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Abstract
Rheumatologic diseases are marked by their complexity, involving immune-, metabolic- and mechanically mediated processes 
which can affect different organ systems. Despite a growing arsenal of targeted medications, many rheumatology patients 
fail to achieve full remission. Assessing disease activity remains challenging, as patients prioritize different symptoms and 
disease phenotypes vary. This is also reflected in clinical trials where the efficacy of drugs is not necessarily measured in an 
optimal way with the traditional outcome assessment. The recent COVID-19 pandemic has catalyzed a digital transforma-
tion in healthcare, embracing telemonitoring and patient-reported data via apps and wearables. As a further driver of digital 
medicine, electronic medical record (EMR) providers are actively engaged in developing algorithms for clinical decision 
support, heralding a shift towards patient-centered, decentralized care. Machine learning algorithms have emerged as valu-
able tools for handling the increasing volume of patient data, promising to enhance treatment quality and patient well-being. 
Convolutional neural networks (CNN) are particularly promising for radiological image analysis, aiding in the detection of 
specific lesions such as erosions, sacroiliitis, or osteoarthritis, with several FDA-approved applications. Clinical predictions, 
including numerical disease activity forecasts and medication choices, offer the potential to optimize treatment strategies. 
Numeric predictions can be integrated into clinical workflows, allowing for shared decision making with patients. Clustering 
patients based on disease characteristics provides a personalized care approach. Digital biomarkers, such as patient-reported 
outcomes and wearables data, offer insights into disease progression and therapy response more flexibly and outside patient 
consultations. In association with patient-reported outcomes, disease-specific digital biomarkers via image recognition or 
single-camera motion capture enables more efficient remote patient monitoring. Digital biomarkers may also play a major 
role in clinical trials in the future as continuous, disease-specific outcome measurement facilitating decentralized studies. 
Prediction models can help with patient selection in clinical trials, such as by predicting high disease activity. Efforts are 
underway to integrate these advancements into clinical workflows using digital pathways and remote patient monitoring 
platforms. In summary, machine learning, digital biomarkers, and advanced imaging technologies hold immense promise for 
enhancing clinical decision support and clinical trials in rheumatology. Effective integration will require a multidisciplinary 
approach and continued validation through prospective studies.

1  Introduction

1.1 � Clinical Needs in Rheumatology

Rheumatologic diseases are notably heterogeneous due 
to underlying immune-mediated metabolic or mechani-
cal processes. This can lead to joint destruction such as in 

rheumatoid arthritis (RA), or can affect various organs, as 
seen in systemic lupus erythematosus (SLE) and other col-
lagen vascular diseases. Additional factors, such as depres-
sion, fibromyalgia, calcifications, or osteoarthritis, often play 
a role, adding to pain and inflammation stimuli [1]. Diverse 
patho-mechanisms operate at the cellular level, and even 
within the same disease, they can vary [2]. For example, RA 
can exhibit a lymphocytic proliferation on a T- and B-cell 
level with an invasive reaction of fibroblasts, or alternatively, 
pauci-cellular macrocytic inflammatory reactions or fibrosis 
[3]. In return, each pathotype reacts differently to targeted 
disease-modifying therapies [4]. This diversity is reflected at 
the cytokine level, with varying responses to cytokine block-
ade (e.g., tumor necrosis factor [TNF], interleukin [IL]-6, 
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Key Points 

Automated image recognition by convolutional neural 
networks is already used in clinical practice in radiology.

Digital biomarkers and patient-reported outcomes are cor-
nerstones of telemedicine and strengthen flare prediction.

Electronic medical records are a major source of clinical 
data that can be used to train machine learning models.

Disease prediction of clinical disease course and cluster-
ing foster personalized treatment in rheumatic diseases.

