Skip to main content
Log in

Development of Data Mining Algorithms for Identifying the Best Anthropometric Predictors for Cardiovascular Disease: MASHAD Cohort Study

  • Original article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Introduction

Many studies have been published to assess the best anthropometric measurements associated with cardiovascular diseases (CVDs), but controversies still exist.

Aim

Investigating the association between CVDs and anthropometric measurements among Iranian adults.

Methods

For a total population of 9354 aged 35 to 65, a prospective study was designed. Anthropometric measurements including ABSI (A Body Shape Index), Body Adiposity Index (BAI), Body Mass Index (BMI), Waist to Height Ratio (WHtR), Body Round Index (BRI), HC (Hip Circumference), Demispan, Mid-arm circumference (MAC), Waist-to-hip (WH) and Waist Circumference (WC) were completed. The association between these parameters and CVDs were assessed through logistic regression (LR) and decision tree (DT) models.

Results

During the 6-year follow-up, 4596 individuals (49%) developed CVDs. According to the LR, age, BAI, BMI, Demispan, and BRI, in male and age, WC, BMI, and BAI in female had a significant association with CVDs (p-value < 0.03). Age and BRI for male and age and BMI for female represent the most appropriate estimates for CVDs (OR: 1.07, (95% CI: 1.06, 1.08), 1.36 (1.22, 1.51), 1.14 (1.13, 1.15), and 1.05 (1.02, 1.07), respectively). In the DT for male, those with BRI ≥ 3.87, age ≥ 46 years, and BMI ≥ 35.97 had the highest risk to develop CVDs (90%). Also, in the DT for female, those with age ≥ 54 years and WC ≥ 84 had the highest risk to develop CVDs (71%).

Conclusion

BRI and age in male and age and BMI in female had the greatest association with CVDs. Also, BRI and BMI was the strongest indices for this prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. "WHO : Obesity and overweight "; https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  2. Katzmarzyk PT, Chaput J-P, Fogelholm M, Hu G, Maher C, Maia J, Olds T, Sarmiento OL, Standage M, Tremblay MS. International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): contributions to understanding the global obesity epidemic. Nutrients. 2019;11(4):848.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rahmani A, Sayehmiri K, Asadollahi K, Sarokhani D, Islami F, Sarokhani M. Investigation of the prevalence of obesity in Iran: a systematic review and meta-analysis study; 2015.

  4. Kelly T, Yang W, Chen C-S, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32(9):1431–7.

    Article  CAS  Google Scholar 

  5. Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation. 2013;127(6):749–56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mandviwala T, Khalid U, Deswal A. Obesity and cardiovascular disease: a risk factor or a risk marker? Curr Atheroscler Rep. 2016;18(5):1–10.

    Article  CAS  Google Scholar 

  7. McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018;36(1):14–20.

    Article  PubMed  Google Scholar 

  8. Song X, Jousilahti P, Stehouwer C, Söderberg S, Onat A, Laatikainen T, Yudkin J, Dankner R, Morris R, Tuomilehto J. Cardiovascular and all-cause mortality in relation to various anthropometric measures of obesity in Europeans. Nutr Metab Cardiovasc Dis. 2015;25(3):295–304.

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Tse LA, Liu Z, Rangarajan S, Hu B, Yin L, Leong DP, Li W. Predictive values of anthropometric measurements for cardiometabolic risk factors and cardiovascular diseases among 44 048 Chinese. J Am Heart Assoc. 2019;8(16): e010870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salari A, Shakiba M, Mahdavi-Roshan M, Gholipour M, Naghshbandi M, Rajabi R. The association between various indices of obesity and severity of atherosclerosis in adults in the north of Iran. Medicine. 2016;95(50):5670.

    Article  Google Scholar 

  11. Prentice AM, Jebb SA. Beyond body mass index. Obes Rev. 2001;2(3):141–7.

    Article  CAS  PubMed  Google Scholar 

  12. Jackson AS, Stanforth PR, Gagnon J, Rankinen T, Leon AS, Rao DC, Skinner JS, Bouchard C, Wilmore JH. The effect of sex, age and race on estimating percentage body fat from body mass index: the Heritage Family Study. Int J Obes Relat Metab Disord. 2002;26(6):789–96.

