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Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear 
or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked 
phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and 
preventive approaches, with few disease-specific therapies available. However, over the last decade there has been consider-
able progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development 
of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these 
therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become 
mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing 
both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current 
and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device 
use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
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Key Points 

Novel pharmacological agents are under development to 
treat mitochondrial disease.

There is an emerging field of non-pharmacological treat-
ments that have not been comprehensively reviewed in 
the literature.

Rigorous randomised control trials with objective 
patient-centred primary outcomes are required to estab-
lish evidence-based guidelines.

1 Introduction

Primary mitochondrial diseases (PMDs) are clinically 
diverse metabolic disorders arising from pathogenic 
variants in genes that affect mitochondrial function [1]. 
These pathogenic variants generally impair mitochon-
drial structure and function by disrupting multiple mito-
chondrial processes such as oxidative phosphorylation, 
ion transport across the mitochondrial membrane and 
mitochondrial fission and fusion [2]. PMDs are caused 
by a vast spectrum of pathogenic variants in both nuclear 
(nDNA) and mitochondrial DNA (mtDNA) [3]. mtDNA 
is a 16.5 Kb, double-stranded, circular molecule of DNA 
that is distinct from nDNA and present in multiple copies 
throughout the cell’s cytoplasm. Typically, individuals 
have only one mtDNA genotype (inherited maternally), 
and all mitochondrial genomes are genetically identical. 
However, wild-type and mutated maternal alleles can 
coexist, a situation known as heteroplasmy [3]. When 
a tissue-specific threshold is exceeded, the severity of 
symptoms in patients with PMD is often directly associ-
ated with the level of heteroplasmy in affected tissues [4]. 
Nuclear DNA (nDNA) by contrast, is inherited from both 
parents and resides in strands in a cell’s nucleus. nDNA is 
also substantially larger in size (3 billon base pairs with 
20,000 known genes). PMDs are clinically challenging 
to diagnose and treat as they are highly heterogeneous 
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regardless of genetic aetiology [4]. PMD can affect 
almost any organ at any age. However, with the excep-
tion of Leber’s Hereditary Optic Neuropathy (LHON), 
PMDs rarely causes disease isolated to a single tissue. 
Indeed there are a number of well characterised syndro-
mic presentations of PMD (and perhaps more cases with 
non-syndromic multiple organ involvement) that present 
throughout the age spectrum [5]. At present, the preva-
lence of PMD in the UK population is estimated at 1 in 
4,300 (adults and children) [6]. However, this prevalence 
rate can vary substantially between different ethnic popu-
lations [7]. Current treatment of PMD involves sympto-
matic management with a limited therapeutic arsenal of 
specific disease-modifying therapies [8, 9]. However, in 
recent years there has been a plethora of emerging phar-
macological and non-pharmacological treatment [8, 9]. 
The purpose of this review is to summarise the current 
and emerging therapeutic landscape in PMD. The article 
is distinguishable from other recent reviews in the field 
by focusing on many of the non-pharmacological treat-
ments in development, from both a basic science and a 
clinical perspective.

2  Current Therapy

A common challenge faced in rare genetic diseases such 
as PMD is a historic paucity of disease-specific treatment 
[8–10]. The management of PMD conditions remains a 
poorly researched area and there is little expert advice avail-
able for the treatment of specific aspects of mitochondrial 
disease [8–10]. The involvement of several organs can pose 
additional patient management challenges for clinicians 
[8–10]. The current mainstay of treatment involves the 
optimisation of conventional organ-specific care and regu-
lar health surveillance for potential complications of PMD 
[8–10]. There have been multiple attempts to standardise 
the diagnosis and treatment of PMD both nationally and 
internationally [11–13]. Several guidelines and consensus 
recommendations have been generated by clinical experts 
from the UK (https ://www.newca stle-mitoc hondr ia.com/) 

and the USA, with the aim of providing guidance to health-
care professionals in the management of patients with mito-
chondrial disease [11–13].

Although few in number, some disease-specific therapies 
for PMD are available [8–10]. For instance, mitochondrial 
disease patients with a cofactor deficiency (i.e. thiamine, 
riboflavin, biotin or niacin) respond to cofactor treatment 
[14, 15]. The genes implicated in these genetic cofactor 
deficiencies are summarised in Table 1 [16–20]. Beyond 
these deficiency syndromes, there is limited clinical use 
of disease-specific treatment. Controversially in 2015, the 
European Medicines Agency (EMA) licenced the synthetic 
antioxidant idebenone for the treatment of LHON in patients 
over 12 years of age [22]. However, the UK-based National 
Institute for Health and Care Excellence (NICE) prevented 
the provision of idebenone through the NHS, given the 
expense of the drug and low-quality evidence for its efficacy 
(further discussed in section 5.2) [21]. Long-term survival in 
patients with mitochondrial neurogastrointestinal encepha-
lomyopathy has been increased by allogeneic hematopoi-
etic stem cell transplantation [22]. While not universally 
accepted, there is emerging evidence that multiple agents 
can prevent and treat stroke-like episodes in MELAS, with 
L-arginine now recommended in North American (Mito-
chondrial Medicine Society) consensus guidelines [11]. 
Additionally, taurine supplementation has been shown in 
a small phase 3 randomised controlled trial (RCT) to pre-
vent stroke-like episodes in MELAS [23]. However, further 
studies in larger patient cohorts are required before taurine 
supplementation can be recommended.

3  Emerging Therapies

In recent years there has been an increase in the develop-
ment of novel pharmacological and non-pharmacological 
treatment [8–10]. To review this landscape, we searched 
the MEDLINE database via PubMed, using the follow-
ing keywords: ‘mitochondrial disorder(s)’, ‘mitochondrial 
disease(s)’, ‘treatment(s)’ and ‘therapy’ (with no search 

Table 1  Summary of the genes implicated in genetic cofactor deficiencies

CoQ10 coenzyme Q10, PDH pyruvate dehydrogenase

Mutated gene Function References

Thiamine transporter 2 Thiamine transporter [16]
Biotinidase Biotinidase enzyme [17]
Decaprenyl Diphosphate Synthase Subunit 2 CoQ10 synthesise enzyme [16]
Pyruvate Dehydrogenase E1 Subunit Alpha 1 Subunit of PDH [18]
Thiamin Pyrophosphokinase 1 Thiamine metabolism [19]
Acyl-CoA dehydrogenase family member 9 Subunit of complex I [20]

https://www.newcastle-mitochondria.com/
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limits). We supplemented this review by searchingClinical-
Trials.gov for ‘mitochondrial disorders’ (up until 10 August 
2020) (with no search limits). From our search, we discov-
ered that there has been an exponential growth in the number 
of clinical trials registered to start since 2000 (Fig. 1), with 
a total of 232 studies conducted (of which 182 were inter-
ventional). The most common subcategories identified in 
the treatment of PMD included pharmacological (N = 105 
trials) and dietary supplements (N = 15 trials) (Fig. 1, Online 
Supplementary Material (OSM)).