IL-17, or IL-23) or cell depletion (CD20) [5]. Despite an 
ever-expanding arsenal of medications, in most clinical tri-
als, two-thirds of rheumatology patients still do not achieve 
complete remission [6]. It is crucial to note that assessing 
disease activity and defining remission in rheumatology is 
not straightforward. RA alone has a plethora of indicators, 
such as DAS28, ACR50, Clinical disease activity index 
(CDAI), EULAR/ACR remission, etc. [7]. Additionally, 
patients have diverse priorities, with improvements in fatigue 
or morning stiffness being major concerns, although their 
measurement remains subjective. In this sense, we mostly 
follow the treatment recommendations of EULAR/ACR, 
but this is a systematic, but so far not at all personalized, 
approach to treating RA or other rheumatic diseases [8]. 
Meeting these needs requires time, which is unfortunately 
insufficient due to a shortage of rheumatologists [9]. Other 
clinical needs include better interdisciplinary coordination 
of treatment, for example for psoriatic arthritis or arthritis 
in chronic inflammatory bowel disease. For various reasons, 
we still think and act in silos, which does not necessarily 
benefit patients and health care professionals. Finally, there 
are several rheumatic diseases, such as osteoarthritis of the 
hand or fibromyalgia, for which no satisfactory drug treat-
ment is yet available [10].

1.2 � Digital Transformation

The COVID-19 pandemic has ushered in the era of telem-
onitoring. In the United States, for instance, telemonitoring 
of patient-reported outcomes is financially rewarded as a 
quality assurance measure [11]. Increasingly, patients collect 
data through apps or wearables, some of which are compat-
ible with electronic medical records (EMRs) and are stored 
there [12]. This integration of structured and unstructured 
clinical data with radiological, laboratory, and immunologi-
cal data helps create a more comprehensive and personalized 
profile of rheumatology patients, facilitating better progno-
sis [13]. EMR providers have recognized this trend and are 
increasingly involved in developing algorithms that can be 

integrated directly into EMRs as clinical decision support 
tools [14]. All of these advancements lay the foundation for 
a more patient-centered and decentralized approach to medi-
cine, addressing the shortage of rheumatologists or radiolo-
gists. Alongside personalization, automation is a fundamen-
tal trend, allowing the automation of simple processes such 
as prescription refills for stable cases or dynamic scheduling 
through digital tools. Communication with patients can also 
involve chatbots, deep learning algorithms or advanced lan-
guage models like ChatGPT4 to handle certain needs, and 
potentially appointment rescheduling or insurance inquiries 
[15]. Finally, the internet of things (IOT) and improving sen-
sor and camera technology permit connected medicine with 
wearables or motion capturing and measurement of mobility 
as functional biomarkers [16].

1.3 � Machine Learning

We are amassing an overwhelming amount of data from our 
patients, beyond human capacity to manage. This is evident 
in the expanding array of digital clinical outcome assess-
ments, digital biomarkers, or -omics data, which are now 
being collected through self-sampling from home along with 
different imaging modalities that increasingly include pho-
tos and videos by patients and doctors [17]. Machine learn-
ing allows us to build models to learn from previous data 
in order to deliver predictions or image recognition [18]. 
Most of the time, supervised learning models are applied, 
meaning that the model obtains labeled data (e.g. x-rays 
with information on erosions, osteophytes etc.). After defi-
nition of the output variable of the algorithm, datasets are 
then divided into a training set (typically 80%) and a test 
set (20%). The output variable usually is defined as a clas-
sification task, such as remission at next visit or a radio-
graphic finding yes/no. In the field of osteoarthritis, this is 
the case in 90% of the currently published studies (Fig. 1) 
[19]. Each model should be validated in an independent 
dataset that is representative for the population where it is 
applied. Unsupervised learning, that is, algorithms based on 
unlabeled data, is less frequently applied than supervised 
learning. Unsupervised learning is used for clustering such 
as defining disease phenotypes or finding patient outliers 
in EMRs [20]. Finally, reinforcement learning is the third 
pillar of machine learning. Reinforcement learning is based 
on a reward function, or in other words on trial and error. 
Here, the algorithm is allowed to make new decisions, but 
has to learn from mistakes (and successful decisions) [21]. 
Quite advanced in diabetes mellitus, reinforcement learn-
ing is not yet applied in the field of rheumatology [21]. In 
diabetes, it can be applied in a closed system with a simple 
biomarker (blood glucose) and a simple intervention (insulin 
injection). A scenario where reinforcement learning could be 
applied in rheumatology could be in relatively simple tasks, 
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such as adjusting cortisone doses under strict rules in terms 
of dose, frequency, etc. Based on the clinical or laboratory 
response, the model, here also called ‘agent’, would perform 
or propose an action that then again will be evaluated by the 
reward function.