    Article  CAS  PubMed  Google Scholar 

  13. Goh LG, Dhaliwal SS, Welborn TA, Lee AH, Della PR. Ethnicity and the association between anthropometric indices of obesity and cardiovascular risk in women: a cross-sectional study. BMJ Open. 2014;4(5): e004702.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Gu Y, Wang N, Zhao Q, Ng N, Wang R, Zhou X, Jiang Y, Wang W, Zhao G. “Association between anthropometric indicators of obesity and cardiovascular risk factors among adults in Shanghai, China. BMC Public Health. 2019;19(1):1035.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275–86.

    Article  CAS  PubMed  Google Scholar 

  16. Lo K, Wong M, Khalechelvam P, Tam W. Waist-to-height ratio, body mass index and waist circumference for screening paediatric cardio-metabolic risk factors: a meta-analysis. Obes Rev. 2016;17(12):1258–75.

    Article  CAS  PubMed  Google Scholar 

  17. Park SH, Choi SJ, Lee KS, Park HY. Waist circumference and waist-to-height ratio as predictors of cardiovascular disease risk in Korean adults. Circ J. 2009;73(9):1643–50.

    Article  CAS  PubMed  Google Scholar 

  18. Tseng CH, Chong CK, Chan TT, Bai CH, You SL, Chiou HY, Su TC, Chen CJ. Optimal anthropometric factor cutoffs for hyperglycemia, hypertension and dyslipidemia for the Taiwanese population. Atherosclerosis. 2010;210(2):585–9.

    Article  CAS  PubMed  Google Scholar 

  19. Feldstein CA, Akopian M, Olivieri AO, Kramer AP, Nasi M, Garrido D. A comparison of body mass index and waist-to-hip ratio as indicators of hypertension risk in an urban Argentine population: a hospital-based study. Nutr Metab Cardiovasc Dis. 2005;15(4):310–5.

    Article  PubMed  Google Scholar 

  20. Esmaillzadeh A, Mirmiran P, Azizi F. Waist-to-hip ratio is a better screening measure for cardiovascular risk factors than other anthropometric indicators in Tehranian adult men. Int J Obes Relat Metab Disord. 2004;28(10):1325–32.

    Article  CAS  PubMed  Google Scholar 

  21. Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE. 2012;7(7): e39504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song X, Jousilahti P, Stehouwer CD, Söderberg S, Onat A, Laatikainen T, Yudkin JS, Dankner R, Morris R, Tuomilehto J, Qiao Q. Cardiovascular and all-cause mortality in relation to various anthropometric measures of obesity in Europeans. Nutr Metab Cardiovasc Dis. 2015;25(3):295–304.

    Article  CAS  PubMed  Google Scholar 

  23. Song X, Jousilahti P, Stehouwer CD, Söderberg S, Onat A, Laatikainen T, Yudkin JS, Dankner R, Morris R, Tuomilehto J, Qiao Q. Comparison of various surrogate obesity indicators as predictors of cardiovascular mortality in four European populations. Eur J Clin Nutr. 2013;67(12):1298–302.

    Article  CAS  PubMed  Google Scholar 

  24. Lam BC, Koh GC, Chen C, Wong MT, Fallows SJ. Comparison of Body Mass Index (BMI), Body Adiposity Index (BAI), Waist Circumference (WC), Waist-To-Hip Ratio (WHR) and Waist-To-Height Ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS ONE. 2015;10(4): e0122985.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Calderón-García JF, Roncero-Martín R, Rico-Martín S, De Nicolás-Jiménez JM, López-Espuela F, Santano-Mogena E, Alfageme-García P, Sánchez Muñoz-Torrero JF. Effectiveness of Body Roundness Index (BRI) and a Body Shape Index (ABSI) in predicting hypertension: a systematic review and meta-analysis of observational studies. Int J Environ Res Public Health. 2021;18(21):11607.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Esmaily H, Tayefi M, Doosti H, Ghayour-Mobarhan M, Nezami H, Amirabadizadeh A. A comparison between decision tree and random forest in determining the risk factors associated with type 2 diabetes. J Res Health Sci. 2018;18(2): e00412.

    PubMed  Google Scholar 

  28. Luepker RV, Murray DM, Jacobs DR Jr, Mittelmark MB, Bracht N, Carlaw R, Crow R, Elmer P, Finnegan J, Folsom AR. Community education for cardiovascular disease prevention: risk factor changes in the Minnesota Heart Health Program. Am J Public Health. 1994;84(9):1383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prineas RJ, Crow RS, Zhang Z-M. The Minnesota code manual of electrocardiographic findings. New York: Springer Science & Business Media; 2009.