4  Emerging Pharmacological Treatment

The translation of modern genomic technology into clini-
cal practice and research has facilitated major advances in 
the development of treatment for rare genetic diseases [24]. 
Accordingly, there has been an exponential expansion in the 
development of novel pharmacological treatment for PMD 
(Table 2), facilitated by regulatory and financial incentives 
aimed at increasing investment in orphan drug discovery 
[8–10, 25]. Many developing therapies may also be of poten-
tial use in a range of other neurological diseases [26]. It is 
encouraging that many of these newly developed compounds 
are now undergoing clinical trials in humans. To date, 131 
clinical trials involving a pharmacological intervention 

in the treatment of mitochondrial disease have been reg-
istered publicly on Clinicaltrials.gov (Fig. 1). The specific 
preclinical mechanisms of these newly developed therapies 
can be categorised into four major groups: (1) increasing 
the cellular concentration of mitochondria and nicotinamide 
adenine  dinucleotide+  (NAD+), (2) protecting mitochondria 
from damage, (3) improving mitochondrial function and (4) 
restoring mtDNA homeostasis [27–30].

4.1  Increasing the Cellular Concentration 
of Mitochondrial NAD+ and Mitochondria

Numerous novel pharmacological agents have been devel-
oped that aim to increase the cellular concentration of 
 NAD+ and the number of mitochondria [31].  NAD+ is an 
oxidising cofactor that accepts electrons in redox reac-
tions [31]. This allows electrons to be carried from one 
reaction to another, a fundamental process required for 
oxidative metabolism [31]. Higher concentrations of both 
mitochondria and  NAD+ in cells may increase oxidative 
phosphorylation in diseased tissue, ultimately improving 
symptoms and disease progression in PMD [31]. Acipimox, 
bezafibrate, omaveloxolone and REN001 aim to treat mito-
chondrial disease by increasing the cellular mitochondrial 
concentration. In contrast, KL1333 is purported to increase 
the cellular concentration of  NAD+.

Fig. 1  The cumulative number and subcategories of clinical trials registered at ClinicalTrials.gov using the search term ‘mitochondrial disor-
ders’ up until 10/08/2020.
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Table 2  Summary of the historic and current disease specific pharmacological therapeutic landscape for in mitochondrial disease.

Disease(s)/
syndrome(s)  
investigated

Pharmacological 
agent

Trial phase Description N Most 
recent 
update

Status/result Trial ID

Childhood PMD Cysteamine 2 Safety, tolerability, 
efficacy, 
 pharmacokinetics 
and 
 pharmacodynamics

36 2017 Terminated (lack of 
effect)

NCT02023866

EPI-743 1/2 Crossover trial to 
investigate efficacy

20 2020 Completed NCT01642056

Leigh and Leigh-like ABI-009 2a Safety, tolerability and 
efficacy

32 2020 Not yet recruiting NCT03747328

EPI-743 2 Safety, tolerability and 
efficacy

30 2020 Active, not  
recruiting

NCT02352896

KL1333 1 Safety 30 (C) 2016 Completed NCT02544217
LHON Elamipretide 2 Safety, tolerability and 

efficacy
12 2019 Completed NCT02693119

Idebenone 4 Efficacy (long term 
follow-up)

250 2019 Active, not recruiting NCT02774005

4 Safety (long term 
follow-up)

250 2020 Active, not  
recruiting

NCT02771379

4 Expanded access NA 2020 Available NCT04381091
2 Safety, tolerability and 

efficacy
85 2013 Completed NCT00747487

KL1333 1 Safety 30 (C) 2016 Completed NCT02544217
m.3243A<G Acipimox 2a/2b Adaptive design; 

single centre
80-120 2020 Recruiting ISRCTN12895613

KL1333 1 Safety 30 (C) 2016 Completed NCT02544217
ME KH176 2 Safety, tolerability and 

efficacy
20 (C) 2018 Completed NCT02909400

KL1333 2 Safety, tolerability and 
efficacy

27 (C) 2020 Recruiting NCT04165239

MELAS Dichloroacetic acid 2 Treatment 35 2005 Terminated  
(peripheral nerve 
toxicity)

NCT00068913

Idebenone 2 Treatment 27 2016 Completed NCT00887562
KH176 2 Safety, tolerability and 

efficacy
20 (C) 2018 Completed NCT02909400

KL1333 1 Safety 30 (C) 2016 Completed NCT02544217
2 Safety, tolerability and 

efficacy
27 (C) 2020 Recruiting NCT04165239

MIDD KH176 2 Safety, tolerability and 
efficacy

20 (C) 2018 Completed NCT02909400

KL1333 1a/1b Safety, tolerability, 
pharmacokinetics 
and

 pharmacodynamics

72 (C) 2019 Recruiting NCT03888716

mDNA depletion Thymidine and 
deoxycytidine

1/2 Safety, tolerability and 
efficacy

20 2019 Enrolling by  
invitation

NCT03639701

Mitochondrial 
respiratory chain 
deficiencies

EPI-743 2 Palliative expanded 
access protocol

94 2020 Active,  
not  
recruiting

NCT01370447

KL1333 1a/1b Safety, tolerability, 
pharmacokinetics 
and  
pharmacodynamics

72 (C) 2019 Recruiting NCT03888716

Pearson EPI-743 2 Safety, tolerability and 
efficacy

2 2018 Terminated NCT02104336
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Acipimox (5-carboxyl-2-methyl pyrazine 1-oxide) is a 
niacin derivative and nicotinic acid analogue with activity 
as a hypolipidaemic agent [32–34]. The drug is currently 
used for the treatment of hyperlipidaemia in non- insulin-
requiring diabetes mellitus [32–34]. Acipimox has been 
shown to have a direct effect on human skeletal muscle mito-
chondrial function in patients with diabetes [35]. Acipimox 
lowers plasma free fatty acids by inhibiting lipolysis through 
indirectly inhibiting hormone-sensitive lipase [36]. This in 
turn promotes an increase in  NAD+, sirtuin 1 (SIRT1) acti-
vation and enhanced mitochondrial gene expression [37]. 
Although acipimox has a favourable side-effect profile, it 

can cause facial flushing, which may limit patient retention 
(and blinding) in clinical trials [32]. An ongoing double-
blinded, placebo-controlled RCT of the efficacy of acipimox 
in patients with mitochondrial myopathy aims to repurpose 
acipimox as a potent stimulator of mitochondrial biogenesis.

