Skip to main content
Log in

How Do Molecular Classifications Affect the Neoadjuvant Treatment of Muscle-Invasive Urothelial Carcinoma?

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Despite the significant improvements in the field of oncological treatments in recent decades, and the advent of targeted therapies and immunotherapy, urothelial carcinoma of the bladder remains a highly heterogeneous and difficult-to-treat neoplasm with a poor prognosis. In this context, owing to the new methods of genomic sequencing, numerous studies have analyzed the genetic features of muscle-invasive bladder cancer, providing a consensus set of molecular classes, to identify malignancies that may respond better to specific treatments (standard chemotherapy, immunotherapy, target therapy, local-regional treatment, or combinations) and improve the survival. The aim of the current review is to provide an overview of the current status of the molecular landscape of muscle-invasive bladder cancer, focusing our attention on therapeutic and prognostic implications in order to select the most effective and tailored therapeutic regimen for the individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  2. Charlton ME, Adamo MP, Sun L, Deorah S. Bladder cancer collaborative stage variables and their data quality, usage, and clinical implications: a review of SEER data, 2004–2010. Cancer. 2014;120(Suppl 23):3815–25. https://doi.org/10.1002/cncr.29047.

    Article  PubMed  Google Scholar 

  3. Lenis AT, Lec MP, Chamie K, Mshs MD. Bladder cancer: a review. JAMA. 2020;324(19):1980–91. https://doi.org/10.1001/jama.2020.17598.

    Article  CAS  PubMed  Google Scholar 

  4. Compérat E, Amin MB, Cathomas R, Choudhury A, De Santis M, Kamat A, et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments. Lancet. 2022;400(10364):1712–21. https://doi.org/10.1016/S0140-6736(22)01188-6.

    Article  PubMed  Google Scholar 

  5. Massari F, Santoni M, Di Nunno V, Cheng L, Lopez-Beltran A, Cimadamore A, et al. Adjuvant and neoadjuvant approaches for urothelial cancer: updated indications and controversies. Cancer Treat Rev. 2018;68:80–5. https://doi.org/10.1016/j.ctrv.2018.06.002.

    Article  CAS  PubMed  Google Scholar 

  6. Galsky MD, Pal SK, Chowdhury S, Harshman LC, Crabb SJ, Wong YN, et al. Comparative effectiveness of gemcitabine plus cisplatin versus methotrexate, vinblastine, doxorubicin, plus cisplatin as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer. 2015;121(15):2586–93. https://doi.org/10.1002/cncr.29387.

    Article  CAS  PubMed  Google Scholar 

  7. Pfister C, Gravis C, Fleehon A, Chevreau C, Mahammedi H, Laguerre B, et al. Multicenter randomized phase III trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin (dd-MVAC) or gemcitabine and cisplatin (GC) as perioperative chemotherapy for muscle-invasive bladder cancer (MIBC): overall survival (OS) data at 5 years in the GETUG/AFU V05 VESPER trial. J Clin Oncol. 2023;41(17 Suppl):LBA4507–LBA4507.

    Article  Google Scholar 

  8. Von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005;23(21):4602–8. https://doi.org/10.1200/JCO.2005.07.757.

    Article  CAS  PubMed  Google Scholar 

  9. Advanced Bladder Cancer Meta-Analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis. Lancet. 2003;361(9373):1927–34. https://doi.org/10.1016/s0140-6736(03)13580-5.

    Article  Google Scholar 

  10. Yin M, Joshi M, Meijer RP, Glantz M, Holder S, Harvey HA. Neoadjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and two-step meta-analysis. Oncologist. 2016;21(6):708–15. https://doi.org/10.1634/theoncologist.2015-0440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Basile G, Bandini M, Gibb EA, Ross JS, Raggi D, Marandino L, et al. Neoadjuvant pembrolizumab and radical cystectomy in patients with muscle-invasive urothelial bladder cancer: 3-year median follow-up update of PURE-01 trial. Clin Cancer Res. 2022;28(23):5107–14. https://doi.org/10.1158/1078-0432.CCR-22-2158.

