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Abstract
Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy associated with high-risk human papillomavirus 
(HPV) and is currently one of the fastest-growing causes of cancer incidence and mortality in developed countries. Although 
next-generation sequencing technologies (NGS) have revolutionized cancer and immuno-genomic research in various tumor 
types, a limited amount of clinical research has been developed to investigate the expression and the functional characteriza-
tion of genomic data in ASCC. Herein, we comprehensively assess recent advancements in “omics” research, including a 
systematic analysis of genome-based studies, aiming to identify the most relevant ASCC cancer driver gene expressions and 
their associated signaling pathways. We also highlight the most significant biomarkers associated with anal cancer progres-
sion, gene expression of potential diagnostic biomarkers, expression of therapeutic drug targets, and emerging treatment 
opportunities. This review stresses the urgent need for developing target-specific therapies in ASCC. By illuminating the 
molecular characteristics and drug-target expression in ASCC, this study aims to provide insights for the development of 
precision medicine in anal cancer.

Key Points 

Access to the latest precision medicine approaches has 
been limited in anal cancer, where the treatment has 
remained the same over the last decades with regards to 
the scope of targeted therapy in clinical practice.

This article summarizes the current genomic advances 
and emerging biomarkers for anal squamous cell carci-
noma that delineates exciting enormous challenges to 
move toward to a personalized approach for ASCC

1 Introduction

Anal squamous cell carcinoma (ASCC) is a rare cancer, 
accounting for less than 3% of all gastrointestinal neoplasms 
and less than 1% of all worldwide cancers in both men and 
women [1]. Worldwide, ASCC is one of the fastest accelerat-
ing causes of cancer incidence and mortality in developed 

countries, particularly in North America and Western 
Europe [2, 3]. In the USA, 8590 new cases in women and 
3350 new cases in men were estimated in 2021. According 
to the European Cancer Information System (ECIS), there 
were an estimated 16,600 new cases and 7300 deaths in 2020 
[4]. Usually, the average age at diagnosis is around 62 years. 
However, there has also been an increase in the incidence 
of anal cancer among younger adults. The age-standardized 
incidence rate of anal cancer has increased from 0.7 to 1.2 
cases per 100,000 populations in 2018, particularly among 
those aged 20–49 years [5]. The reason for the increase in 
anal cancer incidence is correlated to an increase in the bur-
den numbers of human papillomavirus (HPV)-related can-
cers. Other well-known risk factors associated with ASCC 
are HIV infection, tobacco smoking, immunosuppression 
following transplantation, and autoimmune diseases such as 
Crohn’s disease [5, 6].

There are rising levels of awareness over the last few 
years regarding the prevention of HPV related cancer via 
vaccination programs and the importance of screening based 
on an annual systematic Pap test or HPV screening detec-
tion, which has been recommended for high-risk groups 
[7, 8]. Unfortunately, treatment options for non-metastatic 
ASCC (NM-ASCC) have not evolved significantly over the 
last 2 decades; concurrent chemoradiotherapy remains the 
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standard of care strategy for non-metastatic diseases. A com-
bination of chemoradiotherapy has yielded a high rate of 
complete local regression and stands as an efficient strategy 
allowing anal-surgery preservation and sparing anal func-
tions [8]. Nevertheless, 5-year disease-free survival (DFS) 
rates in NM-ASCC remain very heterogeneous, ranging 
from 85% in early tumors to 35% ASCC with lymph node 
invasion [6, 9, 10]. In clinical practice, prognostic factors of 
survival in ASCC are the T and N stage, sex, differentiation 
status, tumor location, HIV-HPV coinfection, and occur-
rence of a complete response after CRT [11]. Regrettably, 
these clinical parameters correlating with survival cannot 
be used to tailor therapy and predict treatment response in 
individual patients.

In patients with either metastases at diagnosis or who 
develop metastatic recurrences following chemoradiation 
therapy, the 5-year survival rate is less than 20% [12]. Thus 
far, platinum, fluorouracil, and taxanes are the most fre-
quently used anticancer drugs for palliative chemotherapy. 
Clinical trials using PD1-1/PDL1 either alone or in com-
bination with chemotherapy are ongoing. None of the tar-
geted drugs used in other tumor types have been developed 
in advanced or metastatic ASCC.

A better understanding of the biology of ASCC may help 
in developing drug targeted programs. Recently significant 
progress in genomics research shedding light on the bio-
logical mechanisms underlying ASCC has been reported 
[13–17]. Although, to date, owing to the low incidence of 
ASCC, there is still a great deal of genomic information to 
explore, large data sets investigating DNA molecular path-
ways, epigenetics, tumor microenvironment, and ct-DNA are 
available and could be used to guide molecular research in 
ASCC. This review aims to present a comprehensive over-
view of the main advances achieved in the molecular biology 
of ASCC to encourage continuous international interest in 
anal cancer.