Bezafibrate is a fibrate drug that increases mitochondrial 
biogenesis [38]. It was originally licensed in 1978 to treat 
hyperlipidaemia and therefore has long-term evidence of 
a favourable side-effect profile [39]. An open‐label, non‐
randomised trial in patients with mitochondrial myopathy 
(m.3243A>G point pathogenic variant, n = 6) demon-
strated that bezafibrate decreased the number of complex 

Table 2  (continued)

Disease(s)/
syndrome(s)  
investigated

Pharmacological 
agent

Trial phase Description N Most 
recent 
update

Status/result Trial ID

PMD Bezafibrate 2 Treatment 6 2017 Awaiting results NCT02398201

KL1333 2 Safety, tolerability and 
efficacy

27 (C) 2020 Recruiting NCT04165239

Elamipretide 2 Safety, tolerability and 
efficacy

36 2020 Terminated NCT02976038

2 Safety, tolerability and 
efficacy

30 2017 Completed NCT02805790

2 Prospective  
observational

215 2019 Completed NCT03048617

KH176 2 Safety, tolerability and 
efficacy

20 (C) 2018 Completed NCT02909400

KL1333 1 Safety 30 (C) 2016 Completed NCT02544217

1a/1b Safety, tolerability, 
pharmacokinetics 
and  
pharmacodynamics

72 (C) 2019 Recruiting NCT03888716

PMM Elamipretide 3 Safety, tolerability and 
efficacy

218 2020 Failed (did not meet 
primary end-point)

NCT03323749

KH176 2 Safety, tolerability and 
efficacy

20 (C) 2018 Completed NCT02909400

KL1333 2 Safety, tolerability and 
efficacy

27 (C) 2020 Recruiting NCT04165239

1a/1b Safety, tolerability, 
pharmacokinetics 
and  
pharmacodynamics

72 (C) 2019 Recruiting NCT03888716

REN001 1 Safety 23 2020 Not reported NCT03862846
RTA 408 2 Safety, efficacy and 

pharmacodynamics
53 2018 Completed

Results not reported
NCT02255422

PCDC Dichloroacetic acid 3 Treatment 9 2020 Recruiting NCT02616484

Recruiting trials as of August 2020 are indicated in bold. Please note some trials investigate therapy in multiple disorders
C combined clinical trial investigating multiple primary mitochondrial diseases, LHON Leber’s hereditary optic neuropathy, ME myalgic 
encephalomyelitis, MELAS mitochondrial encephalopathy lactic acidosis and stroke-like episodes, N number of participants recruited lactic aci-
dosis and stroke-like episodes, MIDD maternally inherited diabetes-deafness syndrome, PCDD pyruvate dehydrogenase complex deficiency, 
PMD primary mitochondrial disease, PMM primary mitochondrial myopathies
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IV‐deficient muscle fibres and improved cardiac function, 
with no significant adverse effects reported [29]. However, 
this improvement was accompanied by an increase in serum 
biomarkers of PMD (e.g. GDF15 [growth and differentia-
tion factor 15]), raising concerns about long-term treatment 
effects in patients with PMD [38]. A further phase 2 RCT 
is required to further ascertain the efficacy and safety of 
bezafibrate.

REN001, a selective and orally bioavailable peroxisome 
proliferator-activated receptor delta (PPARδ) agonist, is cur-
rently being trialled as a treatment for patients with fatty acid 
oxidation (FAO) disorders and mitochondrial myopathies 
[40]. This compound was previously used for prevention of 
respiratory failure and immobilisation-induced skeletal mus-
cle atrophy [40]. PPARδ regulates genes involved in several 
cellular metabolic processes including glucose homeosta-
sis, fatty acid synthesis and storage, and fatty acid mobili-
zation and metabolism [41]. PPARδ is expressed in liver, 
skeletal muscle and adipose tissue [41]. In animal models, 
PPARδ increases the number of muscle fibres with high 
mitochondrial content and improves FAO [41]. The prem-
ise for treatment in patients with PMD is that this selective 
PPARδ agonist may ameliorate the cellular energy deficit 
via increasing the proportion of wild-type mtDNA [42]. 
The other potential benefits include increasing FAO and 
OXPHOS activity, thereby enhancing mitochondrial ATP-
generating capacity and boosting mitochondrial biogenesis 
[59]. An open-label study to evaluate the tolerability of this 
drug over 12 weeks was paused due to the COVID-19 pan-
demic (NCT03862846).

Omaveloxolone is an oleanolic triterpenoid that prevents 
nuclear factor erythroid 2-related factor 2 (Nrf2) degra-
dation, inhibiting the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pro-inflammatory 
pathway [43]. This inhibition has been shown to improve 
oxidative phosphorylation and mitochondrial biogenesis in 
patients with mitochondrial myopathy (n = 53) [43]. A phase 
2 double-blind, dose-ranging, placebo-controlled RCT of 
omaveloxolone in 53 patients with mitochondrial myopathy 
failed to meet its primary outcome (peak workload assessed 
via an incremental cycling exercise test) [44]. However, 
omaveloxolone treatment resulted in a lower heart rate and 
blood lactate level during a constant workload (submaximal) 
exercise test, suggesting some improvement in mitochondrial 
function [44]. Further clinical trials with methodical refine-
ment may therefore be required to ascertain the efficacy of 
omaveloxolone.

KL1333 is a substrate for NAD(P)H:dehydrogenase [qui-
none]1, which produces nicotinamide adenine. KL1333 
then transfers these electrons to the mitochondrial elec-
tron transport system, directly promoting ATP production 
[45]. The elevated level of  NAD+ leads to the activation 
of mitochondrial biogenesis pathways SIRT1, 5’-adenosine 

monophosphate-activated protein kinase (AMPK) and per-
oxisome proliferator-activated receptor gamma coactivator 
1-alpha (PGC-1α), thereby improving mitochondrial func-
tion [45]. Given these beneficial effects on mitochondrial 
function, a double-blinded, parallel-group, placebo-con-
trolled, phase 1 RCT to assess the pharmacokinetics and 
pharmacodynamics of this compound in patients with PMD 
has recently been launched (NCT03056209).

4.2  Protecting Mitochondria from Damage

Protecting functioning mitochondria from damage that 
could ultimately reduce their ability to perform oxidative 
phosphorylation is an emerging mechanism for potential 
treatment [8–10]. There are multiple mechanisms to poten-
tially protect mitochondria including increasing the produc-
tion of endogenous antioxidants (cysteamine), reducing the 
production of toxic reactive oxygen species (ROS) (KH17 
and elamipretide), and acting as a potent synthetic antioxi-
dant to absorb free radicals before they damage mitochon-
dria (EPI-743 and idebenone). ROS are reactive compounds 
that contain oxygen in its reduced chemically reactive form 
 (O−2) [46]. These compounds are a by-product of normal 
metabolism of oxygen but during metabolic stress (e.g. 
during illness) ROS levels can dramatically increase, this 
process can damage proteins from intracellular organelles 
including mitochondria in a process known as oxidative 
stress [46]. Some compounds have also been designed with 
a dual mechanism. For example, KH176 protects mitochon-
dria by acting as both a synthetic antioxidant and a redox 
modulator.

Cysteamine is a US Food and Drug Administration 
(FDA)-approved treatment for nephropathic cystinosis 
that has the potential to be repurposed for the treatment of 
PMD [47]. Its primary mechanism is to increase glutathione 
biosynthesis (a potent antioxidant). In vivo (C elegans and 
zebrafish) and in vitro (human fibroblast) experiments have 
shown that cysteamine improves mitochondrial function by 
protecting complex I and IV from damage [48]. However, 
a phase 2 open-label, dose-escalating study assessing the 
safety, tolerability and efficacy of cysteamine treatment in 
PMD (n = 36) was terminated due to a lack of efficacy, leav-
ing the repurposing of cysteine in jeopardy (NCT02023866).