    Article  CAS  PubMed  Google Scholar 

  12. Szabados B, Kockx M, Assaf ZJ, van Dam PJ, Rodriguez-Vida A, Duran I, et al. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder. Eur Urol. 2022;82(2):212–22. https://doi.org/10.1016/j.eururo.2022.04.013.

    Article  CAS  PubMed  Google Scholar 

  13. Van Dijk N, Gil-Jimenez A, Silina K, Hendricksen K, Smit LA, de Feijter JM, et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat Med. 2020;26(12):1839–44. https://doi.org/10.1038/s41591-020-1085-z.

    Article  CAS  PubMed  Google Scholar 

  14. Chen H, Yang W, Xue X, Li Y, Jin Z, Ji Z. Neoadjuvant immunotherapy and chemoimmunotherapy for stage II–III muscle invasive bladder cancer. Front Immunol. 2022;13: 986359. https://doi.org/10.3389/fimmu.2022.986359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Motterle G, Andrews JR, Morlacco A, Karnes RJ. Predicting response to neoadjuvant chemotherapy in bladder cancer. Eur Urol Focus. 2020;6(4):642–9. https://doi.org/10.1016/j.euf.2019.10.016.

    Article  PubMed  Google Scholar 

  16. Mollica V, Massari F, Rizzo A, Ferrara R, Menta AK, Adashek JJ. Genomics and immunomics in the treatment of urothelial carcinoma. Curr Oncol. 2022;29(5):3499–518. https://doi.org/10.3390/curroncol29050283.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fantini D, Meeks JJ. Genomic classification and risk stratification of bladder cancer. World J Urol. 2019;37(9):1751–7. https://doi.org/10.1007/s00345-018-2558-2.

    Article  PubMed  Google Scholar 

  18. Font A, Domènech M, Benítez R, Rava M, Marqués M, Ramírez JL, et al. Immunohistochemistry-based taxonomical classification of bladder cancer predicts response to neoadjuvant chemotherapy. Cancers (Basel). 2020;12(7):1784. https://doi.org/10.3390/cancers12071784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Helal DS, Darwish SA, Awad RA, Ali DA, El-Guindy DM. Immunohistochemical based molecular subtypes of muscle-invasive bladder cancer: association with HER2 and EGFR alterations, neoadjuvant chemotherapy response and survival. Diagn Pathol. 2023;18(1):11. https://doi.org/10.1186/s13000-023-01295-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dadhania V, Zhang M, Zhang L, Bondaruk J, Majewski T, Siefker-Radtke A, et al. Meta-analysis of the luminal and basal subtypes of bladder Cancer and the identification of signature Immunohistochemical markers for clinical use. EBioMedicine. 2016;12:105–17. https://doi.org/10.1016/j.ebiom.2016.08.036.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sjodahl G, Lauss M, Lovgren K, Chebil G, Gudjonsson S, Veerla S, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18:3377–86. https://doi.org/10.1158/1078-0432.CCR-12-0077-T.

    Article  CAS  PubMed  Google Scholar 

  22. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25(2):152–65. https://doi.org/10.1016/j.ccr.2014.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA. 2014;111(8):3110–5. https://doi.org/10.1073/pnas.1318376111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kamoun A, de Reyniès A, Allory Y, Sjödahl G, Robertson AG, Seiler R, et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol. 2022;77(4):420–33. https://doi.org/10.1016/j.eururo.2019.09.006.

    Article  Google Scholar 

  25. Kurzrock EA, Lieu DK, Degraffenried LA, Chan CW, Isseroff RR. Label-retaining cells of the bladder: candidate urothelial stem cells. Am J Physiol Renal Physiol. 2008;294(6):F1415–21. https://doi.org/10.1152/ajprenal.00533.2007.