2  Genomic Changes in ASCC Development 
and Progression

The rare incidence of ASCC has limited the molecular char-
acterization of its mutational landscape compared with other 
cancers. Analyzing methodically mutational profiles from 
nine genome-based studies enabled us to identify the pri-
mary ASCC cancer driver mutations (Fig. 1). As previously 
reported, with PIK3CA being the most frequently mutated 
gene (30–40%), particularly in HPV-positive cases in line 
with other HPV malignancies [17–19]. The E545K variant 
[c.1633G>A (p.Glu545Lys)] in PIK3CA’s helical domain 
is prevalent, leading to constitutive Akt signaling activation 
[20]. Recent studies have also suggested that the APOBEC 
family of cytidine deaminases, which play a key role in the 

innate immune response to viral infection, may contribute 
to generating PIK3CA mutations in HPV-positive ASCC 
[21]. APOBEC enzymes can deaminate cytidine residues in 
single-stranded DNA, leading to the accumulation of muta-
tions. HPV infection can induce the expression of APOBEC 
enzymes, which may contribute to the high mutation burden 
observed in HPV-positive ASCC. In contrast, tumors exhib-
iting low APOBEC activity demonstrate an equal likelihood 
of mutations in the kinase domain hot spot and the helical 
domain of PIK3CA. These mutations may arise from alterna-
tive mutational processes, which contribute to the activation 
of these mutations and potentially facilitate carcinogenesis 
[19–23]. The prognostic value of PIK3CA mutations remains 
controversial in ASCC, as some studies identified PIK3CA 
mutations as poor prognostic factors, but this was not con-
firmed in further investigations [22, 24]. On the basis of the 

Fig. 1  Heatmap of the most relevant cancer driver mutation identified 
across nine ASCC cohorts using genomics-based sequencing plat-
forms. Briefly, mutational profiles and their reported frequencies were 
obtained from nine ASCC studies. The visualization of commonly 
mutated genes reported in at least two datasets and their associated 
signaling pathways was performed with the Multi-Experiment Viewer 
software. ASCC anal squamous cell carcinoma
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high frequency of PIK3CA mutation, targeted agents, such 
as alpelisib, a PI3K inhibitor, are being studied in other SCC 
cancers, either alone or in combination [25]. Furthermore, 
data have suggested that mTOR inhibitors, such as everoli-
mus, could be effective for cases with PIK3CA mutation 
[25–27]. These mutations have also presented a potential 
resistance to anti-EGFR-based therapies [28].

Other cancer drivers appear to be mutated in a rela-
tively low frequency, such as FBXW7 and KMT2D, rang-
ing between 10% and 20% in most cohorts, respectively 
[15]. The KMT2D gene encodes a protein known as lysine 
(K)-specific methyltransferase 2D, also known as MLL2 
or MLL4. In addition, KMT2C (also known as MLL3) was 
found to be mutated in cases of anal cancer [21, 29]. This 
protein is a histone methyltransferase, which adds a methyl 
group to histone proteins, leading to changes in chromatin 
structure and gene expression. KMT2D is also a tumor sup-
pressor gene that is the target of frequent inactivating muta-
tions in several tumor types, including colorectal, pancreatic, 
and gastric cancer, but their role in anal cancer is not yet 
fully understood. Also, a new report shows that KMT2D/C 
loss of function mutations could be associated with tumor-
infiltrating lymphocytes and response to immune checkpoint 
inhibitors in solid tumors [30].

HPV-negative ASCCs are known to display a genomic 
profile that differs from HPV-positive cases. These tumors 
have a profile marked mainly by associations with TP53 
and CDKN2A variants, which explains their resistance to 
standard chemotherapy [31]. Owing to their extremely low 
frequency, a deeper understanding is needed to allow for the 
use of precision targeted therapies to patients. In theory, we 
may anticipate similar profiles in copy number aberrations 
(CNA), such as esophageal squamous cancer cells [32].

Mutations in the RAS pathway have been widely recog-
nized as significant prognostic and predictive biomarkers 
in colorectal cancer [29]. The aforementioned molecular 
profiling studies in ASCC have shown that KRAS, BRAF, 
and NRAS mutations are infrequent, providing a rational 
for the clinical investigation of anti-EGFR therapies. The 
randomized phase II CAR ACA S trial explored dual PD-1 
and EGFR blockade in previously treated advanced SCCA 
patients. Translational analyses in this trial [33] showed that 
TMB-high and PDL-1 expression were associated with sur-
vival benefits in patients treated with anti-PDL1 either with 
or without cetuximab.

Of note, TMB is being suggested as an agnostic response 
biomarker in solid tumors for patients treated with pembroli-
zumab [34]. Although TMB-high proved to be a predictive 
indicator for immune checkpoint inhibitors in several solid 
tumors, their use in HPV-positive malignancies is unclear. In 
head and neck squamous cell carcinoma, HPV infection was 

associated with increased benefit from PD1/PD-L1 block-
ade, regardless of TMB. HPV-positive tumors also displayed 
significantly increased T-cell infiltration and T-cell-inflamed 
gene expression profiles [35]. These discoveries also suggest 
that TMB-high is not a promoter of immunogenicity and 
immune infiltration, but these features are consequences of 
HPV infection and they are not an effect of any DNA repair 
mechanism inactivation. In this trial, 12% of patients were 
found to be TMB-high (10 > mutations/MB), in agreement 
with a recent report in the largest comprehensive molecular 
cohort known to date in ASCC that reported 13% (88 with 
high TMB/from 668 ASCC patients) [35, 36].

