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Abstract
Background  There are a myriad of exercise variations in which upper body (UB) and lower body (LB) exercises have been 
intermittently used. However, it is still unclear how training of one body region (e.g. LB) affects adaptations in distant body 
areas (e.g. UB), and how different UB and LB exercise configurations could help facilitate physiological adaptations of either 
region; both referred to in this review as vertical strength transfer.
Objective  We aimed to investigate the existence of the vertical strength transfer phenomenon as a response to various UB 
and LB exercise configurations and to identify potential mechanisms underpinning its occurrence.
Methods  A systematic search using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 
for Scoping Reviews protocol was conducted in February 2024 using four databases (Web of Science, MEDLINE, Scopus 
and CINAHL) to identify peer-reviewed articles that investigated the vertical strength transfer phenomenon.
Results  Of the 5242 identified articles, 24 studies met the inclusion criteria. Findings suggest that the addition of UB strength 
training to LB endurance exercise may help preserve power-generating capacity for the leg muscle fibres. Furthermore, 
systemic endocrine responses to high-volume resistance exercise may beneficially modulate adaptations in precedingly or 
subsequently trained muscles from a different body region, augmenting their strength gains. Last, strength training for LB 
could result in improved strength of untrained UB, likely due to the increased central neural drive.
Conclusions  Vertical strength transfer existence is enabled by neurophysiological mechanisms. Future research should 
involve athletic populations, examining the potential of vertical strength transfer to facilitate athletic performance and pre-
serve strength in injured extremities.

health and performance of professional athletes, it is cru-
cial to implement effective resistance exercise conditioning 
[7–10]. Importantly, the changes that occur in upper body 
(UB) and lower body (LB) muscles differ in response to the 
similar exercise modes [11–14]. Furthermore, it appears that 
concurrent training of both body segments elicits favour-
able endocrine responses compared with the training of a 
single body region [15–17], which could lead to improved 
functional outcomes in both regions [16, 18], regardless of 
the combination type.

Unlike cross-education, where the confirmed transfer of 
strength dissipates from the trained to the untrained limb 
in the same body compartment (e.g. LB) [19, 20], a cross-
transfer between UB and LB exercise only recently appeared 
as a subject of more thorough investigations [21–23]. The 
significance of this phenomenon is reflected in: (a) recorded 
strength improvements of untrained muscles from one 
body region (e.g. upper extremities) resulting from exer-
cise of another body region (e.g. leg muscles) [22], and (b) 
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1  Introduction

Various resistance training strategies are used to support 
athletic performance [1, 2] and accelerate return to sport 
after injury [3]. These strategies take advantage of differ-
ent exercise modes utilising mixed loads and high-velocity 
contractions with the goal to increase power production [2, 
4], prevent injury occurrence [5] and preserve muscle mass 
in players recovering from injury [6]. To ensure optimal 

http://crossmark.crossref.org/dialog/?doi=10.1007/s40279-024-02039-8&domain=pdf
http://orcid.org/0000-0003-1340-9393
http://orcid.org/0000-0002-4224-1959
http://orcid.org/0000-0002-6492-1621
http://orcid.org/0000-0002-5430-1541


	 I. Curovic et al.

enhanced strength adaptations of strength-trained muscles 
from the targeted region (e.g. elbow flexors) facilitated by 
concurrent high-volume exercise of remote muscle groups 
(e.g. leg muscles) [24]. While former training adaptation 
could be labeled as “vertical strength transfer” (VST), latter 
adaptations are likely enabled via exercise-induced endo-
crine responses [24], and may be more accurately described 
as “vertical strength facilitation”. Nevertheless, for the pur-
pose of this review, both cross-effects will be referred to 
as VST, regardless of whether strength enhancement was 
caused or facilitated by exercise of a remote body segment.

Circulating endocrine factors obtained by various train-
ing modes can systemically modulate different tissues and 
neurons [25–29], thereby influencing exercise adaptations 
on a whole-body level. For example, an acute bout of met-
abolic pre-conditioning with “all out” running has been 
shown to successfully increase oxidative metabolism and 
performance in subsequent anaerobic UB strength-endur-
ance exercise [30], potentially leading to enhanced chronic 
adaptations. These humoral factors secreted into circulation 
by the exercised muscles (i.e. “exerkines”) [29, 31] are not 
only limited to the positive influence on overall health [32], 
but have been suggested to contribute to strength improve-
ments of the untrained muscle groups in older adults [31]. 
Unfortunately, exact mechanisms are yet to be elucidated. 
Moreover, neurological effect may be realised via increased 
“voluntary activation” with strengthened neural impulses 
from the motor cortex to the motoneuron pool and from the 
motoneuron pool to the muscle fibres [33]. For instance, 
Da Silva et al. [34] recorded successful post-activation per-
formance enhancement for the horizontal jumping task in 

female soccer players after UB pre-conditioning activity 
with heavy bench pressing, suggesting the role of the cen-
tral nervous system (CNS) for high-intensity contractions 
in unrelated body areas. This effect may be transferred to 
the long-term strength improvements on the account of an 
intensified central neural drive [33].