KH176 is a potent intracellular reduction-oxidation‐
modulating compound developed to treat PMD [49]. The 
compound also acts as a synthetic antioxidant (removing 
oxidative stress). Through this duel mechanism, KH176 
can reduce both ROS production and absorption. KH176 
has demonstrated safety in a phase 1 trial [50]. A subse-
quent phase 2 double-blind, placebo-controlled, crossover 
RCT in 18 patients with m.3243A>G pathogenic variants 
demonstrated that the medication was safe and tolerated 
(KHENERGY Study) (NCT02909400) [51]. However, this 
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study was exploratory, and therefore lacked any defined pri-
mary and secondary outcomes. A further phase 3 trial is 
currently being conducted to ascertain the efficacy and safety 
of KH176 (NCT02909400).

Elamipretide is a tetrapeptide that targets the mitochon-
dria, stabilizing cardiolipin whilst reducing the production of 
ROS [52]. A phase 1/2 multicentre, double-blind, placebo-
controlled RCT investigating elamipretide for the treatment 
of mitochondrial myopathy in 36 patients (MMPOWER 
study) demonstrated safety and efficacy (increase in 6-min 
walk test distance (6MWTD)) [53]. However, a follow-
up phase 3 study (n = 218 patients) (MMPOWER-3, 
NCT03323749) did not meet its primary end-point (increase 
in 6MWTD), leaving the efficacy of elamipretide unclear.

EPI-743 (also known as vatiquinone) is a novel small-
molecule catalytic, 2-electron transfer NAD(P)H quinone 
dehydrogenase 1 (NQO1) cofactor that decreases the pro-
duction of intracellular glutathione [54]. The drug is a para-
benzoquinone analogue of  CoQ10 with up to 10,000 times 
its antioxidant potency [54]. A 2012 phase 2A open-label 
trial of EPI-743 for children with Leigh syndrome (n = 10) 
demonstrated a statistically significant objective neurologi-
cal improvement in the Newcastle Paediatric Mitochondrial 
Disease Scale (NPMDS), with no significant drug-related 
adverse events [55]. Based on these results, further phase 1/2 
clinical trials are currently being conducted (Table 2). EPI-
743 has been used in randomized, double-blind, placebo-
controlled clinical trials in children with Leigh syndrome 
(NCT01721733 and NCT02352896). Enrolled patients first 
participated in a 6-month placebo-controlled phase, which 
was followed by a 30-month extension phase to assess the 
long-term drug safety and impact on disease severity [56]. 
The results of this study were reported at the United Mito-
chondrial Disease Foundation Annual Meeting, Seattle, 
Washington, USA, 2016. However, despite evidence of EPI-
743 reducing hospital admission, the study is yet to be pub-
lished [56]. This highlights the need to publish trial results 
rapidly and transparently. Of note, the FDA recently granted 
approval for a study to investigate the safety and efficacy of 
the drug in 94 children with terminal genetically confirmed 
inherited respiratory chain diseases (NCT01370447). This 
study is scheduled to report in December 2021.

Idebenone is a short-chain hydrosoluble quinone syn-
thetic analog of  CoQ10 that acts as an electron carrier in 
the respiratory chain [57, 58]. The drug was originally 
developed to treat  CoQ10 deficiency but was unsuccessful 
in this regard and has recently been repurposed and licensed 
to treat patients with LHON [59]. A double-blind, phase 2 
RCT (RHODOS) demonstrated limited efficacy, whereby 
no significant difference in the primary outcome (visual 
acuity) was observed compared to placebo treatment [59]. 
However, subgroup analysis demonstrated an improvement 
in discordant visual acuity [59]. Two phase 4 clinical trials 

are currently being conducted to further understand the 
benefits of idebenone (NCT02774005 and NCT02771379) 
(Table 2). Further studies are also underway to investigate 
the efficacy of idebenone in other PMDs (Table 2). As previ-
ously mentioned, although idebenone has been licensed by 
the EMA, NICE recommended that it should not be avail-
able for prescription through the NHS in the UK [22]. This 
is a consequence of the high cost of treatment relative to 
the lack of robust evidence demonstrating efficacy. Addi-
tionally, NICE also cited a lack of long-term follow up in 
the original clinical trial. NICE also expressed additional 
concern at the exclusion of a patient from analysis resulting 
in a substantial demographic difference between the control 
and treatment group [22]. The current situation regarding 
the prescription of idebenone will likely be repeated in other 
emerging disease-specific treatments for PMD in the NHS 
and other public health systems worldwide. Orphan drugs 
in PMD have high development costs. When combined with 
the rarity of PMD, high drug prices are likely. Therefore, if 
the evidence for efficacy is not robust, NICE are unlikely to 
allow public prescription, and, in turn, prevent long-term 
follow-up studies that can elucidate efficacy.

4.3  Improving Mitochondrial Function

Various pharmacological agents have been developed that 
improve the efficiency of oxidative phosphorylation in dis-
eased mitochondria as opposed to increasing their number 
[8–10]. ABI-009 and dichloroacetate are two medications 
from this class that are currently undergoing clinical trials.

ABI-009 (known as nab-sirolimus) is a nanoparticle 
undergoing phase 2a open-label trials evaluating safety, 
tolerability and efficacy in the treatment of Leigh or Leigh-
like syndrome (NCT03747328). ABI-009 is composed of 
the antibiotic rapamycin bound to nanoparticle albumin. The 
compound is reported to improve mitochondrial function 
by increasing amino acid catabolism, reducing glycolysis 
[29]. The reduction in glycolytic intermediates increases 
mitochondrial oxidative phosphorylation by an unknown 
mechanism [29]. Preclinical evidence in a Leigh syndrome 
murine model has demonstrated that ABI-009 reduces neu-
roinflammation and the size of brains lesions, delaying the 
onset of neurological symptoms [29]. However, the validity 
of preclinical evidence is limited as the Leigh syndrome 
murine model reflects only one genotype (NDUFS4). This 
contrasts with Leigh syndrome in humans, which is caused 
by many different genetic variants involving both mtDNA 
and nDNA [60].

Dichloroacetate (DCA) is a drug that stimulates the pyru-
vate dehydrogenase (PDH) complex (a common site of path-
ological metabolic dysfunction) by altering its phosphoryla-
tion state and thus promoting complex stability [18]. Three 
clinical trials have been conducted for DCA in mitochondrial 
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genetic disease [19, 61, 62]. Two of these trials showed an 
improvement in post-prandial and exercise blood lactate 
compared to placebo. However, these studies did not show 
any improvement in patient quality of life (assessed through 
global assessment of treatment efficacy scores) or aerobic 
metabolism function (assed through a 1-h treadmill test) [61, 
62]. However, a third trial (conducted in older subjects) was 
terminated due to drug-associated neuropathy [19]. A phase 
3 quadruple blinded RCT is currently being conducted to 
investigate the efficacy of DCA in pyruvate dehydrogenase 
complex deficiency (PDCD) (NCT02616484).

4.4  Restoring mtDNA Homeostasis

Loss of function pathogenic variants in the synthesis of 
mtDNA result in a reduction in mitochondrial oxidative 
phosphorylation. This results in numerous PMDs including 
mitochondrial depletion syndrome (MDS) and mitochon-
drial neurogastrointestinal encephalomyopathy (MNGIE), 
for which there is emerging pharmacological treatment.