The MMR/MSI status, another agnostic somatic signa-
ture in solid tumors, was reported in 2% of patients who 
expressed hypermutant profiles in ASCC [33, 34]. Similar 
results were observed in the KEYNOTE-158 trial [37], 
where only one patient with MSI-high and SCCA was 
included. Despite the weirdness of MSI-H ASCCCA, the 
agnostic function of this biomarker suggests it is capable of 
indicating a response to immunotherapies in several tumor 
types.

3  Epigenomic Changes in ASCC 
Development and Progression

The progression of HPV-induced precancerous lesions 
to invasive carcinomas is driven by the accumulation of 
genomic and epigenomic modifications affecting host cell 
genes [38]. Epigenetic changes are heritable alterations in 
gene expression that do not involve changes to the underly-
ing DNA sequences. These changes are an important com-
ponent of cancer development and progression, and involve 
alterations in DNA methylation, histone modifications, chro-
matin remodeling, and the expression of non-coding genes.

DNA methylation is a type of epigenetic modification 
in which a methyl group is added to a cytosine nucleotide 
located 5′ of a guanine (CpG) in gene promoter regions and 
other genomic sites. When the promoter regions of tumor 
suppressor genes are hypermethylated, this can lead to their 
inactivation, which can contribute to the development of 
cancer. Therefore, DNA methylation patterns in specific 
genes could potentially serve as valuable biomarkers for the 
detection of anal (pre-)cancer, as well as for monitoring dis-
ease progression and treatment response.

Although likely important, the role of DNA methylation 
in the development of anal cancer remains poorly char-
acterized [39]. Zhang et al. provided the first evidence of 
aberrant methylation in anal cancer among 11 candidate 
genes compared with normal tissue using a methylation-
specific qPCR-based method. This study suggested that 
DNA methylation was more common in ASCC and high 
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grade squamous intraepithelial lesions (HGSILs) than in low 
grade squamous intraepithelial lesions (LGSILs) and nor-
mal mucosa. While methylation of IGSF4 and DAPK1 was 
more prevalent in ASCC and HGSIL, it was absent in LGSIL 
and normal biopsy samples [39, 40]. Subsequently, an array-
based assay analyzing > 1500 CpG sites representing 807 
genes reported differences in DNA methylation patterns in 
20 genes in the progression from normal anal mucosa to 
invasive anal carcinoma in a small set of cases (24 patients). 
Interestingly, 5 out of 20 genes showed no methylation in 
non-invasive tissues with a significant increase in invasive 
SCC (CD9, DAPK1, FLT1, HOXA5, and PADI4) [41]. In 
addition, Siegel et al. reported a total of seven hypermethyl-
ated genes (ADAT3, GSG1L, LOC728392, PARD3, SALL3, 
SFRP2, and SCAMP4) in high- versus low-risk anal cancer 
cases from a cohort of 121 patients with locally advanced 
anal cancer using the Illumina HumanMethylation450 array 
[41]. No biomarker is available for routine clinical prac-
tice to determine progression risk of high-grade squamous 
intraepithelial lesion (HSIL) to ASCC. van der Zee et al. 
reported a host DNA methylation marker panel (ASCL1, 
SST, and ZNF582) for the detection of anal pre-cancer 
lesions (high grade AIN) with a higher risk of progression 
to ASCC in HIV+ men [42].

In a more recent study, Siegel et al., conducted a genome-
wide methylation study of 143 FFPE anal tissues including 
normal, high-grade pre-neoplastic lesions and anal can-
cer using the Illumina HumanMethylation 450 array [43]. 
The authors identified an 84-gene signature differentially 
methylated between normal anal mucosa and anal cancer. 
Moreover, this signature segregated anal intraepithelial 
neoplasias into normal-like or cancer-like groups. Interest-
ingly, our functional enrichment analysis of the Siegel et al. 

84-gene methylated signature data showed the involvement 
of bioprocess related with digestive tract development, tran-
scriptional regulation, cAMP signaling pathway, and neu-
roactive ligand-receptor interaction, among others (Fig. 2) 
[43]. Interestingly, neuroactive ligand–receptor interactions 
have been recently shown to be associated with the develop-
ment and progression of colorectal and other gastrointestinal 
cancers [44–46]. Whether neuroactive ligand-receptors can 
directly modulate or affect tumor progression in anal cancer 
is worthy of further exploration. The development of appro-
priate regulatory drugs targeting these relevant pathways 
may contribute to improve the treatment of ASCC.