The understanding of the crosstalk between separate mus-
cle tissues and motor neurons may aid in more successful 
manipulations of training strategies and result in an aug-
mentation or preservation of the strength or power gains 
in the targeted muscles. One such example is concurrent 
UB resistance exercise and LB endurance exercise mode 
for which research has mostly focused on the extent of the 
negative impact towards UB strength development [35–37]. 
However, this combined training regime may yield advanta-
geous morphological adaptations for the leg muscle fibres 
[38], preserving their size from decreasing after long run-
ning sessions [39], potentially leading to improved power 
expression in LB [38]. Furthermore, resistance training of 
LB muscles may lead to strength improvements in upper 
extremities [18], regardless of whether they were active or 
not [22], which could be critical during the injury recov-
ery periods. Therefore, the purpose of this scoping review 
was to investigate the existence of the VST phenomenon as 
a response to various UB and LB exercise configurations. 
To help identify potential mechanisms that may underpin 
VST, we included studies that investigated acute exercise 
responses with immediate effect on remote muscle tissues.

2 � Methods

2.1 � Experimental Approach to the Problem

Scoping reviews are carried out to identify and analyse the 
latest concepts within a specific research field [40]. These 
reviews differ from standard systematic reviews because 
they address broader and less defined research questions for 
which the availability of relevant studies may be less clear 
[41]. Therefore, to allow the examination of a broad range 
of literature with the goal of evaluating the existence of the 
VST in various training protocols, the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
for Scoping Reviews extension was followed [42]. A system-
atic search of four electronic databases (Web of Science, 
MEDLINE, Scopus and CINAHL) was conducted in Febru-
ary 2024 by the lead author using the default fields search 
setting within each database. Only original full-text peer-
reviewed articles written in English were considered with 
no restrictions on year of publication. Search terms were 
as follows: “cross transfer training” OR “strength training” 
OR “unilateral training” AND “cross-transfer effect” OR 

Key Points 

Upper body strength training positioned alongside a 
running or cycling session may yield beneficial systemic 
effects for the leg muscle fibres.

High-volume resistance exercise of an entire body seg-
ment (e.g. lower body) may facilitate strength training 
adaptations in a subsequently trained single muscle 
group from the other body segment (e.g. elbow flexors).

High-volume resistance exercise of the lower body 
musculature may facilitate strength training adaptations 
in previously or concurrently trained multiple muscle 
groups from the upper body.

Lower body strength training alone may increase 
strength in the untrained upper extremities, while the 
opposite transfer direction (i.e. upper body to lower 
body) has not been sufficiently explored.
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“physiological effects” OR “systemic effects” OR “neuro-
muscular adaptation”.

2.2 � Study Selection Criteria

After eliminating duplicates and removing records follow-
ing abstract screening, search results were independently 
screened by two reviewers using the inclusion and exclusion 
criteria. Any discrepancies were resolved through discus-
sion (n = 7). Studies eligible for inclusion were those that 
investigated: (1) concurrent LB endurance and UB resistance 
exercise (acute or intervention) effect on LB muscle adaptive 
potential (morphology, strength and power); (2) LB resist-
ance exercise (acute or intervention) effect on concurrently 
trained UB muscle adaptive potential (morphology, strength 
and power) or vice versa; and (3) LB resistance exercise 
intervention effect on untrained UB strength or vice versa.

Studies were excluded from the review if they: (1) paired 
LB endurance (i.e. running or cycling) with UB resistance 
exercise without examining LB adaptive potential; (2) had 
insufficient duration (< 5 min) of the LB endurance protocol 
(i.e. running or cycling) to be considered an independent 
exercise session (e.g. pre-workout warmup); (3) focused on 
a unilateral training adaptation limited to the cross-education 
phenomenon only (i.e. training of one limb influencing con-
tralateral limb); (4) applied an exercise intervention that did 
not distinguish between the two body segments (i.e. weight-
lifting); and (5) applied an exercise intervention that was not 
standardised between the training groups.

2.3 � Data Extraction

All data for each study were extracted by the lead author 
(IC), including: (1) general characteristics (year of publica-
tion, sample population, sample size); (2) participant charac-
teristics (sex, age, body mass, height); (3) aims of the study; 
(4) details of the intervention; (5) outcome measures, and (6) 
key findings (Tables 1, 2, 3). Following initial data extrac-
tion, a random subset of studies was assigned to one other 
author (DH) to check the accuracy of extracted data. This 
approach ensured the reliability of the collected information, 
minimising errors or discrepancies in the dataset.

3 � Results

3.1 � Search Results

Initial database searches resulted in the identification of 5227 
articles with 15 additional articles identified through other 
sources. Following the removal of duplicates (n = 1811) and 
irrelevant articles (n = 2899), 532 articles were retained for 
the abstract screening process. Abstract screening resulted 

in the exclusion of 397 articles, leaving 135 full-text articles 
to be assessed for eligibility. A further 111 articles were 
excluded because of not meeting inclusion/exclusion crite-
ria, resulting in 24 articles being included in the scoping 
review (Fig. 1).

