii/S1319016419301227. Accessed 9 Sep 2023.

  110. Khader M, Eckl PM. Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran J Basic Med Sci. 2014;17(12):950–7. http://europepmc.org/abstract/MED/25859298. Accessed 9 Sep 2023.

  111. Zhang L, Zhang H, Ma J, Wang Y, Pei Z, Ding H. Effects of thymoquinone against angiotensin II-induced cardiac damage in apolipoprotein E-deficient mice. Int J Mol Med. 2022;49(5):63. https://doi.org/10.3892/ijmm.2022.5119.

  112. Guo W, Long X, Lv M, Deng S, Liu D, Yang Q. Effect of thymoquinone on sepsis-induced cardiac damage via anti-inflammatory and anti-apoptotic mechanisms. J Int Med Res. 2022;50(9):03000605221118680. https://doi.org/10.1177/03000605221118680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boonla O, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Prachaney P, et al. Curcumin improves endothelial dysfunction and vascular remodeling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide. 2014;42:44–53. https://www.sciencedirect.com/science/article/pii/S1089860314002948. Accessed 12 Sep 2023.

  114. Meng Z, Yan C, Deng Q, feng GD, lin NX. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacolog Sin. 2013;34(7):901–11. https://doi.org/10.1038/aps.2013.24.

    Article  CAS  Google Scholar 

  115. Sourris KC, Harcourt BE, Tang PH, Morley AL, Huynh K, Penfold SA, et al. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic Biol Med. 2012;52(3):716–23. https://www.sciencedirect.com/science/article/pii/S0891584911012044. Accessed 12 Sep 2023.

  116. Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci. 1990;87(12):4879–83. https://doi.org/10.1073/pnas.87.12.4879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chacko BK, Reily C, Srivastava A, Johnson MS, Ye Y, Ulasova E, et al. Prevention of diabetic nephropathy in Ins2+/−AkitaJ mice by the mitochondria-targeted therapy MitoQ. Biochem J. 2010;432(1):9–19. https://doi.org/10.1042/BJ20100308.

    Article  CAS  PubMed  Google Scholar 

  118. Zhou R, Chen M, Zeng X, Yang J, Deng H, Yi L, et al. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death Dis. 2014;5(12): e1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cheng CK, Luo JY, Lau C, Chen ZY, Tian XY, Huang Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol. 2019;177:1258–77.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhang Y, Janssens S, Wingler K, Schmidt H, Moens A. Modulating endothelial nitric oxide synthase: a new cardiovascular therapeutic strategy. Am J Physiol Heart Circ Physiol. 2011;301:H634–46.

    Article  CAS  PubMed  Google Scholar 

  121. Abbaszadeh F, Azizi S, Mobasseri M, Ebrahimi-Mameghani M. The effects of citrulline supplementation on meta-inflammation and insulin sensitivity in type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Diabetol Metab Syndr. 2021;13,52. https://doi.org/10.1186/s13098-021-00669-w.

  122. Persson P, Fasching A, Teerlink T, Hansell P, Palm F. L-Citrulline, but not L-arginine, prevents diabetes mellitus-induced glomerular hyperfiltration and proteinuria in rat. Hypertension. 2014;64:323–9.

    Article  CAS  PubMed  Google Scholar 

  123. Douglass MS, Kaplowitz MR, Zhang Y, Fike CD. Impact of l-citrulline on nitric oxide signaling and arginase activity in hypoxic human pulmonary artery endothelial cells. Pulm Circ. 2023;13(2): e12221. https://doi.org/10.1002/pul2.12221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang Y, Khoi PN, Cai B, Sah DK, Jung YD. Sulforaphane regulates eNOS activation and NO production via Src-mediated PI3K/Akt signaling in human endothelial EA.hy926 cells. Molecules. 2022;27(17):5422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ooi BK, Chan KG, Goh BH, Yap WH. The role of natural products in targeting cardiovascular diseases via Nrf2 Pathway: novel molecular mechanisms and therapeutic approaches. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.01308.

    Article  PubMed  PubMed Central  Google Scholar 

  126. He WJ, Lv CH, Chen Z, Shi M, Zeng CX, Hou DX, et al. The regulatory effect of phytochemicals on chronic diseases by targeting Nrf2-ARE signaling pathway. Antioxidants. 2023;12(2):236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Divya T, Dineshbabu V, Soumyakrishnan S, Sureshkumar A, Sudhandiran G. Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis. Chemico-Biolog Interact. 2016;246:52–62. https://www.sciencedirect.com/science/article/pii/S0009279716300060.