    Google Scholar 

  30. Asadi Z, Ghazizadeh H, Yaghooti M, Bijari M, Khedmatgozar H, Dabagh AE, Mohammadi MA, Fazl MR, Kadkhoda-Ahmadi S, Moazedi S. Role of socio-demographic, lifestyle, psychological and anthropometric parameters on cardiovascular disease risk among mashad cohort study population, 2020.

  31. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 41(Suppl 1):S13–s27, 2018.

  32. David SL, Hosmer W Jr, Sturdivant RX. Applied logistic regression. Hoboken: John Wiley & Sons, Inc.,; 2013.

    Google Scholar 

  33. Saberi-Karimian M, Khorasanchi Z, Ghazizadeh H, Tayefi M, Saffar S, Ferns GA, Ghayour-Mobarhan M. Potential value and impact of data mining and machine learning in clinical diagnostics. Crit Rev Clin Lab Sci. 2021;58(4):275–96.

    Article  PubMed  Google Scholar 

  34. Mohammadi M, Mansoori A. A projection neural network for identifying copy number variants. IEEE J Biomed Health Inform. 2018;23(5):2182–8.

    Article  PubMed  Google Scholar 

  35. Y. Zhong. The analysis of cases based on decision tree. pp. 142–147.

  36. Aghasizadeh M, Samadi S, Sahebkar A, Miri-Moghaddam E, Esmaily H, Souktanloo M, Avan A, Mansoori A, Ferns GA, Kazemi T. Serum HDL cholesterol uptake capacity in subjects from the MASHAD cohort study: Its value in determining the risk of cardiovascular endpoints. J Clin Lab Anal. 2021;35: e23770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saberi-Karimian M, Safarian-Bana H, Mohammadzadeh E, Kazemi T, Mansoori A, Ghazizadeh H, Samadi S, Nikbakht-Jam I, Nosrati M, Ferns GA. A pilot study of the effects of crocin on high-density lipoprotein cholesterol uptake capacity in patients with metabolic syndrome: a randomized clinical trial. BioFactors. 2021;47:1032–41.

    Article  CAS  PubMed  Google Scholar 

  38. Mansoori A, Sahranavard T, Hosseini ZS, Soflaei SS, Emrani N, Nazar E, Gharizadeh M, Khorasanchi Z, Effati S, Ghamsary M. Prediction of type 2 diabetes mellitus using hematological factors based on machine learning approaches: a cohort study analysis. Sci Rep. 2023;13(1):1–11.

    Article  Google Scholar 

  39. Saberi-Karimian M, Mansoori A, Bajgiran MM, Hosseini ZS, Kiyoumarsioskouei A, Rad ES, Zo MM, Khorasani NY, Poudineh M, Ghazizadeh S. Data mining approaches for type 2 diabetes mellitus prediction using anthropometric measurements. J Clin Lab Anal. 2023;37: e24798.

    Article  CAS  PubMed  Google Scholar 

  40. Hooley JM, Teasdale JD. Predictors of relapse in unipolar depressives: expressed emotion, marital distress, and perceived criticism. J Abnorm Psychol. 1989;98(3):229.

    Article  CAS  PubMed  Google Scholar 

  41. Mohammadi F, Pourzamani H, Karimi H, Mohammadi M, Mohammadi M, Ardalan N, Khoshravesh R, Pooresmaeil H, Shahabi S, Sabahi M. Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran. Biomed J. 2021;44:304–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Al-Azzam N, Elsalem L, Gombedza F. A cross-sectional study to determine factors affecting dental and medical students’ preference for virtual learning during the COVID-19 outbreak. Heliyon. 2020;6(12): e05704.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Noale M, Limongi F, Maggi S. Epidemiology of cardiovascular diseases in the elderly. Adv Exp Med Biol. 2020;1216:29–38.

    Article  PubMed  Google Scholar 

  44. van den Munckhof ICL, Jones H, Hopman MTE, de Graaf J, Nyakayiru J, van Dijk B, Eijsvogels TMH, Thijssen DHJ. Relation between age and carotid artery intima-medial thickness: a systematic review. Clin Cardiol. 2018;41(5):698–704.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J Physiol. 2016;594(8):2061–73.

    Article  CAS  PubMed  Google Scholar 

  46. Stephan Y, Sutin AR, Wurm S, Terracciano A. Subjective aging and incident cardiovascular disease. J Gerontol B Psychol Sci Soc Sci. 2021;76(5):910–9.