Four studies included mixed-sex participants [22, 31, 43, 
44], two included only female individuals [23, 45] and 18 
involved only male individuals [16–18, 21, 24, 38, 46–55]. 
The age range was 10–73 years inclusive of all eligible stud-
ies. However, children and older adults were present in only 
six [16, 31, 50–52, 55] out of 24 studies included in the 
review, which significantly expanded the age range. Out of 
24 studies, 4 were acute study protocols [17, 48, 56, 57], 
1 examining UB resistance and a LB endurance exercise 
session [17], and other 3 exploring UB resistance and a LB 
resistance exercise session [48, 56, 57]. Notably, only one 
study from this review involved an athletic population [54].

3.2 � Upper Body Resistance Exercise with Lower 
Body Endurance Exercise

Table 1 provides a summary of the characteristics, out-
come measures and key findings of the eligible studies 
that investigated VST when UB resistance exercise was 
added to an endurance exercise session. One study paired 
UB exercise with running [38], while three studies paired 
UB exercise with cycling [16, 17, 55]. Verney et al. [55] 
reported a 9–13% increase in maximal isometric and 
isokinetic torque of the knee extensors after concurrent 
3 × 12 min cycling bouts and UB strength training across 
14 weeks. This study [55] involved active older adults, 
who followed a progressive resistance training programme 
for upper limbs and trunk muscles. The participants per-
formed three exercises per UB muscle group with three 
sets for each muscle every session [55]. Heavier weights 
were used for shoulder and chest exercises [range from 
10–12 to 3–6 of repetition maximum (RM)], while exer-
cises for arms initially had lighter resistance (20-RM), and 
later progressed to heavier resistance (10–12-RM) [55]. 
Abdominal and lower back exercises used only body-
weight throughout the programme with three sets of 20 
repetitions [55]. Another study that tested LB strength 
[38] involved active young male individuals who failed 
to make any improvements on 1-RM leg extension and 
1-RM squat tests after a 12-week training plan. This plan 
involved 40-min continuous running protocols (2 × /week) 
and 200–800-m interval running bouts (2 × /week), both 
paired with high-intensity UB exercises (10-RM and 
5-RM load progression) on the same days [38]. Impor-
tantly, however, the Wingate leg cycling test showed that 
the group with added UB strength sessions increased both 
the peak (39 W) and mean leg power (20 W), whereas the 
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running-only group experienced a decrease with these two 
measures (peak power − 8 W, mean power − 14 W) [38].

Two of the included studies examined leg muscle fibre 
adaptations to this training configuration [16, 38]. The 
intervention by Kraemer et al. [38] observed the preserva-
tion of type I and type IIc fibre areas of the vastus lateralis 
with the inclusion of UB strength trainings compared with 
the members of a running-only group who saw a signifi-
cant decrease [38]. Another study [16], being a follow-up 
to the previous one [55], evidenced a 73% increase of the 
satellite cell number per type II fibre of the cycling-trained 
vastus lateralis (p = 0.04), aided by significant increases 
of type IIa fibre areas (13%, p = 0.03) when UB strength 
exercises were joined to cycling sessions [16]. Further-
more, in a study by Moberg et al. [17], various circulat-
ing endocrine factors were reported by the combination of 
an intensive endurance-based cycling protocol (5 × 4 min 
high intensity interspersed with 25-min low intensity) 
and subsequently exercised triceps muscle. These sys-
temic exerkines favourably alter muscle tissues in both 
body regions leading to enhanced oxidative and glycolytic 
adaptations [17], with a potential to increase muscle mass 
and strength in both areas [58].

3.3 � Upper Body Resistance Exercise with Lower 
Body Resistance Exercise

Table 2 provides a summary of the characteristics, outcome 
measures and key findings of the eligible studies that inves-
tigated VST facilitation with the combination of UB resist-
ance training and LB resistance training in the same session. 
Fourteen studies were identified [18, 21, 24, 43–49, 53, 54, 
56, 57]. Twelve of them investigated how a LB resistance 
exercise session facilitated an UB strength session [18, 21, 
24, 43–49, 53, 54]. This resulted in an augmented increase 
of UB strength or power in seven studies [18, 21, 24, 45–47, 
54], while no enhancement was found for UB strength in 
four studies [43, 44, 49, 53], nor for acute arm muscle pro-
tein synthesis in one study [48]. Although no chronic train-
ing interventions were identified with a reverse facilitating 
order (UB for LB), there were two studies that examined 
how UB resistance exercise may facilitate LB strength train-
ing adaptations via immediate systemic responses [56, 57]. 
In one protocol, muscle androgen receptor content from 
the vastus lateralis was preserved with the preceding high-
volume UB exercise session [56], while the same protocol 
from another study [57] revealed beneficial binding of the 
vastus androgen receptors to the DNA and increased canoni-
cal Wnt/β-catenin signalling [57], suggesting the potential 
for a strength-enhancing effect of a targeted leg muscle when 
it was exercised after resistance training of UB muscles.