In mitochondrial depletion syndrome (MDS), there is a 
reduction in the production of mtDNA. This is due to an 
autosomal recessive loss-of-function pathogenic variant, 
resulting in defective thymidine kinase 2 (TK2) activity. 
TK2 is a critical enzyme in mtDNA synthesis through its 
phosphorylation of precursor nucleosides (deoxycyti-
dine and deoxythymidine). Pathogenic variants result in a 
reduced pool of deoxynucleoside triphosphates, which are 
required for mtDNA replication and maintenance. A retro-
spective analysis of 92 patients with genetically confirmed 
TK2 deficiency revealed three myopathic phenotypes with 
divergent survival: infantile-onset, childhood-onset and late-
onset myopathies [63]. Oral supplementary deoxynucleoside 
administration is an emerging therapy in MDS that bypasses 
the defective enzymatic pathway [64, 65]. Preclinical evi-
dence in murine models has demonstrated that deoxynu-
cleoside treatment is both tolerable and effective in restoring 
mtDNA copy number and respiratory chain enzyme activity, 
resulting in a prolonged lifespan [65]. A combined phase 1/2 
open-label compassionate-use study (n = 16) of oral deoxy-
nucleoside to treat TK2-deficient patients demonstrated a 
favourable side-effect profile and improved survival and 
motor function [46]. A further combined phase 1/2 trial 
(n = 20 patients) is currently being conducted to expand on 
this work (NCT03639701).

MNGIE is an autosomal recessive disorder caused by 
loss-of-function pathogenic variants in the gene that encodes 
for thymidine phosphorylase (TYMP), a critical enzyme in 
mtDNA synthesis [66]. The disease presents in patients aged 
in their 20s and is characterised by progressive gastroin-
testinal dysmotility, neuropathy and leukoencephalopathy 
[66]. There is currently no disease-specific therapy. Eryth-
rocyte-encapsulated thymidine phosphorylase (EE-TP) is an 

emerging clinical therapy. EE TP is intravenously infused 
into a patient and aims to replace defective thymidine phos-
phorylase activity [66]. A phase 2, multicentre, multiple-
dose, open-label trial is currently being conducted to assess 
the medication’s safety, tolerability, pharmacodynamics and 
efficacy [66].

5  Dietary Supplements as Emerging 
Treatment in Mitochondrial Disease

A mainstay in the treatment of many inborn errors of metab-
olism is dietary manipulation. This may include dietary 
restriction strategies or supplementation that aim to limit 
toxic effects, maximise residual enzyme function or uti-
lise alternative metabolic pathways [67, 68]. While dietary 
restriction has not found favour in managing mitochondrial 
disease, dietary supplements have been purported to be 
effective through a range of cellular mechanisms [67]. There 
are numerous theoretical reasons why certain supplements 
may improve metabolic functions. For example, creatine 
could potentially be used as an alternative energy source 
boosting mitochondrial ATP production [69]. Other sup-
plements including antioxidants (vitamin C, vitamin E and 
alpha-lipoic acid) and electron acceptors  (CoQ10 or carthine) 
may remove ROS from cells, improving mitochondrial func-
tion. Supplements could also bypass a cellular defect (e.g. 
a deficiency in the activity of complexes I, II or III in the 
electron transport chain) [69–71]. The potential benefits of 
dietary supplementation are demonstrated by an open-label 
trial (NCT03973203) in five patients with adult-onset mito-
chondrial myopathy. In this trial, dietary supplement with 
niacin (i.e. an NAD+ booster) increased muscle strength 
and mitochondrial biogenesis of affected patients when 
compared to healthy matched controls [72]. Despite their 
theoretical potential, there is a paucity of robust evidence to 
support the routine use of dietary supplements in all types 
of mitochondrial diseases.

Although there may be a potential clinical benefit of 
dietary supplementation use, there is a lack of high-quality 
evidence demonstrating their efficacy [10, 12]. The majority 
of favourable evidence available is from low-quality stud-
ies that lack robust designs to effectively demonstrate that 
the intervention studied was responsible for the reported 
benefit (e.g. case reports, retrospective studies and small 
underpowered non-RCTs) (Table 3) [73–106]. Another issue 
that has been encountered in dietary interventional trials is 
the heterogeneity in the composition, combination, dosing 
regimens and duration of treatment [12]. Generating high-
quality evidence for the use of dietary supplements through 
RCTs is challenging. Studies are often underpowered with 
highly variable designs that lack standardization. This makes 
comparing study results difficult and prevents meta-analysis 
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[70]. Recruitment to clinical trials is also difficult as sup-
plements are commonly used by patients, excluding their 
inclusion into the study [70]. Additionally, some patients are 
reluctant to join a study that might assign them to a placebo 
group where they will be required to temporarily stop their 
usual supplement use [70]. Further work is required to build 
a more rigorous evidence base through larger multicentre 
RCTs.

The lack of high quality evidence means that there are no 
regulatory approved dietary supplements to treat, mitigate or 
cure PMD in either the EU or the USA [107]. Despite these 
legalities, dietary supplements are frequently used for this 
purpose either as monotherapy or as polytherapy (known as 
a mitochondrial cocktail) due to the theoretical synergistic 
benefit [67]. However, there is no known standardisation 
nationally or internationally, with their clinical use often 
dependent on centre or physician preference as opposed to 
evidence-based guidelines [108].

5.1  Diet as an Emerging Therapy

The neurological manifestations of mitochondrial disease 
can make both food consumption and ingestion more dif-
ficult [73]. In addition to this, the diet of patients with mito-
chondrial disease tends to be deficient in protein, calcium 
and fluid [109, 110]. These dietary deficiencies mean that 
patients are at higher risk of malnutrition than the general 
population [109, 110]. Therefore, individualised dietary 
counselling and monitoring is a simple approach to address 
these effectively. The role of dietary adaptation in PMD can 
also include several other strategies depending on the clini-
cal features and genetic predisposition. Among them, the 
three most investigated diets are the ketogenic diet (KD), 
low-residue diet (LRD) and high-nitrate diet [111–113]. 
However, despite the potential offered by these diets in 
improving symptoms of mitochondrial function in PMD, 
there have been few disease-specific clinical trials. This is 
likely due to challenges in patient recruitment and retention, 
given the restrictive nature of dietary interventional trials.