  128. Seo WY, Goh AR, Ju SM, Song HY, Kwon DJ, Jun JG, et al. Celastrol induces expression of heme oxygenase-1 through ROS/Nrf2/ARE signaling in the HaCaT cells. Biochem Biophys Res Commun. 2011;407(3):535–40. https://www.sciencedirect.com/science/article/pii/S0006291X11004372.

  129. Li M, Liu X, He Y, Zheng Q, Wang M, Wu Y, et al. Celastrol attenuates angiotensin II mediated human umbilical vein endothelial cells damage through activation of Nrf2/ERK1/2/Nox2 signal pathway. Eur J Pharmacol. 2017;797:124–33. https://www.sciencedirect.com/science/article/pii/S0014299917300377. Accessed 12 Sep 2023.

  130. Jiang Q, Wang D, Han Y, Han Z, Zhong W, Wang C. Modulation of oxidized-LDL receptor-1 (LOX1) contributes to the antiatherosclerosis effect of oleanolic acid. Int J Biochem Cell Biol. 2015;69:142–52. https://www.sciencedirect.com/science/article/pii/S1357272515300480. Accessed 12 Sep 2023.

  131. Kanlaya R, Khamchun S, Kapincharanon C, Thongboonkerd V. Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Sci Rep. 2016;6(1):30233. https://doi.org/10.1038/srep30233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res. 2021;35(6):3078–112. https://doi.org/10.1002/ptr.7033.

    Article  CAS  PubMed  Google Scholar 

  133. Barker EC. The isolation and biological evaluation of anti-inflammatory and chemopreventive triterpenoid natural products. Case Western Reserve University; 2015.

    Google Scholar 

  134. David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. Ndisang JF, editor. J Diabetes Res. 2017. https://doi.org/10.1155/2017/4826724.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tan SM, Sharma A, Stefanovic N, Yuen DYC, Karagiannis TC, Meyer C, et al. Derivative of bardoxolone methyl, dh404, in an inverse dose-dependent manner lessens diabetes-associated atherosclerosis and improves diabetic kidney disease. Diabetes. 2014;63(9):3091–103. https://doi.org/10.2337/db13-1743.

    Article  PubMed  Google Scholar 

  136. Hong YA, Lim JH, Kim M, Kim Y, Park HS, wook KH, et al. Extracellular superoxide dismutase attenuates renal oxidative stress through the activation of AMPK in diabetic nephropathy. Antioxid Redox Signal. 2017. https://doi.org/10.1089/ars.2017.7207.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lv T, Lu Y, Liu Y, Feng H, Li C, Sheng W, et al. General control of amino acid synthesis 5-like 1-mediated acetylation of manganese superoxide dismutase regulates oxidative stress in diabetic kidney disease. Oxid Med Cell Longev. 2021;2021:1–15. https://doi.org/10.1155/2021/6691226.

    Article  CAS  Google Scholar 

  138. Masi S, Ambrosini S, Mohammed SA, Sciarretta S, Luescher TF, Paneni F, Costantino S. Epigenetic remodeling in obesity-related vascular disease. Antioxid Redox Signal. 2021;34(15):1165–99. https://doi.org/10.1089/ars.2020.8040.

    Article  CAS  PubMed  Google Scholar 

  139. Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol. 2008;101(10):S14–9. https://doi.org/10.1016/j.amjcard.2008.02.003.

    Article  CAS  Google Scholar 

  140. Tyuryaeva I, Lyublinskaya O. Expected and unexpected effects of pharmacological antioxidants. Int J Mol Sci. 2023;24(11):9303. https://doi.org/10.3390/ijms24119303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Apostolova N, Victor VM. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal. 2015;22(8):686–729. https://doi.org/10.1089/ars.2014.5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Pharmacology and Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSSAHER, Mysuru, Karnataka, India and appreciates the interdisciplinary collaboration with the Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas Campus, New Delhi for their collaborative efforts that significantly enriched this for drafting this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Krishna.

Ethics declarations

Funding

No external funding was received for the preparation of this manuscript.

Ethics Approval

Not applicable

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the writing of this manuscript.

Code Availability

Not applicable.

Competing Interest

None.

Author Contributions

TFR: Conceptualization (lead); writing original draft (lead); formal analysis (lead); writing, review and editing (equal). SF: writing original draft (lead); review and editing (equal). ZAP: Conceptualization (supporting); review and editing (equal). MDAIB: Review and editing (equal). SM: Review and editing (equal). NK: Review and editing (equal). KLK: Conceptualization (supporting); Supervision; review and editing (equal). All authors have reviewed the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, T.F., Faizan, S., Parray, Z.A. et al. Beyond Glucose: The Dual Assault of Oxidative and ER Stress in Diabetic Disorders. High Blood Press Cardiovasc Prev 30, 513–531 (2023). https://doi.org/10.1007/s40292-023-00611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-023-00611-3

Keywords

Navigation