Overall, these studies found that significant epige-
netic alterations occur in the progression from early to 
later stage locally advanced ASCC, and genes harbor-
ing differentially methylated CpG sites included known 
tumor suppressor genes and novel targets not previously 
described in other tumor sites [47]. Previously, studies 
have described differential methylation patterns across 
anal squamous neoplastic progression, including nor-
mal tissue, precancerous lesions, and anal carcinoma 
[48]. In addition, HPV may influence the host transcrip-
tome through several epigenetic mechanisms, includ-
ing HPV E7 oncoprotein-mediated alterations in DNA 
methyltransferases [49]. Growing evidence suggests that 
HPV-associated oncogenesis in different organ sites may 
be associated with common non-random genome-wide 
methylation events [50]. The differences in methylation 
may lend clues to understanding the molecular altera-
tions that occur with the malignant progression of anal 
cancer. Effective methylation-related biomarkers may 
ultimately guide treatment modification for high-risk 
patients, including radiation dose intensification, closer 

Fig. 2  Gene and pathways 
network identified among 84 
methylated genes in ASCC by 
Siegel et al. [43]. Differentially 
methylated genes are colored 
in green, and their related bio-
processes are colored accord-
ing to the derived database 
(KEGG in red, Gene Ontology 
Biological Process in blue, and 
MGI Mammalian Phenotype in 
yellow). ASCC anal squamous 
cell carcinoma, KEGG pathway 
Kyoto Encyclopedia of Genes 
and Genome pathway
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monitoring of dose completions and/or gaps in treatment, 
and developing novel targeted radio-sensitizing agents 
(Fig. 3).

4  Transcriptomic and Proteomic Changes 
in ASCC Development and Progression

The development of effective tools, such as DNA microar-
rays and NGS-based methods, for monitoring global gene 
expression on a large scale has resulted in the discovery of 
regulatory pathways in almost all tumor-type processes. In 
this regard, transcriptomic analysis of cancers has under-
gone extensive profiling over the last 2 decades, enabling 
the identification of intrinsic molecular subtypes along with 
prognostic and predictive gene expression signatures. Not 
surprisingly, very recent studies evaluating transcriptomic 
changes that occur during ASCC development and treatment 
response outcomes are starting to emerge. In this sense, Ye 
et al. performed the first RNA-seq characterization of dif-
ferentially expressed transcripts among 12 formalin-fixed 
paraffin-embedded (FFPE) tumors derived from successful 
CRT versus recurrent ASCC patients living with HIV. The 
authors identified 449 differentially expressed coding and 
non-coding genes among the groups, with a core of immune-
related up-regulated genes in the non-recurrent ASCC cases, 
which suggests a CD4+ T cell-driven immune response. 
Upregulated in genes in the recurrent cases were related to 

epidermis development, such as cytokeratin and the hedge-
hog signaling pathway [51]. Overall, this study suggests that 
a complex immune-regulatory network may be acting within 
initial non-recurrent anal cancer isolates which is disrupted 
upon recurrence.

The extensive molecular profiling of this rare cancer has 
been hampered by the challenge of acquiring fresh tumor 
tissue necessary for RNA and protein expression analysis. 
Recently, Hernandez et al. employed a digital spatial pro-
filing technology on pretreatment anal cancer FFPE speci-
mens to identify biomarkers associated with recurrence after 
chemoradiation. The authors report that recurrent tumors 
had higher protein expression of FoxP3, MAPK-activation 
markers (BRAF, p38-MAPK), and PI3K/Akt activation 
(phospho-Akt) within the tumor margins. In addition, the 
tumor microenvironment was characterized by the higher 
protein expression of immune checkpoint biomarkers, such 
as PD-1, OX40L, and LAG3. However, no statistically sig-
nificant differences were identified among the cases com-
pared for RNA expression profile analysis of immune-related 
gene targets measured using this approach [52].

In addition, a functional proteomics analysis of ASCCs 
performed by Trilla-Fuertes et  al. proposed a molecu-
lar classification in two distinctive groups of patients, 
one group with increased expression of proteins related 
to cell adhesion, T lymphocytes, and glycolysis; and 
the other group with increased expression of proteins 
related to translation and ribosomes bioprocess. However, 

Fig 3.  Diagram of the immune escape pathways modulated by HPV that could contribute to ASCC progression
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non-clinicopathological, treatment responses or outcomes 
were associated with these proteomics-based groups [53]. 
Further studies on the transcriptomic and proteomic profil-
ing in large ASCC cohorts are needed to extend and cor-
roborate the aforementioned observations.