Transfer learning is another machine learning method 
where a model already developed for a task is reused in 
another task. Transfer learning is a popular approach in deep 
learning, as it enables the training of deep neural networks 
with less data compared with having to create a model from 
scratch.

In general, the more data that is available to train a 
machine learning model, the better. However, it's important 
to recognize that more data doesn't necessarily equate to 
better data. Clinical judgment and data pre-selection remain 
crucial, and we must correctly assess data quality and vali-
date algorithm applicability across different patient groups. 
Currently, over 500 algorithms are FDA approved, with the 
majority focused on imaging in radiology, cardiology and 
pathology [22]. Table 1 overviews the different domains of 
AI.

This article begins by discussing imaging, where AI 
has made significant progress in clinical applications, 
and then delve into clinical prediction and digital bio-
markers. Finally, we will discuss the integration of these 

applications into the clinical workflow and in clinical 
trials.

2 � Image Recognition

2.1 � Clinical Context

In rheumatology, we regularly perform radiographs to 
detect long-term damage of arthritis, we use ultrasound 
to assess inflammation during almost every consultation, 
and typically employ magnetic resonance imaging (MRI) 
to evaluate spinal structures or sacroiliac joints in spon-
dylarthritis. Clinicians often rely on the radiology depart-
ment's assessments, but radiology reports are not always 
promptly available, and younger radiologists may be less 
familiar with rheumatologic pathologies. Even for rheu-
matologists, due to effective treatment options, erosions 
are not always easy to detect. Another common challenge 
is identifying sacroiliitis in axial spondylarthritis. It has 
become increasingly clear that we may have previously 
over-diagnosed mechanical bone marrow edema as spon-
dylarthritis [23]. Automatic computer support based on 

Fig. 1   Overview of domains in artificial intelligence. Supervised 
machine learning is by far the most widely used, mostly through 
labelled clinical data such as X-ray images. This is followed by 
unsupervised learning with unlabeled data, e.g. electronic medical 

records. Reinforcement learning allows algorithms to make their own 
decisions and correct them. Complex language models such as Chat-
GPT use a combination of supervised, unsupervised, and reinforce-
ment learning
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expert opinions would be invaluable in such cases, pro-
vided it doesn't consume excessive time [24].

2.2 � Convolutional Neural Networks (CNN)

CNN are the primary AI tools for analyzing image data. 
CNN algorithms analyze radiographs, MRIs, but also photos 
by assigning a specific task, usually classification, such as 
detecting erosions, sacroiliitis, or grading arthritis severity 
[24]. The process begins by scanning images with kernels, 
which are small quadrants that search for specific features 
like slanted lines, straight lines, circles, etc. This process is 
called feature extraction. These ‘meta’ images with identi-
fied features are referred to as convolutions (Fig. 2). Kernels 
can be two-dimensional or three-dimensional, denoted as 2D 
or 3D. Convolutional layers are further simplified by kernels 
into pooling layers. Finally, these images, reduced to specific 
features, are sent into a neural network responsible for classi-
fication. The algorithm's learning process is performed using 
training and test sets as mentioned above. Images can be 
automatically optimized before calculation (including data 
augmentation), and the algorithm may be provided infor-
mation on regions of interest (segmentation) if necessary. 

Classification quality is typically measured through algo-
rithm accuracy or, with sufficient data, sensitivity and speci-
ficity. In rheumatology, numerous CNN algorithms exist, 
with some being FDA approved, such as those for detecting 
and scoring knee osteoarthritis or spondylarthritis [25]. No-
coding platforms now allow users to upload, segment, and 
classify images without coding knowledge, even creating 
web apps to directly apply the generated algorithm [26]. 
Algorithm improvement can be achieved through preproc-
essing, highlighting specific features in images, such as fin-
ger creases for swelling detection or hip contours in X-rays. 
Some algorithms integrate clinical data with radiological 
images to predict radiological outcomes [27]. The results 
are sometimes poor in terms of accuracy (<60%), raising 
questions about the practicality of using MRIs for such 
purposes or whether patients would receive joint replace-
ments or alternative therapies based on these results. Trans-
fer learning can be used to leverage CNN models by using 
the knowledge acquired from a previously learned similar 
task [28]. This approach has significantly impacted medical 
image analysis by addressing the challenges of limited data 
availability and reducing the need for extensive time and 
computational resources.