The KD involves replacing the majority of a patient’s 
dietary consumption of carbohydrates with fat (defined 
as < 20 g of carbohydrate per day) [114]. This reduction 
in carbohydrate places the body into a metabolic state of 
ketosis [114]. The KD may have multiple benefits in PMD. 
The first benefit is that the KD may better control intrac-
table epilepsy regardless of the underlying neurological or 
metabolic cause [114]. The specific mechanism of how the 
KD reduces epileptic activity is unclear [114]. There have 
been numerous RCTs demonstrating that the KD has efficacy 
in treating non-disease-specific intractable epilepsy [115]. 
However, a 2020 Cochrane review concluded that the current 

evidence base is inconclusive [115]. The review cited not 
only a lack of studies but criticised the majority of the RTCs 
for both a lack of power but also a short follow-up [115]. 
However, numerous observational studies have demonstrated 
a benefit of the KD in reducing intractable epilepsy in PMD 
[111, 116, 117]. Furthermore, a Swedish cohort study in 
paediatric patients with PDCD (n = 19) demonstrated that a 
KD not only reduced epileptic seizures, but also improved 
ataxia, sleep disturbance, speech/language development, 
social functioning and frequency of hospitalizations [118]. 
Additionally, the state of ketosis may be beneficial to mito-
chondrial function; there is preclinical evidence from in vivo 
(using cultured human cell lines) and in vitro (murine mod-
els) that the state of ketosis improves mitochondrial func-
tion (Table 4) [119–122]. However, no study in man has 
been conducted to asses if this could translate into clinical 
practice. To establish if the KD is an effective treatment 
for PMD-specific (and non-specific) intractable epilepsy 
and improving in vivo mitochondrial function, a large RCT 
is required. This trial should not only assess an epileptic 
control cohort, but also include objective assessments of 
mitochondrial and global neurological function. This could 
potentially be a sub-arm of a larger definitive trial to estab-
lish the efficacy of the KD in treating intractable epilepsy.

The second diet investigated in MD is a low residue diet 
(LRD; a diet with less than 10 g fibre per day) [123]. Mito-
chondrial dysfunction in the smooth muscle of the gastroin-
testinal tract causes various symptoms including abdominal 
pain, bloating and severe constipation, frequently leading 
to hospital admission [112]. Therefore, in contrast to main-
stream dietary advice, the LRD requires patients to reduce 
their intake of dietary fibre. The diet was initially designed 
for people with inflammatory bowel disease to prevent the 
obstruction of inflamed bowel because fibre provides resist-
ance to the defective peristaltic action of diseased smooth 
muscle [112]. A phase 2 feasibility study of the efficacy and 
acceptability of a LRD in adult patients with PMD has been 
completed with the results due to be published imminently 
(NCT03388528).

There is also evidence that a high-nitrate diet can benefit 
the function of mitochondria [113]. Nitrate is an inorganic 
anion that is found in high quantities in root vegetables 
[113]. Once ingested, it is converted into bioactive nitro-
gen oxides, which reduces the concentration of ATP/ADP 
translocase improving basal mitochondrial function [113]. 
A double-blind crossover trial in healthy participants dem-
onstrated that a high-nitrate diet improved oxidative phos-
phorylation and reduced oxygen demand during exercise in 
harvested muscle [113]. To date, there have been no studies 
extending this finding to patients with PMD, leaving this a 
ripe area of research in PMD despite the likely challenges of 
patient recruitment and retention. Dietary supplementation 
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with nitrate supplements could be an alternative therapeutic 
avenue.

6  Device Use as Emerging Treatment

Bioengineering has resulted in the development of multiple 
devices to treat various neurological diseases with many 
now approved by the FDA [124]. There are two promis-
ing devices under development to treat PMD: near-infrared 
light-emitting diode (NIR-LED) and transcranial direct cur-
rent stimulation (TDCS) (Table 5) [125–127]. These devices 
have the potential to open another valuable therapeutic front 
in both treating the symptoms of PMD and also altering the 
underlying pathophysiology. Like many therapies for PMD, 
there is currently a lack of evidence to assess their efficacy, 
meaning that rigorous clinical trials are needed to realise 
this potential.

NIR-LED uses low-energy lasers or light-emitting 
diodes to radiate tissue with light at near infrared range 
(630–1,000 nm) of the electromagnetic spectrum [125]. 
There is in vivo and in vitro preclinical evidence that the 
technology improves mitochondrial function [125]. The 
NIR light radiates the mitochondrial photoacceptor mol-
ecule cytochrome C oxidase, thereby activating it. Once 
activated, cytochrome C oxidase increases the expression 
of mitochondrial proteins involved in antioxidant protec-
tion and energy production [125]. To date, there has only 
been one open-label phase 1/2 clinical trial assessing the 
therapeutic benefit of using NIR-LED to treat LHON (n = 4 
patients) (NCT01389817). The study intended to assess 
the N95 retinal ganglion cell peak as its primary outcome. 
However, it was terminated due to difficulties obtaining 
this measurement in LHON patients. Further studies are 
therefore required that utilise more refined measurable 
outcomes.

TDCS is a neuromodulatory technique that involves 
delivery of a constant direct current to the cortex of the 
brain via electrodes placed on the skin of the head [128]. 
This current alters the resting membrane potential of cortical 
neurons, resulting in neuronal depolarisation or hyperpolari-
sation [128, 129]. The resulting decrease in firing neurons 
has been shown to have therapeutic potential in patients with 
resistant epilepsy and status epilepticus with emerging pre-
clinical and clinical evidence [128, 129]. In a double-blind, 
sham-controlled RCT, TDCS reduced seizure frequency in 
patients with refractory focal epilepsy (n = 70) [129]. Two 
case reports have also utilised this technology for treatment 
of POLG‐related mitochondrial epilepsy [126, 127], with 
conflicting findings: one study reported efficacy in control 
status epilepticus while the other observed no benefit [126, 
127].

7  Exercise as a Treatment

Progressive proximal skeletal myopathy is a prominent clini-
cal feature of many different PMDs. Impaired mitochondrial 
oxidative phosphorylation due to respiratory chain defects 
frequently result in symptoms of exercise intolerance, mus-
cle weakness and muscle fatigue even with minimal exer-
tion [130]. As well as a reduced aerobic capacity, patients 
with PMD are less physically active compared to matched 
controls, consequently exacerbating muscle deconditioning 
and function [131].

Exercise training involves frequently repeated bouts of 
skeletal muscle contraction. Aerobic exercise training is 
widely accepted as a potent stimulator of mitochondrial 
biogenesis, therefore representing a potential therapeutic 
intervention for mitochondrial disease [87, 88]. Indeed, it is 
firmly established that aerobic exercise training in patients 
with PMD results in a number of metabolic and physiologi-
cal adaptations including an increase in oxygen consump-
tion and work capacity, mediated by an increase in oxygen 
extraction [132–141]. Importantly, these improvements have 
been shown to translate into clinically meaningful increases 
in quality of life and self-reported activities of daily living 
[134, 136, 141]. Other significant benefits include enhanced 
magnetic resonance spectroscopy (MRS) recovery kinetics 
and a decrease in blood lactate at rest and with exercise, 
suggesting reduced anaerobic metabolism [132, 136, 142].

At a molecular genetic level, one of the first exercise 
interventional studies in patients with PMD raised concerns 
of a potential selective amplification of mitochondrial patho-
genic variant deletion [143]. However, an increase in mDNA 
heteroplasmy has not been replicated by this group or oth-
ers [134, 137]. Further, skeletal muscle biopsy studies in 
patients with mitochondrial disease have demonstrated an 
aerobic exercise training-induced improvement in skeletal 
muscle oxidative capacity and mitochondrial biogenesis 
reflected by an increase in respiratory chain complex activi-
ties and mitochondrial volume [132, 134, 141, 144].