5  Role of Liquid Biopsy in ASCC 
Management: HPV‑DNA

Circulating tumor DNA (ctDNA) is a fraction of cell-free 
circulating DNA originating from tumor cells. Serving as a 
sensitive, real-time biomarker, dynamic ctDNA levels pre-
dict treatment response and outcomes across various tumor 
types [54–57]. In cancer patients, cell-free DNA (cfcDNA) 
is mostly derived from apoptotic or necrotic hematopoi-
etic cells, with a portion originating from tumor cells [58]. 
Distinguishing cfcDNA from ctDNA requires identifying a 
specific tumor DNA alteration through genome sequencing 
or PCR-based methods. In contrast, when hrHPV infects a 
host, its DNA is integrated into the host genome or resides 
in episomal form, expressing the oncogenes, E6 and E7 to 
trigger carcinogenesis [59]. The presence of one or more 
copies of the HPV genome in cfDNA from HPV-related 
malignancies suggests tumor cell origin [60]. Searching for 
HPV-DNA in liquid biopsies offers a technological advan-
tage over detecting tumor mutations owing to the size, com-
position, and numerous copies of each viral DNA in the 
HPV genome [61, 62]. Compared with tumor DNA with 
point mutations, HPV DNA released from tumor cells is 
simpler to detect, potentially eliminating the need to identify 
tumor DNA alterations [63]. Individuals with HPV-related 
malignancies exhibit the HPV genome, particularly E6 and 
E7 DNA, while HPV ctDNA is not detected in healthy con-
trols and HPV16-associated intraepithelial neoplasia [64]. 
Consequently, HPV-induced tumors serve as an ideal model 
for monitoring ctDNA. In anal squamous cell carcinoma 
(ASCC), the necessity for noninvasive markers arises owing 
to primary tumor chemoradiotherapy, delayed response in 
some patients achieving complete response after months, 
and occasional inadequacy of biopsy material [65].

The analytical sensitivity of HPV-DNA tests has sig-
nificantly improved with advanced technologies such as 
digital droplet PCR (ddPCR) and NGS. ddPCR exhibits 
high specificity (97–100%) and sensitivity (89–98.4%) in 
detecting HPV-DNA in blood samples [61, 66, 67], requiring 
fewer resources and offering quicker turnaround times than 
NGS. While some studies focused exclusively on HPV16, 
the primary cause of HPV-related SCCA, others adopted 
a comprehensive approach, including other hrHPV geno-
types (18, 31, 33, 35, 45, 51, 52, 58, and 73) in proof of 
concepts [68–70]. A multiplex ddPCR method testing five 
HPV subtypes in a single assay was developed, saving both 

sample input and detection time [70, 71]. However, ddPCR 
has a drawback as HPV-DNA analysis cannot be conducted 
directly in a single step; prior knowledge of viral sequences 
is necessary to detect them previously in the patient’s cancer 
tissue. This limitation poses a challenge for ASCC HPV-
negative patients [72].

The first NGS-based test for circulating HPV16 DNA 
demonstrated 100% sensitivity, surpassing ddPCR, even 
in early tumor stages [73]. The CaptHPV method, utilizing 
viral genome hybrid-capture-based cHPV-DNA sequencing, 
provides a comprehensive overview of HPV status, includ-
ing genotype, quantity, entire sequence, fragment length, 
and insertion pattern, from a single blood sample [74]. The 
NGS-based CaptHPV approach captures whole genome 
sequences of over 200 HPV genotypes, allowing a detailed 
molecular analysis with high sensitivity and specificity. An 
ultrasensitive viral capture-based cHPV-DNA assay (HPV-
seq) is more sensitive than ddPCR, detecting 0.6 copies of 
ctDNA, and providing information on ctDNA fragment 
length and viral integration sites [75]. HPV-seq, with its 
high sensitivity, is suitable for early detection and minimal 
residual disease surveillance. For long-term analysis dur-
ing cancer treatment monitoring, cost-effective ddPCR is a 
viable option (Table 1). Droplet digital PCR for HPV ctDNA 
detection appears to be a rapid, noninvasive, and affordable 
prognostic marker for patients with ASCC [72, 76].

We summarize the main results of this approach in ASCC 
in Table 2. At first, we outlined that there was a strong cor-
relation observed between higher levels of HPV ctDNA pre-
treatment and disease burden according to clinical staging. 
However, the majority of series failed to establish a corre-
lation between pretreatment ctDNA levels and oncological 
outcomes. Therefore, HPV DNA copies may not serve as 
a prognostic marker before treatment. This discrepancy is 
probably attributed to variations in HPV copies in the can-
cer cells among patients and the limited number of cases 
in the studies [61, 68, 69, 77–80]. All series represented 
in Table 2 have shown good sensitivity and feasibility. The 
most remarkable finding in all series was that, in the different 
treatment settings, such as after chemoradiotherapy in NM-
ASCC or after chemotherapy in the metastatic approach, the 
remaining or residual high levels of ctDNA were associated 
with a worse PFS compared with patients with undetectable 
levels. The conversion rate after treatment has an impact 
on the prognosis of ASCC. The prognostic impact of HPV 
ctDNA appears to be independent of the stage. Thus, these 
results show a potential role for an early dynamic marker of 
treatment efficacy and risk of relapse.

Given these findings, HPV ctDNA could serve as a 
biomarker for rapid responders to CRT, predict sustained 
response to chemotherapy, and aid in early detection of 
disease progression during follow-up. It may guide per-
sonalized post-CRT therapies, identify those at high risk of 
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relapse, and potentially serve as an efficacy marker to meas-
ure the efficacy of immune checkpoint inhibitors in different 
treatment settings [69, 72, 75, 81–83].