Table 1   Domains of artificial intelligence (AI)

Domain Description

Algorithm A set of step-by-step instructions designed to perform a specific task or solve a particular problem
Machine learning Focuses on algorithms that learn and make predictions on data (learning from previous experiences)
Natural language processing Enables machines to understand, interpret, and generate human language
Computer vision Enabling computers to interpret and process visual data, mimicking the capabilities of human vision. 

Includes tasks like image and video recognition, object detection, and scene reconstruction
Speech recognition Technology that recognizes and processes human speech
Planning, scheduling, and optimization Deals with creating systems that can plan or schedule tasks and optimize processes
Reinforcement learning Learning method that rewards desired behaviors and/or punishes undesired ones
Neural networks A subset of machine learning involving models that mimic the human brain's structure and function
Deep learning A subset of machine learning involving algorithms inspired by the structure and function of the brain's 

neural networks
Supervised learning Learning method where the algorithm is trained on labeled data
Unsupervised learning Learning method where the algorithm learns from unlabeled data to find hidden patterns
Transfer learning A machine learning technique where a model developed for one task is reused as the starting point for a 

model on a second, related task
Digital biomarkers Use of digitally collected data (computer vision or machine learning) that correlate with a disease status
Generative AI Refers to the type of AI that can generate new content, ideas, or data that are novel and realistic, based 

on its training data
Vision transformers Type of neural network model that applies the transformer architecture, originally designed for natural 

language processing tasks, to analyze and process visual data like images
Radiomics Extraction of a large number of quantitative features from medical imaging data for diagnostic, prog-

nostic, or predictive purposes
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2.3 � Auto‑Machine Learning Platforms

To train CNN algorithms, automated machine learning plat-
forms, also called autoML or no-coding platforms, can now 
be used [26]. Here you drag and drop the images with the 
corresponding labels onto the platform and select a CNN 
architecture, such as Resnet34. The platform automatically 
augments the images beforehand to increase the perfor-
mance of the algorithm. Later, a user interface in the form 
of a web app can be downloaded directly from the platform. 
This makes it possible for clinicians and scientists who do 
not code to create algorithms and test them, for example, 
for usefulness or usability [29]. This allows, for example, 
models for niche tasks to be trained on small data sets. Or, 
in preclinical studies, images can be evaluated more quickly 
than by hand.

2.4 � Vision Transformers

Vision Transformers (ViT) are a newer type of neural net-
work model designed for image recognition tasks, inspired 
by the success of transformers in NLPs such as ChatGPT 
(where the letter T stands for ‘Transformer’) [30]. Unlike 
traditional CNNs that process images using local features, 
ViTs divide an image into fixed-size patches and flatten 
these patches into a sequence, similar to words in a sentence. 
Each patch is then encoded with positional information. The 
transformer architecture, with its self-attention mechanism, 
processes these sequences, allowing the model to weigh the 
importance of different patches (small segments or portions 
of an input data set) in relation to each other. The primary 
disadvantage of ViTs compared with CNNs is their require-
ment for a larger amount of data to achieve optimal perfor-
mance. Unlike CNNs, which have inductive biases such as 

translation invariance and locality that make them naturally 
suited for image data and allow them to perform well even 
with relatively less data, ViTs lack these biases. As a result, 
they need substantial training data to learn these features 
implicitly. Furthermore, ViTs are generally more computa-
tionally intensive and require more resources for training. 
This is due to the self-attention mechanism in transform-
ers, which scales quadratically with the number of image 
patches, leading to higher memory usage and longer training 
times, especially for large images.