Kraemer et al. [45] reported increased UB power meas-
ured by ballistic bench press and greater arm muscle Ta
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hypertrophy for the group with added leg strength training 
sessions to UB strength training sessions compared with 
the UB-only exercise group. In contrast, Walker et al. [53] 
did not observe any additional improvement in arm mus-
cle strength when other muscle groups were jointly trained 
within the same sessions. Notably, plasma insulin-like 
growth factor-1 did not change, while myostatin levels were 
equally lowered with arm-only exercise and whole-body 
exercise [53]. Furthermore, when unilateral arm resistance 
training was followed by endocrine-producing leg resistance 
training, arm strength improvement was enhanced for both 
untrained [24, 46] and trained [47] young male individu-
als. Two of these studies [46, 47] incorporated blood-flow 
restriction (BFR) leg exercises, which led to the augmented 
strength responses in the trained arm [46, 47]. Similarly, the 
only study that involved an athletic population [54] observed 
facilitated improvements in a 1-RM bench press when UB 
muscles were trained alongside leg-BFR exercises after only 
3 weeks [54]. Contrary to these findings, BFR applied to all 
limbs did not augment trunk extension strength when trunk 
muscles were trained alongside arms and legs [43]. The par-
ticipants from this study [43] were untrained adults with 
back pain who followed a light 10-week training programme 

with three sets of leg extension, calf raises and arm curls 
at 25% of their maximal voluntary isometric contraction 
(MVIC) two times a week [43].

Studies with a within-subject design showed conflict-
ing findings when male participants trained different arms 
on different occasions [18, 49]. Acutely elevated hormonal 
milieu by a leg resistance session failed to enhance the pro-
tein synthesis rate in previously trained elbow flexors of a 
trained arm [48], and this exercise protocol did not support 
unilateral arm strength improvement after a 15-week exer-
cise plan [49]. However, when the LB region was trained 
prior to a single arm, both strength and hypertrophy were 
greater in this arm following an 11-week training plan [18]. 
Finally, two studies investigated whether performing high-
volume leg exercise sessions could enhance the effectiveness 
of UB strength training sessions targeting multiple muscle 
groups (chest, back, shoulders and upper limbs) [21, 44]. A 
study with 17 mixed-sex participants found no enhancement 
for UB strength when UB exercises followed LB sessions 
despite produced elevations in growth hormone levels [44]. 
In contrast, a study with 20 trained male individuals, who 
exercised their UB muscles before high-volume LB sessions, 
reported more significant hypertrophy for the arm muscle 

Fig. 1   PRISMA (Preferred 
Reporting Items for Systematic 
Reviews and Meta-Analyses) 
flowchart illustrating the 
step-by-step process leading to 
identification of studies eligible 
for the review
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area, more significant bench press improvement, and more 
significant UB power expression compared with the low-
volume leg exercise group [21].

3.4 � Vertical Strength Transfer with the Exercise 
of One Body Segment

Table 3 provides a summary of the characteristics, outcome 
measures and key findings of the eligible studies that inves-
tigated VST with the exercise of one body segment. Six stud-
ies [22, 23, 31, 50–52] of the seven included [22, 23, 31, 45, 
50–52] evaluated changes in untrained UB strength as an 
outcome of a LB exercise intervention. All the interventions 
reported increased strength of upper extremities measured 
by handgrip and MVIC after various exercise plans includ-
ing: bilateral LB strength exercise [23, 50, 51], unilateral 
LB strength exercise [22] and cardiorespiratory endurance 
LB exercise [31, 52]. Only one investigation examined the 
influence of an UB strength training intervention for the 
untrained LB strength [45]. The authors reported a marginal 
strength improvement on a 1-RM squat for both the 3–8 
RM training group (p = 0.08) and 8–12 RM training group 
(p = 0.10) [45].

Ben Othman et al. [50] reported a higher strength increase 
in untrained upper extremities measured by elbow flexor’s 
MVIC and handgrip for a high load-low repetition group 
of boys compared with the low load-high repetition group. 
These strength improvements were retained after 4 weeks of 
a detraining period for the same participants [51]. Further-
more, Pietrangelo et al. [52] and Ceci et al. [31] reported 
improved handgrip strength in older male individuals as a 
result of a leg resistance [52] and leg endurance training 
programme [31, 52]. Aman et al. [23] also demonstrated a 
significantly improved level of strength in the untrained arms 
for middle-aged female individuals allocated to groups with 
distributed rehabilitative practice and massed rehabilitative 
practice [23]. Finally, Magdi et al. [22] organised unilateral 
leg training with accentuated eccentric loading for the group 
of trained young male and female individuals, examining the 
effect on the ipsilateral arm. There was a significant increase 
in arm MVIC and power at low, medium, and high loads, 
with no gains in muscle mass nor differences between the 
sexes compared to the control group after a 10-week plan 
[22].