Despite the potential of liquid biopsies, challenges 
include heterogeneous study designs, varying cHPV-DNA 
assays, and small sample sizes, limiting generalizabil-
ity [72]. Standardization is crucial for blood collection, 
cfDNA isolation, sample storage, HPV probe design, and 
threshold determination. Ongoing studies such as Circa 
HPV (NCT03739775), INTERACT-ION neoadjuvant 
(NCT02897427), and PLATO ASCC platform are explor-
ing the role of HPV ctDNA in cancer screening, treatment 
modulation, and post-therapy surveillance [84–88]. Further 
research will confirm the clinical utility of HPV ctDNA for 
optimizing SCCA therapy management.

6  Role of the Tumor Immune 
Microenvironment in ASCC

Genetic and epidemiological studies have underlined the 
immunosuppressive potential of HPV-driven oncogenesis 
[89]. Persistent infection with high-risk HPV subtypes 
causes malignant transformation due to the activation of 
HPV E6 and E7 oncogenes, which block the p53 and Rb 
tumor suppressors, respectively. These oncoproteins pri-
marily enhance angiogenesis, genomic instability, telomere 
shortening inhibition, apoptosis inhibition, and facilitate the 
invasion and metastasis process. Further, HPV modifies the 
tumor microenvironment to produce immune-suppressive 
and immune evasion conditions that are pro-tumorigenic 
[89–91]. In this sense, HPV malignancies are associated 
with a genetic profile of germline and somatic mutations 
that affect critical immune-related pathways, such as antigen 
presentation and immune checkpoints, associated with the 
HPV immune evasion and resistance phenotype [92–94].

6.1  HPV‑Mediated Modulation of the Adaptive 
and Innate Antitumor Immunity

The activation of CD4+ and CD8+ T cells and T cell-
mediated tumor cytotoxicity are dependent on intact anti-
gen presentation by antigen-presenting cells and tumor 
cells. HPV tumors frequently harbor mutations in genes 
affecting the antigen presentation pathway of both major 
histocompatibility complex (MHC) class I and II mole-
cules. Mutations in HLA-A and HLA-B genes that affect 
antigen presentation, and gain-of-function mutation in 
CD274 (gene that encodes the immune inhibitory recep-
tor PD-L1) have been recently reported in HPV-positive 
tumors. Furthermore, oncogenic HPV gene expression is 
associated with the downregulation of immune-related 
pathways that affect multiple cellular targets including 
antiviral genes (IFIT1 and MX1), genes involved in IFN 
signaling (STAT1), proapoptotic genes (TRAIL and XAF1), 
and pathogen recognition receptors (TLR3, RIG-I, and 
MDA5) [43, 95, 96].

HPV modulates innate immune defense mechanisms 
via pleiotropic effects on immune cell recognition, acti-
vation, and migration. Viral E5, E6, and E7 expression 
can block several pathways that affect antigen process-
ing and HLA presentation of viral peptides at the surface 
of infected cells, thereby facilitating immune escape [89, 
91, 97]. HPV reduces the susceptibility of the infected 
cells to interferon IFN-β and IFN-λs that impact immune 
recognition and activation processes. The HPV tumor 
microenvironment is associated with a reduced number of 
APCs (Langerhans cells) and low levels of inflammatory 
chemokines. CCL20, which attracts epidermal APCs that 
express the CCR6 receptor, is critical for innate immune 
activation in the skin or mucosa. HPV E6/E7 has a repres-
sive effect on CCL20 transcription, leading to important 

Table 1  Summary of host DNA methylation-based studies of anal cancer progression

SCC anal squamous cell carcinoma, ASCC anal squamous cell carcinoma, HSIL high-grade squamous intraepithelial lesion, LSIL low-grade 
squamous intraepithelial lesion

Authors Samples Method (targets) Primary finding

Zhang et al. [39] 184 anal biopsies (normal, AIN, SCC) qPCR-based (11 genes) Increased methylation in HSIL and ASCC com-
pared with normal or LSIL

Hernandez et al. [40] 29 anal biopsies (normal, SCC) Array-based (807 genes) Differentially methylated CpGs in invasive SCC 
compared with normal

Siegel et al. [41] 121 anal cancers (locally advanced) Array-based (genome wide) Hypermethylated genes in high versus low-risk 
anal cancers

Siegel et al. [43] 143 anal tissues (normal, AIN, SCC) Array-based (genome wide) 84-gene signature differentially methylated 
between normal and anal cancer

van der Zee et al. [42] 345 anal biopsies (normal, AIN, SCC) qPCR-based (6 genes) High methylation levels in high grade AIN were 
associated with progression to cancer
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changes in the migration capacity of Langerhans cells and 
effector lymphocytes to the anal lesions [98–100].