2.5 � Radiomics

Radiomics is an emerging field in medical imaging that 
involves the conversion of images into high-dimensional, 
quantifiable data [31]. This process is achieved through the 
extraction of a large number of features from medical imag-
ing scans such as computed tomography (CT), MRI, and 
positron emission tomography (PET). These features, which 
are not readily apparent to the human eye, include details 
about the shape, texture, intensity, and the overall architec-
ture of the image. Radiomics aims to uncover patterns within 
this data that are relevant for disease diagnosis, prognosis, 
and predicting treatment response. The role of AI, particu-
larly machine learning, in radiomics is pivotal. AI algorithms 
are adept at handling and interpreting the vast and complex 
data generated in radiomics. They can efficiently process 
these high-dimensional datasets to identify subtle patterns 
and correlations that are beyond human analytical capabil-
ity. For instance, in oncology, radiomic features extracted 
from tumor images can be analyzed using AI to differentiate 
between benign and malignant tumors, determine the tumor 
stage, and predict the patient’s response to certain therapies. 
As an example, in rheumatology, radiomic analysis of high 

Fig. 2   Convolutional neural network. Here with a classification task to predict joint swelling from hand photos of patients with rheumatoid 
arthritis
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resolution computed tomography (HRCT) has shown to pre-
dict mortality in RA patients with interstitial lung disease 
and may promote HRCT as a digital biomarker [32].

3 � Clinical Predictions

3.1 � Clinical Context

Rheumatic diseases like RA often exhibit fluctuating and 
challenging-to-assess clinical courses. Drug survival can be 
short, requiring rheumatologists to constantly adapt treat-
ments. International treatment guidelines, such as EULAR 
criteria, advocate for a ‘Treat-to-Target’ strategy, aiming to 
achieve low disease activity within 3–6 months [8]. How-
ever, this approach can lead to delays, with patients remain-
ing on a medication for an extended period before it is dis-
continued. Precise disease prognosis, or ideally, selecting 
the right medication, is desirable.

3.2 � Disease Prediction and Clustering

Machine learning is a powerful and flexible tool for clini-
cal predictions. Predicting disease activity in the form of a 
numeric value, such as Disease Activity Score-28 for Rheu-
matoid Arthritis with C-Reactive Protein (DAS28-CRP), 
involves a regression analysis. We have employed a new 
deep learning architecture in a dataset involving approxi-
mately 12,000 Swiss RA patients and predicted DAS28-CRP 
at next visit [33]. An 8% accuracy rate compared with actual 
values was achieved. Previous studies in the USA, utiliz-
ing EMR data, focused on classifications, such as predicting 
active disease or inactive disease [34]. Predicting numerical 
values may better integrate into clinical rationale and work-
flow, allowing for the creation of a dashed line representing 
disease activity over time. This could be discussed with the 
patient as part of shared decision making on whether to con-
tinue or change treatment, potentially surpassing the ‘Treat-
to-Target’ strategy. Numeric prediction could also be applied 
to laboratory values like CRP or anti-dsDNA. For instance, 
a trend arrow on laboratory reports could indicate changes. 
However, predicting medication choice seems more distant, 
likely due to a lack of head-to-head studies and convincing 
evidence for such algorithms. A recent study performed a 
relatively straightforward prediction: non-response to meth-
otrexate [35]. Since methotrexate is the common first-line 
therapy, these data could be more effectively utilized. A high 
likelihood of non-response might qualify a patient for bio-
logic or targeted synthetic disease-modifying antirheumatic 
drug (DMARD) treatment directly.

Clustering involves unsupervised learning using unla-
beled data to form clusters or phenotypes that appear simi-
lar. Our own study demonstrated that drug survival for 

tocilizumab and clinical response differs between clusters. 
It's important to note that patients may change clusters dur-
ing their patient journey, making predictions more challeng-
ing. There may not be a dedicated ‘tocilizumab cluster’, for 
example [36]. Clinical, biological, and radiological data can 
also be combined to identify disease ‘endotypes’. In a com-
pelling study of osteoarthritis, unsupervised learning tech-
niques were applied for clustering analysis [37]. The study 
involved pooling and preprocessing clinical data from ques-
tionnaires and imaging, as well as biochemical information 
from blood and urine samples. A model was then trained 
using principal component analysis and k-means clustering. 
The findings were subsequently corroborated using tradi-
tional statistical methods, including the Mann-Whitney U 
test and chi-square test.