4 � Discussion

The purpose of this systematic scoping review was to inves-
tigate the existence of the VST phenomenon as a response 
to various UB and LB exercise configurations and to iden-
tify potential mechanisms underpinning its occurrence. The 

main findings are as follows: (1) concurrent UB strength 
and LB endurance training (i.e. running or cycling) for older 
adults may stimulate beneficial satellite cell expression in 
both regions, benefitting LB muscle morphology and LB 
strength enhancement. This training combination also shows 
the potential to protect leg muscle fibres from a catabolic 
environment and to preserve power-generating capacity in 
LB muscles via neurophysiological mechanisms, highlight-
ing promising applications for athletic populations, (2) high-
volume or BFR type of LB resistance exercise may facilitate 
strength improvements in previously or subsequently trained 
upper limbs, and previously or simultaneously trained mul-
tiple UB muscle groups. The opposite direction of trans-
fer (i.e. UB to LB) has not been investigated with strength 
testing outcomes, (3) high-volume UB resistance exercise 
beneficially modulates androgen receptor response in sub-
sequently exercised quadriceps, demonstrating the potential 
for a strength-enhancing effect of LB muscles, (4) strength 
training for LB muscles may result in improved strength 
of untrained upper extremities, and (5) VST likely occurs 
because of the combination of neurological adjustments and 
circulating endocrine factors. Future research should exam-
ine the extent of VST facilitation in an athletic population, 
especially with respect to the influence of UB resistance 
training on LB strength or power-generating adaptations.

4.1 � Upper Body Resistance Exercise with Lower 
Body Endurance Exercise

An important finding from this review that has potential 
implications for athletic performance is the noted protec-
tive role of UB strength training for the prevention of leg 
power loss and type I and type IIc leg muscle fibre area 
when it was performed after various running sessions across 
a 12-week training period [38]. This finding is reinforced 
with the observed increase of type II fibre area and satellite 
cell number per type II fibre in the vastus lateralis [16], as 
well as improved strength of the quadriceps muscle [55] 
when UB exercise was joined to the leg cycling sessions 
for older adults [16, 55]. In addition, when high-intensity 
interval cycling for endurance was performed prior to arm 
resistance training, this led to the production of circulating 
factors that beneficially modulate muscle adaptations in both 
body regions, potentially leading to strength improvements 
on a whole-body level [17].

A possible explanation for the leg-protective effect by 
concurrent UB strength training and LB endurance train-
ing may lie in various physiological mechanisms provoked 
by the exercise of an entire UB region [38]. 5′Adenosine 
monophosphate-activated protein kinase (AMPK) is well 
known for the regulation of energy homeostasis [59], and it 
responds to endurance training [60], acting as a suppressor of 
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the mammalian target of rapamycin (mTOR) pathway known 
for its anabolic effects [61–63]. However, when resistance 
exercise follows endurance training, mTOR1 signalling is 
not inhibited despite the pre-activation of AMPK [64], and 
anabolic gains are not compromised [65]. This could explain 
why UB strength improvement was not negatively impacted 
when these muscles were trained after the running sessions 
[38]. In reverse order of signalling pathways, anabolic medi-
ators such as mTOR1, insulin-like growth factor-1 and ser-
ine-threonine protein kinase (Akt) after resistance exercise 
do seem to suppress catabolic processes in human organ-
isms [66–69]. This “switch’’ between different pathways 
affects muscle fibre size depending on the dominant type 
of activity [70, 71]. Thus, UB strength training may have 
systemically induced endocrine factors that interfered with 
LB muscle morphology in the mentioned protocols [72]. 
For instance, one study observed that performing an UB 
strength training 1 day after a muscle-damaging leg exercise 
session accelerated the recovery of concentric force genera-
tion in the trained leg [73], which may be explained by the 
recovery potential of circulating anabolic hormones such 
as testosterone [74]. Notably, Kraemer et al. [38] organised 
a training plan with multi-joint exercises for large muscle 
groups (i.e. bench press, military press, latissimus pull-
down), with the capacity to stimulate testosterone production 
for systemic influence [56]. This circulating androgen might 
have improved nerve conduction velocity and myelination 
[75, 76], potentially leading to faster and stronger electrical 
signals to any muscle in the body. Indeed, strength train-
ing intensifies CNS for increased impulses [77], leading to 
modified behaviour of the motoneurons [78], which could 
have resulted in the protective effect on the leg power output 
[38]. Moreover, two acute exercise studies have shown that 
UB strength training could effectively potentiate quadriceps’ 
androgen receptor response to exercise [56, 57]. This poten-
tiation may offer protection against catabolism [56] aiding 
the anabolic enhancement of strength and power capacity in 
the targeted muscles [75]. Beyond the effects of testosterone, 
muscle growth and maintenance are also influenced by other 
complex regulatory mechanisms. One such systemic factor 
is follistatin, a glycoprotein induced by resistance exercise 
[28, 79, 80]. Elevated follistatin induces muscle hypertro-
phy [28] and may decrease myostatin levels [15], a myokine 
that negatively affects muscle mass [81]. One study from 
this review observed lowered total myostatin levels by 20% 
with as little as three exercise sets for elbow flexors in the 
training plan [53]. Hence, intensive exercise of an entire UB 
segment may have the potential to produce endocrine factors 
that could counterbalance leg muscle fibre atrophy seen after 
long running sessions [39], resulting in the preservation of 
high-intensity performance for the LB [38]. This could bring 
novel considerations for exercise sequence programming 
that needs to address both aerobic power and high-intensity 

force production by lower extremities for an athletic popula-
tion competing in multi-directional sports [82, 83]. Future 
research should explore this link further as it may have sig-
nificant implications in sports like soccer where current UB 
resistance sessions do not seem to result in pronounced neu-
rophysiological adaptations [84] compared to the require-
ments placed on the LB musculature [85, 86].