    Article  CAS  PubMed  Google Scholar 

  26. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22. https://doi.org/10.1038/nature12965.

    Article  CAS  Google Scholar 

  27. Kim J, Akbani R, Creighton CJ, Lerner SP, Weinstein JN, Getz G, et al. Invasive bladder cancer: genomic insights and therapeutic promise. Clin Cancer Res. 2015;21:4514–24. https://doi.org/10.1158/1078-0432.CCR-14-1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jardim DL, Goodman A, de Melo GD, Kurzrock R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 2021;39(2):154–73. https://doi.org/10.1016/j.ccell.2020.10.001.

    Article  CAS  PubMed  Google Scholar 

  29. Seiler R, Ashab HAD, Erho N, van Rhijn BWG, Winters B, Douglas J, et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol. 2017;72(4):544–54. https://doi.org/10.1016/j.eururo.2017.03.030.

    Article  CAS  PubMed  Google Scholar 

  30. Kardos J, Chai S, Mose LE, Selitsky SR, Krishnan B, Saito R, et al. Claudin-low bladder tumors are immune infiltrated and actively immune suppressed. JCI Insight. 2016;1(3): e85902. https://doi.org/10.1172/jci.insight.85902.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhu S, Yu W, Yang X, Wu C, Cheng F. Traditional classification and novel subtyping systems for bladder cancer. Front Oncol. 2020;10:102. https://doi.org/10.3389/fonc.2020.00102.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial [published correction appears in Lancet. 2017 Aug 26;390(10097):848]. Lancet. 2017;389(10064):67–76. https://doi.org/10.1016/S0140-6736(16)32455-2.

    Article  CAS  PubMed  Google Scholar 

  33. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312–22. https://doi.org/10.1016/S1470-2045(17)30065-7.

    Article  CAS  PubMed  Google Scholar 

  34. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171(3):540-56.e25. https://doi.org/10.1016/j.cell.2017.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med. 2019;381(4):338–48. https://doi.org/10.1056/NEJMoa1817323.

    Article  CAS  PubMed  Google Scholar 

  36. Felsenstein KM, Theodorescu D. Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy. Nat Rev Urol. 2018;15(2):92–111. https://doi.org/10.1038/nrurol.2017.179.

    Article  CAS  PubMed  Google Scholar 

  37. Ding X, Chen Q, Yang Z, Li J, Zhan H, Lu N, et al. Clinicopathological and prognostic value of PD-L1 in urothelial carcinoma: a meta-analysis. Cancer Manag Res. 2019;11:4171–84. https://doi.org/10.2147/CMAR.S176937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Plimack ER, Bellmunt J, Gupta S, Berger R, Montgomery RB, Heath K, et al. Pembrolizumab (MK-3475) for advanced urothelial cancer: updated results and biomarker analysis from KEYNOTE-012. J Clin Oncol. 2015;33(15_Suppl):4502.

    Article  Google Scholar 

  39. Charlton ME, Adamo MP, Sun L, Deorah S, Bladder Kumar U, Anthony ML, et al. Immunoexpression of PD-L1 and PD-1 and its clinicopathological correlation in urothelial carcinomas. J Lab Physicians. 2021;14(2):197–201. https://doi.org/10.1055/s-0041-1736480.

    Article  CAS  Google Scholar 

  40. Bellmunt J, de Wit R, Fradet Y, Climent MA, Petrylak DP, Lee JL, et al. Putative biomarkers of clinical benefit with pembrolizumab in advanced urothelial cancer: results from the KEYNOTE-045 and KEYNOTE-052 landmark trials. Clin Cancer Res. 2022;28(10):2050–60. https://doi.org/10.1158/1078-0432.CCR-21-3089.