    Article  PubMed  Google Scholar 

  47. Melmer A, Lamina C, Tschoner A, Ress C, Kaser S, Laimer M, Sandhofer A, Paulweber B, Ebenbichler CF. Body adiposity index and other indexes of body composition in the SAPHIR study: association with cardiovascular risk factors. Obesity (Silver Spring). 2013;21(4):775–81.

    Article  CAS  PubMed  Google Scholar 

  48. Barreira TV, Staiano AE, Harrington DM, Heymsfield SB, Smith SR, Bouchard C, Katzmarzyk PT. Anthropometric correlates of total body fat, abdominal adiposity, and cardiovascular disease risk factors in a biracial sample of men and women. Mayo Clin Proc. 2012;87(5):452–60.

    Article  PubMed  PubMed Central  Google Scholar 

  49. López AA, Cespedes ML, Vicente T, Tomas M, Bennasar-Veny M, Tauler P, Aguilo A. Body adiposity index utilization in a Spanish Mediterranean population: comparison with the body mass index. PLoS ONE. 2012;7(4): e35281.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bennasar-Veny M, Lopez-Gonzalez AA, Tauler P, Cespedes ML, Vicente-Herrero T, Yañez A, Tomas-Salva M, Aguilo A. Body adiposity index and cardiovascular health risk factors in Caucasians: a comparison with the body mass index and others. PLoS ONE. 2013;8(5): e63999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moliner-Urdiales D, Artero EG, Lee DC, España-Romero V, Sui X, Blair SN. Body adiposity index and all-cause and cardiovascular disease mortality in men. Obesity (Silver Spring). 2013;21(9):1870–6.

    Article  PubMed  Google Scholar 

  52. D’Elia L, Manfredi M, Sabino P, Strazzullo P, Galletti F. The Olivetti Heart Study: predictive value of a new adiposity index on risk of hypertension, blood pressure, and subclinical organ damage. Nutr Metab Cardiovasc Dis. 2016;26(7):630–6.

    Article  CAS  PubMed  Google Scholar 

  53. Almeida RT, Pereira ADC, Fonseca M, Matos SMA, Aquino EML. Association between body adiposity index and coronary risk in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Clin Nutr. 2020;39(5):1423–31.

    Article  PubMed  Google Scholar 

  54. Bi X, Tey SL, Leong C, Quek R, Loo YT, Henry CJ. Correlation of adiposity indices with cardiovascular disease risk factors in healthy adults of Singapore: a cross-sectional study. BMC Obes. 2016;3:33.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rost S, Freuer D, Peters A, Thorand B, Holle R, Linseisen J, Meisinger C. New indexes of body fat distribution and sex-specific risk of total and cause-specific mortality: a prospective cohort study. BMC Public Health. 2018;18(1):427.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, Maeda Y, McDougall A, Peterson CM, Ravussin E. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity. 2013;21(11):2264–71.

    Article  PubMed  Google Scholar 

  57. Wu M, Yu X, Xu L, Wu S, Tian Y. Associations of longitudinal trajectories in body roundness index with mortality and cardiovascular outcomes: a cohort study. Am J Clin Nutr. 2022;115(3):671–8.

    Article  PubMed  Google Scholar 

  58. Xu J, Zhang L, Wu Q, Zhou Y, Jin Z, Li Z, Zhu Y. Body roundness index is a superior indicator to associate with the cardio-metabolic risk: evidence from a cross-sectional study with 17,000 Eastern-China adults. BMC Cardiovasc Disord. 2021;21(1):1–12.

    Article  Google Scholar 

  59. Li Y, He Y, Yang L, Liu Q, Li C, Wang Y, Yang P, Wang J, Chen Z, Huang X. Body roundness index and waist-hip ratio result in better cardiovascular disease risk stratification: results from a large chinese cross-sectional study. Front Nutr. 2022. https://doi.org/10.3389/fnut.2022.801582.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu B, Liu B, Wu G, Yin F. Relationship between body-roundness index and metabolic syndrome in type 2 diabetes. Diabetes Metab Syndr Obes Targets Therapy. 2019;12:931.

    Article  CAS  Google Scholar 

  61. Calderón-García JF, Roncero-Martín R, Rico-Martín S, Nicolás-Jiménez D, Jorge M, López-Espuela F, Santano-Mogena E, Alfageme-García P, Sánchez Muñoz-Torrero JF. Effectiveness of Body Roundness Index (BRI) and a Body Shape Index (ABSI) in predicting hypertension: a systematic review and meta-analysis of observational studies. Int J Environ Res Public Health. 2021;18(21):11607.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tian T, Zhang J, Zhu Q, Xie W, Wang Y, Dai Y. Predicting value of five anthropometric measures in metabolic syndrome among Jiangsu Province, China. BMC Public Health. 2020;20(1):1–9.