3.3 � Digital Biomarkers

To best predict clinical outcomes, including treatment 
choices, disease-specific data along the patient journey 
are essential [38]. Currently, digital biomarkers primarily 
encompass patient-reported outcomes (PROs) or data from 
wearables, either stored by patients or ideally transmitted to 
EMRs through application programming interfaces (APIs) 
[39]. These data are valuable but not necessarily disease-
specific. For instance, pain or fatigue is highly sensitive to 
influences like depression or fibromyalgia [40]. Home blood 
sampling may enhance specificity, but it involves organiza-
tional challenges and remains invasive [17]. Other sensor 
technologies will likely emerge, such as non-invasive CRP 
determination or thermal cameras.

User-friendly telemonitoring technologies are also 
available for patients, such as utilizing smartphone cam-
eras [41]. In our own study, DETECTRA involves the 
automatic recognition of finger creases as biomarkers 
for joint swelling [42]. Changes in finger creases occur 
during synovitis or periarticular swelling, creating an 
‘inflammatory fingerprint’. This process is reversible, 
allowing us to detect not only inflammatory flares but 
also treatment responses. The process involves three 
steps: detecting the hand in a photo using keypoint detec-
tion, isolating the desired joints (e.g. finger joints), and 
recognizing and measuring finger folds (Fig. 3). This can 
be achieved through computer vision techniques such as 
Canny Edge Detection or Ridge Detection, although we 
achieved better results with a newly trained CNN consid-
ering crease pixel length and diameter. Another project 
uses single-camera motion detection to assess finger joint 
mobility. Finger joint movements are captured on a nor-
mal mobile phone camera and angles and speed are meas-
ured and (theoretically) transferred to the EMR (Fig. 4) 
[43].
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4 � Integration of AI in the Clinical Workflow

4.1 � Imaging

Image recognition is probably the easiest machine learn-
ing modality to be included in the clinical workflow [44]. 
This can start with an automatically generated radiology 
report. Several algorithms are already FDA-approved and 
in practice (e.g. detection of fractures or osteoarthritis) [25]. 
Heatmaps are, in my view, a promising candidate to be inte-
grated into clinical practice. Heatmaps illustrate the region 
of interested for the algorithm, usually by color, and can 
guide the clinician to certain lesions [45]. A good example 
is the classification of osteoarthritis grades (Fig. 4), show-
ing a conserved joint space in grade 0 versus osteophytes in 
grade 1 or diffuse subchondral bone remodeling in grade 4 
[29]. Heatmaps are particularly popular in pathology for the 
evaluation of histological slides.

4.2 � Digital Pathways and Remote Monitoring

The clinical workflow for rheumatic diseases involves 
processes from diagnosis to therapy and monitoring [43]. 
Given the chronic nature of many rheumatic diseases, a cycle 
emerges where either no treatment modification occurs, or 
treatment is adjusted. Diagnostic processes include rou-
tine examinations (e.g., blood tests every 6 months, yearly 
X-rays) and exceptional investigations (e.g., ultrasound 
and blood tests during disease flares). Additionally, there 
are processes for comorbidity assessment, prophylaxis, and 

vaccination. Together, these processes create the patient 
journey, which can be digitally tracked over time. The exist-
ence of digital pathways allows for quality and efficiency 
assessments using key performance indicators (KPIs) and 
quality markers. In our case, we use the SCQM Register, 
which records disease characteristics (currently for rheu-
matoid arthritis, psoriasis arthritis, spondylarthritis and 
giant cell arteritis) during doctor visits and through an app. 
Notwithstanding, remote patient monitoring harbors several 
challenges. Integrating register data into EMRs via APIs can 
be difficult both on a technical and regulatory level. In the 
United States, health insurance covers remote patient telem-
onitoring services to some extent, a practice that is not as 
common in many other countries [11]. It is also not yet clear 
how the Remote Patient Monitoring (RPM) will be organ-
ized in practice. In some cases, this is done by health care 
coaches or nurses, who also call patients at certain intervals.