    Article  CAS  PubMed  Google Scholar 

  41. Sharma P, Callahan MK, Bono P, Kim J, Spiliopoulou P, Calvo E, et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase ½ trial. Lancet Oncol. 2016;17(11):1590–8. https://doi.org/10.1016/S1470-2045(16)30496-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu C, Tate T, Batourina E, Truschel ST, Potter S, Adam M, et al. Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells. Nat Commun. 2019;10(1):4589. https://doi.org/10.1038/s41467-019-12332-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Böck M, Hinley J, Schmitt C, Wahlicht T, Kramer S, Southgate J. Identification of ELF3 as an early transcriptional regulator of human urothelium. Dev Biol. 2014;386(2):321–30. https://doi.org/10.1016/j.ydbio.2013.12.028.

    Article  CAS  PubMed  Google Scholar 

  44. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45(9):970–6. https://doi.org/10.1038/ng.2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taber A, Christensen E, Lamy P, Nordentoft I, Prip F, Lindskrog SV, et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis [published correction appears in Nat Commun. 2022 Apr 4;13(1):1916]. Nat Commun. 2020;11(1):4858. https://doi.org/10.1038/s41467-020-18640-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sjödahl G, Abrahamsson J, Holmsten K, Bernardo C, Chebil G, Eriksson P, et al. Different responses to neoadjuvant chemotherapy in urothelial carcinoma molecular subtypes. Eur Urol. 2022;81(5):523–32. https://doi.org/10.1016/j.eururo.2021.10.035.

    Article  CAS  PubMed  Google Scholar 

  47. Veskimäe E, Espinos EL, Bruins HM, Yuan Y, Sylvester R, Kamat AM, et al. What is the prognostic and clinical importance of urothelial and nonurothelial histological variants of bladder cancer in predicting oncological outcomes in patients with muscle-invasive and metastatic bladder cancer? A European Association of Urology Muscle Invasive and Metastatic Bladder Cancer Guidelines Panel systematic review. Eur Urol Oncol. 2019;2(6):625–42. https://doi.org/10.1016/j.euo.2019.09.003.

    Article  PubMed  Google Scholar 

  48. Vetterlein MW, Wankowicz SAM, Seisen T, Lander R, Löppenberg B, Chun FK, et al. Neoadjuvant chemotherapy prior to radical cystectomy for muscle-invasive bladder cancer with variant histology. Cancer. 2017;123(22):4346–55. https://doi.org/10.1002/cncr.30907.

    Article  CAS  PubMed  Google Scholar 

  49. Siefker-Radtke AO, Dinney CP, Abrahams NA, Moran C, Shen Y, Pisters LL, et al. Evidence supporting preoperative chemotherapy for small cell carcinoma of the bladder: a retrospective review of the M. D. Anderson cancer experience. J Urol. 2004;172(2):481–4. https://doi.org/10.1097/01.ju.0000132413.85866.fc.

    Article  PubMed  Google Scholar 

  50. Black PC, Brown GA, Grossman HB, Dinney CP. Neoadjuvant chemotherapy for bladder cancer. World J Urol. 2006;24(5):531–42. https://doi.org/10.1007/s00345-006-0113-z.

    Article  PubMed  Google Scholar 

  51. Pons F, Orsola A, Morote J, Bellmunt J. Variant forms of bladder cancer: basic considerations on treatment approaches. Curr Oncol Rep. 2011;13(3):216–21. https://doi.org/10.1007/s11912-011-0161-4.

    Article  PubMed  Google Scholar 

  52. Laukhtina E, Pradere B, Mori K, Schuettfort VM, Quhal F, Mostafaei H, et al. Catalog of prognostic tissue-based biomarkers in patients treated with neoadjuvant systemic therapy for urothelial carcinoma of the bladder: a systematic review. Urol Oncol. 2021;39(3):180–90. https://doi.org/10.1016/j.urolonc.2020.12.019.

    Article  CAS  PubMed  Google Scholar 

  53. Bolenz C, Kunath F, Zengerling F, Wezel F, Schmidt S, Hartmann A, et al. Increasing biomarker guidance in the treatment of urothelial carcinoma: systematic review of international clinical trials. Urol Int. 2023;107(5):480–8. https://doi.org/10.1159/000527879.