    Article  Google Scholar 

  63. Youk TM, Kang MJ, Song SO, Park EC. Effects of BMI and LDL-cholesterol change pattern on cardiovascular disease in normal adults and diabetics. BMJ Open Diabetes Res Care. 2020;8(2): e001340.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xiang M, Hu H, Imai T, Nishihara A, Sasaki N, Ogasawara T, Hori A, Nakagawa T, Yamamoto S, Honda T, Okazaki H, Uehara A, Yamamoto M, Miyamoto T, Kochi T, Eguchi M, Murakami T, Shimizu M, Tomita K, Nagahama S, Nanri A, Konishi M, Akter S, Kuwahara K, Kashino I, Yamaguchi M, Kabe I, Mizoue T, Kunugita N, Dohi S. Association between anthropometric indices of obesity and risk of cardiovascular disease in Japanese men. J Occup Health. 2020;62(1): e12098.

    Article  PubMed  Google Scholar 

  65. Dwivedi AK, Dubey P, Cistola DP, Reddy SY. Association between obesity and cardiovascular outcomes: updated evidence from meta-analysis studies. Curr Cardiol Rep. 2020;22(4):25.

    Article  PubMed  Google Scholar 

  66. Larsson SC, Bäck M, Rees JMB, Mason AM, Burgess S. Body mass index and body composition in relation to 14 cardiovascular conditions in UK Biobank: a Mendelian randomization study. Eur Heart J. 2020;41(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  67. Darroudi S, Soflaee SS, Hosseini ZS, Farmad MS, Mirshafiei H, Sheikh Andalibi MS, Eslamiyeh M, Donyadideh G, Aryan R, Ekhteraee Toosi MS, Talkhi N, Esmaily H, Samadi S, Mohammadpour AH, Rad MA, Ferns GA, Ghayour-Mobarhan M, Moohebati M. The visceral adiposity index and lipid accumulation product as predictors of cardiovascular events in normal weight subjects. Clin Nutr ESPEN. 2022;52:190–97. https://doi.org/10.1016/j.clnesp.2022.10.015.

  68. Acute coronary syndrome in mashhad Northeastern of Iran: report of a decade multidisciplinary cardiovascular annals. 2022;13(2) https://doi.org/10.5812/mca10.5812/mca-115916.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Habibollah Esmaily or Majid Ghayour Mobarhan.

Ethics declarations

Author contributions

Conceptualization, ZSH and HE; data curation, AM; formal analysis, AM; investigation, YM; project administration, HE and MG-M; software, AM; Writing—original draft, ZSH, MP, ESR, MMZ, MH, MH, MTF and OHH; writing—review and editing, RKA, MP, FI and GAF.

Statement of ethics

This study protocol was reviewed and approved by the Ethics Committee of MUMS, approval number IR.MUMS.REC.1386.250.

Conflict of interest statement

The Authors declare that there is no conflict of interest.

Funding sources

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability

Data sharing is not applicable to this article as no new data were created in this study. Further enquiries can be directed to the corresponding author.

Appendix

Appendix

By applying the results obtained in Table 2 (Estimate column), the regression formula for predicting CVDs based on significant factors for male and female can be designed as follows:

$$P\left(CVD\right)=\frac{exp\left(f\right) }{1+exp\left(f\right) },$$

where f is obtained from Table 2 as:

$${f}_{male}= \, 0.03\left(BMI\right)+ 0.31\left(BRI\right)-0.05\left(BAI\right)+0.07\left(age\right)-0.03\left(\mathrm{Demispan}\right)-2.11$$
$${f}_{female}=0.05\left(BMI\right) -0.03\left(BAI\right)+0.13\left(age\right)-0.02\left(\mathrm{WC}\right)-9.07$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoori, A., Hosseini, Z.S., Ahari, R.K. et al. Development of Data Mining Algorithms for Identifying the Best Anthropometric Predictors for Cardiovascular Disease: MASHAD Cohort Study. High Blood Press Cardiovasc Prev 30, 243–253 (2023). https://doi.org/10.1007/s40292-023-00577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-023-00577-2

Keywords

Navigation