Resistance exercise training has also been investigated 
as a potential intervention for patients with mitochondrial 
myopathy caused by sporadic mtDNA point pathogenic vari-
ants or single large-scale mDNA deletions. It was postulated 
that the myofiber damage-induced activation of muscle stem 
cells (satellite cells; predominantly containing wild-type 
mtDNA) may consequently reduce mtDNA mutant load (i.e. 
the mitochondrial DNA shifting theory) [145–147]. Strength 
training has been shown to effectively increase muscle 
 strength1,2 despite no significant effect on mutated mtDNA, 
muscle fibre area or mtDNA copy  number2. Importantly, 
strength training benefits translate to an enhanced aerobic 
capacity (p = 0.06), mediated largely by an increased peak 
oxygen extraction (a-vO2 difference) [148].
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The abundance of evidence suggests that exercise 
training is efficacious, well tolerated and safe; no stud-
ies report clinical adverse events or detrimental effects on 
muscle (serum creatine kinase levels), perceived fatigue 
or self-reported activities of daily living [132, 134, 136, 
137, 141, 143, 147, 148]. Our recently conducted sys-
tematic review and meta-analysis to determine the effect 
of exercise across a range of outcomes in patients with 
neuromuscular disorders, which includes mitochondrial 
disease, also supports these findings [149]. While further 
research is required to fully elucidate the mechanisms of 
the potential therapeutic benefit of exercise training, these 
results encourage the translation of exercise treatment into 
the clinical care of patients with mitochondrial disease 
[150]. A combination of progressively prescribed aero-
bic and strength exercise training is recommended; how-
ever, it should be noted that this is limited to those who 
are physically capable, highlighting the necessity for the 
development of pharmaceutical drugs that mimic the effect 
of exercise [12]. A summary of the literature is presented 
in Table 6 [151].

8  Mitochondrial Replacement Therapy

The severity and intensity of PMD means that preventing 
genetic transmission is highly desirable. Current preven-
tative therapies include voluntary childlessness, adoption, 
oocyte donation, prenatal testing and preimplantation genetic 
diagnosis (PGD) [152]. There are numerous considerations 
for each technique. Voluntary childlessness, adoption and 
oocyte donation may be personally or culturally unaccepta-
ble [152]. Prenatal testing is only suitable for women who 
have a low risk of transmission of mtDNA disease and who 
would be willing to terminate an affected fetus [153]. There 
is also a procedural risk to the viability of the pregnancy 
with a miscarriage rate of 1–2% following chorionic vil-
lus biopsy [153]. PGD involves testing in vitro-generated 
embryos for a pathogenic variant before subsequent implan-
tation. This means the technique is limited by the number 
of embryos available with pathogenic variant levels that are 
unlikely to result in severe PMD [152]. Additionally, PGD 
is a modified version of in vitro fertilization and therefore 
has associated risks, namely increased risk of multiple and 

Table 4  Summary of how the ketogenic diet may benefit mitochondrial function

ATP adenosine triphosphate, KSS Kearns-Sayre syndrome, mDNA mitochondrial deoxyribonucleic acid, MELAS mitochondrial encephalopathy, 
lactic acidosis, and stroke-like episodes, PEO progressive external ophthalmoplegia, PMM primary mitochondrial myopathies

Mechanism Model Condition modelled Reference

Reduces deleted mDNA Cultured human cells KSS [119]
Induced mitochondrial biogenesis Deletor mouse PEO [120]
Restored complex I assembly, increasing ATP synthesis Embryonic stem cells MELAS [121]
Subacute selective ragged‐red‐fibre lysis Cultured human cells PMM [122]

Table 5  Summary of the emerging device use for mitochondrial disease

LHON Leber’s hereditary optic neuropathy, POLG DNA polymerase gamma, catalytic subunit

Device Mechanism Condition treated Study design N Most recent 
update/
publication

Status/results Trial ID/reference

Near-infrared 
light-emitting 

diode

Increases 
expression of 
cytochrome c 
oxidase, reducing 
mitochondrial 
toxicity

LHON Open-label clinical 
trial

4 2014 Terminated NCT01389817

Transcranial direct 
current

 stimulation 
(tDCS)

-

Neuromodulation POLG‐related 
mitochondrial 
epilepsy

-

Case report 1 2018 Efficacious in 
treating  
refractory focal 
motor seizures

[126]

Case report 1 2019 No statistically or 
clinically  
significant  
reduction of 
seizures

[127]
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ectopic pregnancies [153]. In contrast to Mendelian genetic 
disorders, PGD and prenatal testing face unique limitations 
in PMD. Hetroplasmy (variable levels of mutated mtDNA) 
and a highly heterogeneous disease phenotype make it 
impossible to predict PMD severity in any subsequent chil-
dren. This highlights the need to prevent transmission of 
mtDNA but allow the transmission of nDNA.

Over the last decade, and following a change in UK law, 
it has become possible to offer mitochondrial replacement 
therapy (MRT), otherwise known as mitochondrial dona-
tion, as a means of preventing transmission of mtDNA dis-
ease [152, 154]. In the UK, mitochondrial donation can 
be offered to women with homoplasmic or high-level het-
eroplasmic mtDNA variants when there is an expectation 
of transmitting severe disease and preimplantation genetic 
diagnosis is not considered suitable [119, 120]. Two slightly 
different forms of MRT can be employed, pronuclear trans-
fer (PNT) or maternal spindle transfer (MST). PNT involves 
the in vitro fertilization of oocytes from both the intend-
ing mother and donor with sperm from the intending father 
[152, 154]. The pronuclei are then removed from the donor 
oocyte and replaced with the pronuclei from the intend-
ing mother’s fertilised oocyte [152, 154]. In the alterna-
tive approach, MST, the metaphase II spindles from the 
donor oocyte are removed and replaced with those from the 
intending mother’s oocyte. The resulting oocyte is then fer-
tilised in vitro with the intending father’s sperm [152, 154]. 
In both techniques the resulting foetus has the nuclear DNA 
of both parents but the mitochondrial DNA of the donor 
[152, 154]. MRT has produced viable embryos and subse-
quent offspring in murine, primates and man [155–157]. 
However, mice conceived through MST MRT have been 
shown to have defective biochemical processes (increased 
production of ROS, defective proteostasis and insulin resist-
ance), resulting in mice that aged prematurely [158]. These 
studies used inbred conplastic murine strains, a contrast-
ing situation to the high genetic diversity observed in the 
human population. There are some other possible techni-
cal limitations, with some 20% of stem cell lines derived 
from embryos after PNT reverting to the maternal mtDNA 
genotype. The cause for this reversion remains unknown, 
but it only appears to occur following prolonged culture in 
an unrestricted environment [158].

Despite the legal and ethical challenges posed by MRT, in 
2015 the UK became the first country in the world to create 
the legislative framework required to allow clinical trials 
to assess the long-term efficacy and safety of the technol-
ogy in humans [159]. Multiple children have now been born 
through MRT globally in unregulated environments with 
no current reported developmental concerns [160]. A clini-
cal trial of the first 75 children born via MRT is currently 
being conducted at the Wellcome Centre for Mitochondrial 
Research at the Newcastle University. The study aims to 

identify if there are any long-term developmental concerns 
from the technique in humans.