    Article  CAS  PubMed  Google Scholar 

  54. Pal SK, Rosenberg JE, Hoffman-Censits JH, Berger R, Quinn DI, Galsky MD, et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov. 2018;8(7):812–21. https://doi.org/10.1158/2159-8290.CD-18-0229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marandino L, Raggi D, Giannatempo P, Farè E, Necchi A. Erdafitinib for the treatment of urothelial cancer. Expert Rev Anticancer Ther. 2019;19(10):835–46. https://doi.org/10.1080/14737140.2019.1671190.

    Article  CAS  PubMed  Google Scholar 

  56. Tassinari E, Mollica V, Nuvola G, Marchetti A, Rosellini M, Massari F. Treatment options for metastatic urothelial carcinoma after first-line chemotherapy. Cancer Manag Res. 2022;14:1945–60. https://doi.org/10.2147/CMAR.S287904.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Teng F, Meng X, Kong L, Yu J. Progress and challenges of predictive biomarkers of anti PD-1/PD-L1 immunotherapy: a systematic review. Cancer Lett. 2018;414:166–73. https://doi.org/10.1016/j.canlet.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  58. Hodgson A, Liu SK, Vesprini D, Xu B, Downes MR. Basal-subtype bladder tumours show a “hot” immunophenotype. Histopathology. 2018;73(5):748–57. https://doi.org/10.1111/his.13696.

    Article  PubMed  Google Scholar 

  59. Groelly FJ, Fawkes M, Dagg RA, Blackford AN, Tarsounas M. Targeting DNA damage response pathways in cancer. Nat Rev Cancer. 2023;23(2):78–94. https://doi.org/10.1038/s41568-022-00535-5.

    Article  CAS  PubMed  Google Scholar 

  60. Dariane C, Timsit MO. DNA-damage-repair gene alterations in genitourinary malignancies. Eur Surg Res. 2022;63(4):155–64. https://doi.org/10.1159/000526415.

    Article  CAS  PubMed  Google Scholar 

  61. Van Allen EM, Mouw KW, Kim P, Iyer G, Wagle N, Al-Ahmadie H, et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov. 2014;4(10):1140–53. https://doi.org/10.1158/2159-8290.CD-14-0623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gamba T, Paparo J, Panepinto O, Dionisio R, Di Maio M, Vignani F. Poly (ADP-ribose) polymerase inhibitors in patients with urothelial cancer. Clin Genitourin Cancer. 2023;S1558–7673(23):00180–5. https://doi.org/10.1016/j.clgc.2023.07.009.

    Article  Google Scholar 

  63. Crabb SJ, Hussain S, Soulis E, Hinsley S, Dempsey L, Trevethan A, et al. A randomized, double-blind, biomarker selected, phase II clinical trial of maintenance poly ADP-ribose polymerase inhibition with rucaparib following chemotherapy for metastatic urothelial carcinoma. J Clin Oncol. 2023;41(1):54–64. https://doi.org/10.1200/JCO.22.00405.

    Article  CAS  PubMed  Google Scholar 

  64. Vignani F, Tambaro R, De Giorgi U, Giannatempo P, Bimbatti D, Carella C, et al. Addition of niraparib to best supportive care as maintenance treatment in patients with advanced urothelial carcinoma whose disease did not progress after first-line platinum-based chemotherapy: the meet-uro12 randomized phase 2 trial. Eur Urol. 2023;83(1):82–9. https://doi.org/10.1016/j.eururo.2022.09.025.