Further evidence for beneficial effects of combining LB 
endurance and UB strength exercise in one session arrived 
from Moberg et al. [17], who found that elevations in PGC-
co-activator-γ-1 (PGC-1α)1 and PGC-1α4 were markedly 
larger when arm resistance training followed after the endur-
ance-based high-intensity interval cycling session. PGC-1α1 
is elevated after endurance training [87, 88] and has a benefi-
cial role in oxidative adaptations, promoting fatigue resist-
ance [87, 89], while PGC-1α4 expression is greater after 
resistance exercise, and has a facilitating role for muscle 
hypertrophy [58] and glucose uptake via augmentation of 
key glycolytic genes [90]. These two isoforms are a signifi-
cant part of a large PGC-1α transcription coactivator group 
that serves as a key stimulator of mitochondrial biogenesis 
heavily linked to lactate metabolism [91], a beneficial modu-
lator of metabolic genes [92, 93] and an efficient preserver 
of muscle mass in the face of a catabolic environment [94] 
with a role on a whole-body level [95]. Concurrent exercise 
modes with the same muscles (e.g. cycling and leg resist-
ance exercise) have been shown to increase these two iso-
forms [65, 96], but here the systemic effect was noted with 
separate muscles (legs and triceps). A similar occurrence 
happened in a study by Birnbaumer et al. [30] who reported 
elevated systemic blood lactate levels after the warm-up 
activity that involved 30-s all-out running, which improved 
performance in the subsequent pull-up exercise via enhanced 
glycolytic and oxidative metabolism [30]. This cross-tissue 
lactate utilisation from concurrent types of exercise may 
explain the augmentative effect on exercise performance [91, 
97–99]. Nevertheless, the evidence for long-term benefits is 
still scarce and requires careful investigations with chronic 
exercise adaptations in the future.

Two intervention studies from this review examined the 
cross-effects of concurrent UB strength training and LB 
cycling sessions spread across a 14-week period for older 
adults [16, 55]. With the absence of control group, it remains 
unclear whether the improvement in leg strength [55], fol-
lowed by a beneficial similar increase in the satellite cells 
per fibre in both regions [16], was supported by the physi-
ological cross-talk [17]. Although an older population could 
increase strength solely on the basis of endurance exercise 
[100], concurrent exercise modes lead to augmented strength 
improvements [101, 102], optimising both cardiovascular 
and neuromuscular gains [102]. Therefore, combining LB 
endurance training with UB resistance training may provide 
endurance-related adaptations to resistance-trained muscles 
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and vice versa. Future research should further explore this 
effect as it may hold significance for the population with the 
limited training capacity like older adults who could obtain 
health benefits from two distinct exercise types in one train-
ing session.

4.2 � Upper Body Resistance Exercise with Lower 
Body Resistance Exercise

This review has identified that neurophysiological adapta-
tions arising from the exercise of one body region may aug-
ment strength development in another body region [18, 24, 
45, 46, 54]. However, VST is less likely to be facilitated if 
multiple factors are not accounted for, such as the exercise 
load and volume [43, 53], exercise order [48, 49] and exer-
cise type [44].

4.2.1 � Neurophysiological Underpinning of the Facilitated 
Transfer

Training of the whole body elicits greater systemic responses 
compared with the protocols that involve a smaller number 
of muscle groups [15, 103]. In addition to anabolic hor-
mones [74], these signals also involve myokines that regu-
late muscle adaptations such as myostatin and follistatin 
[15, 79, 81], modified satellite cell activity [104] and trig-
gered anabolic pathways like Akt/mTOR [62, 68]. While 
exercise sessions that involve large muscle groups, being 
high in volume and moderate to high in intensity, are criti-
cal to producing substantial endocrine responses [74, 103, 
105–108], a weak or insufficient stimulus by the selection 
and intensity of included exercises may lack the capacity to 
affect these changes [109]. This could be seen in the stud-
ies that applied LB resistance exercises with a high-volume 
approach, which often resulted in an augmented increase of 
concurrently trained arm muscles [18, 43], whereas low-
volume protocols showed conflicting results [43, 54]. When 
both UB and LB regions are trained together, it is difficult 
to distinguish whether physiological or neurological adap-
tations facilitate the VST. For example, UB power (meas-
ured by a ballistic bench press) improved significantly more 
after a whole-body strength training programme than after 
the same UB exercise plan without LB involvement (delta 
change + 68 W, p < 0.05) [45]. This may have occurred as 
a result of magnified neuromuscular adaptations arriving 
from heavy loads with the enhanced neural drive for UB 
muscles by the inclusion of intensive LB contractions [2, 
110–112]. Hence, it looks likely that both neurological and 
physiological mechanisms underpin the adaptations that lead 
to the VST occurrence when UB and LB muscles are con-
currently trained.