The HPV E5 protein causes alkalization of late 
endosomes, preventing peptide-bound MHC class I and 
II molecules from reaching the cell surface cells, and pre-
venting the presentation of viral tumor-associated antigens 
on MHC molecules and the activation of anti-tumor CD4+ 
and CD8+ T cells. Overexpression of E5 is a potential 
mechanism of resistance to immune checkpoint blockade, 
likely through the acquired loss of antigen presentation 
[101, 102]. HPV also dysregulates specific HLA molecules 
and renders natural killer (NK) cells, which normally rec-
ognize cells without surface MHC expression, incapable 
of clearing virally infected cells [103]. A high level of 
CD8+ TIL infiltration is often associated with a better 
prognosis, including lower local recurrence rates, better 
disease-free survival (DFS), and better overall survival 
(OS). Similar results exist in anal cancer, and it appears 
that the presence of TILs can effectively estimate the risk 
of recurrence. A subset of CD4+ T cells, FOXP3+ regu-
latory T cells (Tregs), can suppress anti-tumor immunity 
by downregulating induction and proliferation of effector 
T cells. Tregs play an important role in dampening the 
host immune response in autoimmune diseases and viral 

infections. The frequency of Tregs correlated with dis-
ease severity, suggesting that Tregs may be associated with 
interference of HPV immunity. High and interrelated rates 
of PD-L1+CD14+ antigen-presenting cells and regulatory 
T cells mark the microenvironment of metastatic lymph 
nodes from patients with cervical cancer [104].

6.2  Immune Checkpoints and Tumor‑Infiltrating 
Lymphocytes as Biomarkers in ASCC

The PD-1/PD-L1 immune checkpoint is a conserved inhibi-
tory mechanism regulating the immune system that pre-
vents autoimmunity [104, 105]. Multiple cancers, including 
HPV-related tumors, upregulate this checkpoint to facilitate 
immune tolerance. The incidence of PDL1-positive tumors 
is variable, ranging from 56 to 68.8%, and its role as a prog-
nostic factor is still subject to debate. HPV-positive tumors 
were more likely to have a higher intensity of TIL infiltrate 
and TAMs in HPV-positive tumors than HPV-negative 
tumors [90]. In a HPV+ cohort, CD8+ TILs with high 
expression of PD-L1 were associated with better overall 
survival than CD8+ TILs with low expression of PD-L1. 
When PD-1 expression on TILs was analyzed by compart-
ment, an association with survival was found for PD-1 

Table 2  Overview of studies evaluating the clinical utility of tumoral circulating DNA in anal squamous cell carcinoma

Series HPV-DNA 
methodologies

Sensi-
tivity 

n Stage 
I–II

Stage 
III

Stage 
IV

Time points Correlation 
tumor  
burden 
disease

HPV 
ctDNA at 
baseline 
vs. out-
comes

HPV 
ctDNA at 
baseline 
vs. DFS

Follow-
up 
(months)

Clerance 
HPV 
ctDNA 
after 
treatment

Cabel 
2018

ddPCR 
(HPV 16–18)

88% 33 11 22 0 30 days before 
and afer CRT 

p = 0.008 p = 0.77 p = 0.0001 30 15/18 
(83%)

Tessier 
2019

ddPCR HPV16 91% 42 0 0 S: 26%
M: 64%

7 days before 
and 5 
months after 
CT(DCF/
mCDF)

p = 0.001 p =  0.91 p = 0.001 5 22/36 
(61%)

Lee 2020 panHPV 
NGS assay 
(16,18,31,33, 
35,45,52,58)

100% 21 9 12 0 Baseline and 
9-12 weeks 
after CRT 

p = 0.13 na na 17 15/17 
(88%)

Lefevre 
2021

ddPCR 
(16,18,31, 
33,51,58)

82% 88 67 21 1 Before, intra 
and  post 
CRT 

p = 0.02 
between 
N− and 
N+

p = 0.81 HR: 4.07 
but 
p = 0.08

29 32/45 
(71%)

Azzi 
2022

Signatera NGS 
assay/wes

na 37 13 17 7 At the discre-
tion  of the 
treating 
physician

p = 0.004 
EIV vs 
other 
stages

na p = 0.005 21 23/27 
(85%)

Alvarez 
2023

Tumor bespoke 
multiplex PCR 
assay

85% 31 11 20 0 < 30 days pre 
CRT, during 
CRT and 30 
days  after 
CRT 

p = 0.08 na na 5.5 29/31 
(96%)
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expressing TILs in the tumor, and at the edge of the tumor 
but not for stromal TILs expressing PD-1 [14]. As discussed 
above, TILs are more abundant in HPV-positive tumors 
when compared with HPV-negative tumors. Since PD-L1 
is a dynamic biomarker that gets upregulated in response to 
IFNγ secretion by TILs, the increase in PD-L1 expression in 
HPV-positive tumors suggests a more inflammatory tumor 
microenvironment with the recruitment of TILs [35, 106]. 
The study revealed that patients with tumor PD-L1 ≥ 5% 
had significantly longer survival than those with PD-L1 less 
than 5%, with a 10-year survival rate difference of 84% and 
49%, respectively. Previous studies have reported better sur-
vival in PDL1+ patients. Others have shown an association 
with worse survival. Discrepancies are partially due to the 
absence of a standardized methodology for reporting PD-L1 
expression (absence of standardized thresholds for positiv-
ity, immune cell assessment, and differences in staining 
between antibodies) and may also be related to the correla-
tion between PD-L1 expression and both a favorable CD8+ 
TILs microenvironment and the activation of the unfavorable 
PD-1/PD-L1 immune escape pathway [107].