Fig. 3   A dashboard for remote telemonitoring showing automated 
measurement of finger folds and joint diameters over time to detect 
arthritis flares. Images were taken by patients at home on their mobile 
phone app in combination with information on joint pain and stiffness

Fig. 4   Heatmaps of a convolutional neural network (CNN) algorithm 
to classify osteoarthritis (OA) grade in hand osteoarthritis



94	 T. Hügle 

4.3 � Large Language Models (LLM)

Large language models (LLMs) like ChatGPT are currently 
deployed across industries and also can be invaluable assets 
in medical care [46]. For administrative tasks, they can 
streamline paperwork, extract key data from patient records, 
or generate comprehensive reports. Furthermore, LLMs can 
facilitate patient education, translating complex medical jar-
gon into layman's terms and answering common queries. 
This not only empowers patients with knowledge about 
their conditions but also reduces the burden on medical 
staff. Moreover, with their multilingual capabilities, LLMs 
can bridge language barriers, ensuring clear communication 
between patients and providers. If and how LLMs can serve 
as decision-support tools in offering diagnostic suggestions 
or clarifying medical concepts remains to be evaluated, but 
so far ChatGPT is not a medical device.

5 � Clinical Trials

Digital tools are crucial for the success of decentralized 
clinical trials (DCTs) [47]. DCTs shift from traditional site-
centric trials to more patient-centered ones, offering greater 
flexibility and convenience. With the support of wearables, 
smartphone apps, and telemedicine platforms, patients can 
participate in trials without frequent site visits, making it 
especially advantageous for those with mobility challenges 
or residing in distant areas. These tools enable real-time 
remote monitoring, virtual consultations, and direct-to-
patient shipments of investigational treatments. Electronic 
consent platforms streamline patient enrollment, while 
reminder apps and interactive platforms enhance patient 
engagement and retention. Furthermore, DCTs, powered 
by digital tools, can broaden patient enrollment, resulting 
in more diverse and representative trials [48]. By consoli-
dating data from various sources, digital platforms provide 
researchers with a holistic view of patient data. Machine 
learning algorithms are also used for patient selection. For 
example, patients with a high predicted disease activity are 
more likely to respond to a drug, and certain disease clusters 
respond better to treatment than others. Machine learning 
algorithms can also be used to reduce sample sizes, improve 
enrollment, and conduct faster, more optimized adaptive 
clinical trials [49].

6 � Drug Development

Drug development is not directly involved in clinical deci-
sion making, but nevertheless represents an important area 
for AI in medicine; AI may reduce the time and cost of 
bringing new drugs to market [50]. AI algorithms rapidly sift 

through vast datasets to identify promising drug candidates 
and suggest novel compounds. It also plays an increasing 
role in target identification by analyzing biological data to 
uncover and validate new drug targets, essential for diseases 
with complex pathology [51]. Machine learning algorithms 
can speed up the compound screening process, analyzing 
thousands of compounds quickly to determine their efficacy 
against specific targets, reducing the time and costs com-
pared with traditional methods. Additionally, AI models are 
adept at predicting the efficacy and safety profiles of drug 
candidates before clinical trials, reducing the risks of failure 
in later stages [52].

7 � Ethical Aspects

AI algorithms solve very specific tasks. How relevant and 
therefore ethical these tasks are must be assessed individu-
ally by doctors, ethics committees and, ideally, patients. 
The explainability of AI is important. Preprocessing can be 
used to focus on image recognition, for example, and make 
algorithms more transparent or relativize the black box. The 
solutions provided by machine learning algorithms always 
depend on the quality of the data, the so-called ground truth. 
It should be ensured that the trained data correctly represents 
the target population and that no population segments are 
disadvantaged. Independent clinical studies must test algo-
rithms in independent patient populations.

8 � Outlook

Machine learning algorithms are about to enter rheumatol-
ogy in the form of image recognition, disease prediction, 
clinical workflow, and clinical trials. The prediction of effi-
cacy and safety of individual drugs remains a challenge, but 
first steps in the form of cluster response to treatment classes 
or methotrexate non-response have been taken. The EMR as 
a main source of real-world data has been identified for AI 
predictions that are easy to implement in the clinical work-
flow. Disease-specific digital biomarkers will help make the 
patient journey more transparent and predictable. Remote 
telemonitoring will leverage patient care and empowerment 
in rheumatology but needs substantial reorganization of 
processes and staff. Generative AI, notably via LLMs, may 
support the administrative burden.
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