Three studies from this review demonstrated a higher 
increase in UB strength when UB exercises were performed 

alongside leg-BFR exercises compared with the leg exer-
cises without BFR [46, 47, 54]. This probably occurred 
via emphasised circulating endocrine factors [12], as evi-
denced in the two studies that took the measures [46, 54]. 
Likely mediators of these physiological cross-adaptations 
are lactates [30], which accumulate under hypoxic condi-
tions caused by BFR [113] or by high-volume exercise pro-
tocols [114–116]. Lactates have the ability to impact distant 
tissues as signalling molecules [91, 98, 99, 117], stimulate 
reactive oxygen species production [118], increase type II 
fibre recruitment [119, 120], and elevate anabolic hormone 
levels [113, 121, 122], promoting hypertrophic effects [113, 
123]. In addition, lactate produced by one muscle can be 
systemically utilised as an effective energy fuel by other 
“recipient” muscles [97]. Its shuttle transport is supported 
by elevated testosterone [172], a hormone proposed as a pos-
sible facilitator of the VST in four studies [18, 24, 46, 54]. 
While oxidative muscle fibres use lactates directly [97], type 
II fibres primarily dispose them via gluconeogenesis [125]. 
Lactates are also preferably used as a source of energy in 
brain cells [25, 126], where they promote neuroplasticity 
and cerebrovascular plasticity [25, 26], with the potential to 
enhance corticospinal excitability and reduce intracortical 
inhibition [127]. This mechanism might explain significant 
strength increases of the contralateral (untrained) arm after 
leg-supported unilateral arm training [24, 47], which points 
to an improved motor unit recruitment in that limb [105, 
128].

In addition to the lactate-induced neuroplasticity, testos-
terone has also been shown to significantly associate with 
neuromuscular performance measured by squat jump and 
change-of-direction speed in young athletes [129], as well as 
with dose-dependent and concentration-dependent increases 
in maximal voluntary leg strength and leg power in healthy 
young men [27]. While suppression of endogenous testoster-
one production diminishes strength gains [130], its elevation 
leads to increased levels of released neurotransmitters and 
reorganisation of neurons [75]. Therefore, the inclusion of 
exercises from a distant body region might have had a vital 
neurophysiological complementary influence on another 
region’s strength training adaptations with the production 
of circulating lactates and androgens. When considering 
practical applications for athletic populations, however, it 
is important to recognise that, with the exception of Cook 
et al. [54], who studied semi-professional rugby players, 
all other investigations involved untrained or recreationally 
active individuals who could gain notable improvements in 
strength and hypertrophy with a smaller number of resist-
ance training sessions [131]. Consequently, the extent to 
which these cross-training adaptations are applicable and 
impactful for a sports population remains unclear. None-
theless, presented findings could hold potential significance 
for leg-dominant athletes such as soccer players who do not 
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seem to prioritise strength development in UB muscles [84]. 
Future research is, therefore, warranted to investigate if this 
population may benefit from emphasising high-resistance 
UB exercises in addition to LB sessions, optimising over-
all athletic performance via increased neurophysiological 
effects.

4.2.2 � High‑Volume Resistance Exercise Facilitation 
for the Isolated Muscle from a Remote Body Region

In this review, three studies showed that the anabolic-pro-
ducing type of weight training for LB muscles had a posi-
tive impact on strength development for the elbow flexors 
that were trained earlier in the session [24, 46, 47], likely 
due to augmented neurophysiological adaptations [47]. In 
contrast, a similar approach by West et al. [49] did not 
result in any enhancements of arm strength improvement 
after the intervention. This finding [49] is in line with 
research showing that raised levels of endogenous ana-
bolic hormones do not always correlate with hypertrophy 
and strength gains [132–134], questioning their role in the 
facilitation of strength [132]. Importantly, however, this 
within-subject study [49] required participants to ingest 
18 g of protein before and after each of the workouts that 
were separated by 24 h, involving a unilateral arm exercise 
session followed by a high-volume LB exercise session 
first, and a contralateral arm exercise session alone the 
next day. After the combined session, post-exercise protein 
availability may have been prioritised for consumption by 
the leg muscle cells [135], whereas the arm-only training 
protocol had the same amount of protein content readily 
available to the exercised arm muscle [49]. Furthermore, 
with the increased amino acid presence in 2 consecutive 
days, training of the contralateral arm may have benefitted 
from the previous day’s high-volume session via prolonged 
anabolic pathway signalling [136] and altered systemic 
metabolic state potentiating muscle stem cells [72] in the 
untrained arm. For example, muscle damage in one limb 
triggers metabolite signals that prime distant stem cells 
in the opposite limb [72], placing them in a prolonged 
mTOR-dependent “alert state” ready for potential future 
modifications if required [137].

The opposite exercise design, in which anabolic-pro-
ducing weight training from one body region was posi-
tioned before the strength training of a muscle from a 
remote body region, proved effective in augmenting a tar-
geted muscle’s response [18, 56, 57], possibly due to the 
contractions occurring under an altered systemic environ-
ment with the additive effect [18, 30, 56, 57]. For instance, 
weight training for several UB muscles (i.e. chest, back, 
shoulders, arms) was efficient in potentiating favourable 
transcriptional changes in the DNA-ribosome complex of 
a subsequently exercised quadriceps [56, 57], revealing 

the potential for strength enhancement of LB muscles 
[138–141], though without a clear link to the elevated 
testosterone [57]. By reversing the direction of facilita-
tion, LB resistance training sessions conducted before 
isolated biceps exercises provided a considerable boost in 
elbow flexor strength after the training programme [18]. 
Therefore, using the logic that elevated systemic factors 
may remodel muscles trained later in the session [56, 74], 
likely via complementing neurophysiological adaptations 
[75, 124], it looks conceivable to suggest that high-vol-
ume exercise of the LB musculature may provide sup-
port for the progress of arm strength trained afterwards, 
which could be critical during the rehabilitation process 
after injury. As an example, this concept might also be 
applied to an isolated hamstring exercise placed after 
the UB resistance session to maximise its strength gains, 
potentially leading to enhanced athletic performance [142, 
143] or a hamstring injury risk reduction [144]. It remains 
unclear, however, whether this training combination has 
the capacity to result in significant strength improve-
ment for an athletic population, which should be further 
investigated.