    Article  CAS  PubMed  Google Scholar 

  65. Grivas P, Loriot Y, Morales-Barrera R, Teo MY, Zakharia Y, Feyerabend S, et al. Efficacy and safety of rucaparib in previously treated, locally advanced or metastatic urothelial carcinoma from a phase 2, open-label trial (ATLAS). BMC Cancer. 2021;21:593. https://doi.org/10.1186/s12885-021-08085-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kardoust Parizi M, Margulis V, Compe Rat E, Shariat SF. The value and limitations of urothelial bladder carcinoma molecular classifications to predict oncological outcomes and cancer treatment response: a systematic review and meta-analysis. Urol Oncol. 2021;39(1):15–33. https://doi.org/10.1016/j.urolonc.2020.08.023.

    Article  CAS  PubMed  Google Scholar 

  67. Ochoa AE, Choi W, Su X, Siefker-Radtke A, Czerniak B, et al. Specific micro-RNA expression patterns distinguish the basal and luminal subtypes of muscle-invasive bladder cancer. Oncotarget. 2016;7(49):80164–74. https://doi.org/10.18632/oncotarget.13284.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Galsky MD, Saci A, Szabo PM, Azrilevich A, Horak C, et al. Impact of tumor mutation burden on nivolumab efficacy in secondline urothelial carcinoma patients: exploratory analysis of the phase II checkmate 275 study. Ann Oncol. 2017;28:v295-329.

    Article  Google Scholar 

  69. Paver EC, Cooper WA, Colebatch AJ, Ferguson PM, Hill SK, Lum T, et al. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: a guide to immunohistochemistry implementation and interpretation. Pathology. 2021;53(2):141–56. https://doi.org/10.1016/j.pathol.2020.10.007.

    Article  CAS  PubMed  Google Scholar 

  70. Eriksson P, Sjödahl G, Chebil G, Liedberg F, Höglund M. HER2 and EGFR amplification and expression in urothelial carcinoma occurs in distinct biological and molecular contexts. Oncotarget. 2017;8(30):48905–14. https://doi.org/10.18632/oncotarget.16554.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rebouissou S, Bernard-Pierrot I, de Reyniès A, Lepage ML, Krucker C, Chapeaublanc E, et al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med. 2014;6(244):244ra91. https://doi.org/10.1126/scitranslmed.3008970.

    Article  CAS  PubMed  Google Scholar 

  72. Yorozu T, Sato S, Kimura T, Iwatani K, Onuma H, Yanagisawa T, et al. HER2 status in molecular subtypes of urothelial carcinoma of the renal pelvis and ureter. Clin Genitourin Cancer. 2020;18(4):e443–9. https://doi.org/10.1016/j.clgc.2019.12.003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Massari.

Ethics declarations

Funding

The work reported in this article was supported by the Italian Ministry of Health, RC-2022- 2773372.

Conflict of interest

Francesco Massari has received research support and/or honoraria from Astellas, BMS, Janssen, Ipsen, MSD, and Pfizer outside the submitted work. Matteo Santoni has received research support and honoraria from Janssen, Bristol Myers Squibb, Ipsen, MSD, Astellas, and Bayer, all unrelated to the present paper. Nicole Conci, Elisa Tassinari, Valentina Tateo, Matteo Rosellini, Andrea Marchetti, Costantino Ricci, Francesco Chessa, Enrique Grande, and Veronica Mollica have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Authors’ Contributions

Conceptualization: F.M., V.M., N.C., E.T.; Data curation: F.M., V.M., N.C., E.T.; Formal analysis: F.M., N.C., E.T.; Methodology: F.M., V.M.; Project administration: F.M., V.M., N.C., E.T.; Resources: all authors; Supervision: F.M., V.M.; Validation: all authors; Visualization: all authors; Roles/Writing - original draft: N.C., E.T.; and Writing - review & editing: all authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conci, N., Tassinari, E., Tateo, V. et al. How Do Molecular Classifications Affect the Neoadjuvant Treatment of Muscle-Invasive Urothelial Carcinoma?. Mol Diagn Ther 28, 37–51 (2024). https://doi.org/10.1007/s40291-023-00679-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-023-00679-6

Navigation