The presence of tumor-infiltrating lymphocytes (TILs) is 
more important in ASCC HPV-positive tumors compared 
with HPV-negative tumors. As PDL1+ is a dynamic bio-
marker whose expression is stimulated in response to IFN 
gamma by TILs, it can be hypothesized that PDL1+ expres-
sion simply reflects a more inflammatory tumor microen-
vironment. To date, no further insights have been gained 
from clinical trials [107, 108]. For instance, in the Keynote 
028 phase 1B multi-cohort study, which involved 24 PDL1+ 
patients, an ORR of 17% was observed [109]. In the Keynote 
158 a phase 2 study, which included 112 ASCC patients, 
the ORR was 11.6%, with 14.7% in patients with CPS > 
1 and 6.7% in patients with CPS < 1, suggesting that CPS 
may have predictive value [110]. A phase II study with reti-
fanlimab showed an ORR of 13.8%, PFS of 2.3 months, 
and median OS of 10.1 months, with no difference between 
PDL1 positive or negative [111]. It is challenging to com-
pare these studies since different measurement systems were 
used, such as CPS or TPS, with varying cutoffs of 1% or 
5% for PD-L1 expression levels. Therefore, standardization 
of the PD-L1 evaluation is required to integrate data from 
various studies and use this biomarker in the clinical setting. 
Interestingly, tumors caused by the human papillomavirus 
(HPV) have a better prognosis. This may be due to several 
factors. Firstly, the presence of viral antigens can stimulate 
the immune system and result in infiltration of immune cells, 
such as CD8+ and PD1+ TILs, into the tumor. Another pos-
sible explanation is that HPV-infected cells are frequently 
p53 wild type, which can activate the external apoptosis 
program, in contrast to patients with HPV-negative ASCC 
[112].

ASCC often have mutations in TP53 and CDKN2A, 
which are associated with poor prognosis [31, 113]. How-
ever, there are conflicting data on this topic. HIV infection 
creates a microenvironment that facilitates the persistence 
and progression of precancerous lesions The status of PDL1 
expression does not appear to be influenced by HIV infection 
[114]. Also, no association was found between peripheral 
CD4 count and the expression of checkpoint inhibitors, such 
as PD-1, PDL1, and LAG-3. Further studies are needed to 
better understand the relationship between CD4+ cells and 
PD-L1 expression in HIV-positive patients, as well as the 
effect of antiretroviral therapies and immunotherapy.

7  Conclusions

Recent advancements in high-throughput sequencing 
and computational analysis offer unprecedented oppor-
tunities to comprehensively explore the molecular and 
immune landscapes of tumors across diverse cancer types. 
These approaches have identified genomic alterations and 
immune-related signatures crucial in driving oncogenesis 
and immune evasion in ASCC. Early-stage genomic and 
epigenomic modifications play a pivotal role in progress-
ing HPV-induced precancerous lesions to invasive car-
cinomas. Mutational biomarkers such as PI3KCA show 
prognostic and predictive value, guiding targeted therapy 
use. Agnostic markers, such as TMB and MMR/MSI sta-
tus, have potential roles, especially in immune checkpoint 
blockade. DNA methylation patterns in specific genes may 
serve as valuable biomarkers for detecting anal precancer 
and monitoring disease progression. Transcriptomic studies 
reveal immune modulation in nonrecurrent and recurrent 
ASCC cases, with specific events favoring a pro-tumorigenic 
immune microenvironment in HPV-associated cancers. 
HPV-driven malignancies exhibit immunosuppressive con-
ditions, impacting antitumor immunity. Regulatory T cells 
and PD-L1 further hinder the immune response in the tumor 
microenvironment. Targeting these immune dysregulations 
holds promise for effective immunotherapeutic strategies in 
ASCC. In the metastatic setting, immune checkpoint inhibi-
tors are rapidly evolving, being investigated in second-line, 
in combination with front-line chemotherapy, and even in 
the neo-adjuvant setting in ongoing trials. In light of these 
discoveries, HPV ctDNA has the potential to function as 
a biomarker for promptly identifying responders to CRT, 
predicting sustained responses to chemo/chemoradiotherapy, 
and facilitating the early detection of disease progression 
during post-treatment monitoring. It could play a crucial role 
in tailoring post-CRT therapies, identifying individuals with 
an elevated risk of relapse and a tool to guide decisions on 
deescalating or escalating. Collaborative research networks 
focused on this rare pathology, an enhanced understanding 
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of tumor biology and its microenvironment, coupled with 
the advent of immunotherapies, are essential for a highly 
promising future in this neglected disease.
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