9  Other Therapeutic Options

There are various other exciting clinical therapies currently 
being developed including cell replacement, gene therapy, 
mitochondrial augmentation therapy (MAT), hypoxic ther-
apy and mtDNA base editing [129, 161, 162, 162, 163].

Gene therapy is an emerging experimental technique 
using vectors (e.g. viruses) to replace pathogenic genes 
with the respective functional wild types [164]. As PMD is 
caused by both pathogenic variants in mtDNA and nDNA, 
there are two targets for genes therapy [164]. Various in vivo 
and in vitro preclinical studies have successfully replaced 
mutated nDNA and mtDNA using adeno-associated viruses 
(AAVs) and CRISPR/Cas9 in a variety of PMDs [130, 131, 
133, 134]. Although much of the literature is preclinical, the 
technology has now moved into early-stage clinical trials in 
LHON. A phase 1 clinical trial of nine patients demonstrated 
that recombinant AAV vector ND4 (rAAV2) gene therapy 
was safe and tolerated in a long-term follow-up [165]. A 
further phase 1 study is currently investigating the safety 
and efficacy of an AAV vector gene therapy of LHON in 
30 patients (NCT02064569), whilst a phase 1/2 study is 
currently investigating the safety and efficacy of scAAV2-
P1ND4v2 in 30 patients (NCT02161380).

Cell-replacement therapy involves restoring the loss 
of function of a diseased tissue by replacing the defective 
cells with effective cells [166]. In PMD, a patient’s cells are 
replaced with cells from another individual with unaffected 
nDNA or mtDNA leading to the production of functioning 
mitochondrial proteins [22, 167]. Cell-replacement therapy 
is only likely to be effective in treating PMD when the dis-
ease presents as a consequence of defective mitochondria in 
a specific replaceable tissue (e.g. the liver or bone marrow), 
and not disorders that affect tissues systemically. Hematopoi-
etic stem cell transplantation has been shown to increases 
long-term survival in patients with mitochondrial neuro-
gastrointestinal encephalomyopathy [22]. Cell-replacement 
therapy via liver transplantation has been shown to improve 
multiple symptoms in ethylmalonic encephalopathy due to 
pathogenic variants in ETHE1 [167]. As cell-replacement 
therapy is likely to be a disease-specific therapy in PMD, 
further research is required to conduct intervention specific 
trials in specific diseases.

MAT is another emerging treatment for PMD that has 
recently entered early-stage clinical trials. In MAT, human 
mitochondria are extracted from white blood cells derived 
from a patient’s mothers’ serum [163]. A patient is then sub-
sequently treated with filgrastim to stimulate the release of 
CD34+ hematopoietic stem cells. These stem cells can then 
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be removed by apheresis and co-cultured in vitro with the 
donor’s extracted mitochondria [163]. The stem cells can 
then be returned to the affected individual by infusion [163]. 
The FDA recently granted fast-track, orphan drug and rare 
paediatric disease designations to the treatment. This facili-
tated the development of an open-label combined phase 1 
and 2 clinical trial (NCT03384420) (n = 7) investigating the 
efficacy of the treatment in Pearson’s syndrome (a rare and 
severe neonatal mitochondrial deletion syndrome) due to 
report in 2021.

There is emerging preclinical in vivo and in vitro experi-
mental evidence that stimulating a hypoxic response may 
benefit mitochondrial function in mitochondrial disease 
[168]. Models of PMD were created by treating human 
cells lines and zebrafish models with respiratory chain (RC) 
inhibitors [168]. When these models were treated with a 
hypoxia-inducible factor they demonstrated increased 
growth when compared to non-treated controls [168]. Addi-
tionally, in vivo murine models of Leigh syndrome (Ndufs4 
KO) demonstrated improved survival and locomotor activity 
after continuously breathing 11% oxygen [168]. Although 
these experiments are promising they need to be validated 
in more complex clinically relevant models of human PMD 
[168]. Despite the potential benefit offered by hypoxic ther-
apy, it is likely to be highly challenging to organically cre-
ate a hypoxic response in humans. Given that patients with 
Leigh syndrome may already have an impaired respiratory 
drive due to brainstem lesions, it would be highly impracti-
cal and potentially dangerous for patients to continuously 
breath air with a depleted oxygen content (supplied by a 
breathing device). However, the hypoxic response may be 
better exploited as a pharmacological target.

Manipulating the mitochondrial genome to remove patho-
genic variants is of interest to clinicians and researchers, but 
a feasible method is still elusive [1]. Several targeted gene-
editing techniques such as anti-sense peptide nucleic acids 
(endonucleases, TALENS (transcription activator-like effec-
tor nucleases), zinc-finger nucleases and Crispr-Cas9) have 
recently emerged in the laboratory to do this, but none of 
them are anywhere near human trials [1]. Even in the labora-
tory settings, there are challenges to overcome, namely the 
impermeability of the inner mitochondrial membrane and 
the lack of selective molecules to cause timely degradation 
of mutant mtDNA [1]. Thus, the manipulation of mtDNA to 
date has been limited to the targeted destruction of the mito-
chondrial genome by designer nucleases [169]. The use of 
RNA-free DddA-derived cytosine base editors promise the 
potential to enable CRISPR-free mitochondrial base editing 
[169]. Although this technology offers the exciting prospect 
of being able to remove mutations from the mitochondrial 
genome, this preclinical approach is yet to be used even in 
basic animal models.

10  Conclusion

The rarity of PMD along with its clinical and scientific 
complexity makes developing treatment an enormous chal-
lenge, with only one disease-specific pharmacological 
agent in current clinical practice. However, there have been 
major recent advances in the fundamental understanding of 
PMD through the establishment of national cohorts and the 
widespread use of gene agnostic next-generation sequenc-
ing approaches. This has resulted in a truly exciting emerg-
ing therapeutic arsenal. To develop effective treatment and 
establish a more concrete evidence base for existing clinical 
guidelines, extensive high-powered comprehensive clinical 
trials must now be conducted. Given the heterogeneity and 
rarity of PMD, these trials will need multicentre collabora-
tion and detailed phenotype-specific subgroup analysis. This 
is a major challenge given that some of the most beneficial 
therapies (i.e. exercise, diet, supplements and off-patent 
repurposed medications) have limited commercial incen-
tive. This highlights the role that charities and governments 
must play in funding the development of an evidence-base 
that will enable translation of treatment from the bench to 
bedside in PMD. Historically, clinical trials have typically 
used biomarkers as primary outcomes that are not relevant 
to clinicians or to patients’ lives. Many of these biomark-
ers have been used due to their ability to allow statistical 
analysis and not because they can capture the benefit of a 
treatment on a patient’s quality of life. This highlights the 
importance of co-designing clinical trials, based on what 
matters to patients. Any future trials of value should utilise 
established international cohorts of patients with PMD and 
employ internationally agreed outcome measures that are 
clinically meaningful and patient relevant. This will not only 
aid the recruitment of patients but provide an international 
infrastructure to assess the efficacy of treatment.
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