4.2.3 � High‑Volume Resistance Exercise Facilitation 
for Multiple Muscles from a Remote Body Region

The previous section showed that when the goal was to 
maximise strength exercise response of a single muscle 
(e.g. biceps brachii), high-volume exercise of other body 
region was partly successful when positioned afterwards [24, 
47–49], but reliably effective when positioned before [18, 
56, 57]. In contrast, however, when the goal was to augment 
strength gains for multiple muscles across the whole UB 
region, preceding high-volume LB exercise failed to sup-
port it [44], whereas succeeding high-volume LB exercise 
successfully facilitated it [21]. The explanation for this dis-
crepancy may lie in the impaired contractions from large UB 
muscle groups when they were trained later in the session 
due to the reduction in voluntary muscle activation [145] 
resulting from the previous leg workout. The central fatigue 
[146] may not substantially affect contractions of a single 
muscle [18], but it might hinder the activation of multiple 
muscles from various UB areas and result in the lack of 
strength enhancement [44]. Furthermore, a study that failed 
to facilitate strength adaptations [44] had female individu-
als for half of the participants compared to the study that 
involved only male individuals and proved successful [21]. 
The differences between the sexes might have affected physi-
ological responses to exercise (e.g. no difference in testos-
terone was noted between the female training groups) [147], 
contributing to the deficiency of a transfer effect [44].

The inconsistency in findings between West et al. [49] (no 
strength facilitation for previously exercised biceps muscle) 
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and Bartolomei et al. [21] (successful strength facilitation 
for previously exercised multiple UB muscles) may originate 
from the absence of local testosterone production follow-
ing the exercise of a singular muscle from the UB [48, 49] 
compared to the comprehensive engagement of a total UB 
segment [56, 57]. This broader engagement likely triggered 
an anabolic response in the targeted UB [56], complemented 
by systemic endocrine factors released into circulation by 
subsequently trained LB [24]. For example, the change in 
myostatin-follistatin levels is almost twice as large if both 
UB and LB are exercised together compared with any of 
these regions alone, shifting the ratio in the advantage of 
follistatin [15]. Therefore, a limited body of research sug-
gests the potential of the VST to arise from an endocrine-
producing (i.e. high-volume) LB workout to strength-trained 
(i.e. high-resistance) multiple UB muscles in recreational 
male population under the condition that these (UB) muscles 
are exercised either before the leg session [21], or simultane-
ously [54], but not afterwards [44] so to avoid enervation of 
the neural impulses toward the targeted fibres. Notwithstand-
ing relatively speculative conclusions, these investigations 
offer valuable insights into the strategies for taking advan-
tage of the VST phenomenon magnifying strength gains via 
effective training sequencing. More research is needed to 
evaluate the magnitude of these adaptations with different 
exercise interventions involving different sexes and athletes 
from different sports.

4.3 � Vertical Strength Transfer with the Exercise 
of One Body Segment

While uncertainties may exist around the main contribu-
tors to the VST when both body segments are concurrently 
trained, it is highly unlikely to suggest any other but neu-
rological adaptations explaining strength increases in the 
untrained body parts as a response to the training of remote 
body parts. The main findings from this section suggest that 
neurophysiological responses to LB exercise may be impor-
tant in increasing and preserving strength gains for the mus-
cles in upper extremities [22, 23, 31, 50, 52].

Neural adjustments to strength training generally include 
two major sites: (1) the CNS with the modified corticospinal 
excitability and intracortical inhibition [77, 148, 149] and 
(2) the peripheral nervous system with altered motor unit 
behaviour reflected through the increased discharge rate, rate 
coding, synchronisation, recruitment and reduced coactiva-
tion of antagonists [150–153]. Any of the aforementioned 
mechanisms may explain the dissipation of strength from 
the trained to the untrained muscle groups. However, it is 
somewhat intuitive to assume that UB resistance training 
will not have the capacity to alter neural responses in suf-
ficient amounts to modify LB strength without the local 
exercise stimulus owing to the difference in the size of the 

muscles between these two regions. For example, the cross-
education effect is greater in lower extremities [19, 20], and 
it is likely that larger muscles require more intense neural 
signals to result in pronounced neuromuscular adaptations. 
This was suggested with the findings by Kraemer et al. [45], 
where LB power and strength were barely impacted by the 
UB strength training programme alone, whereas UB power 
expression was augmented by the addition of high-resistance 
LB exercises. Therefore, a complementary result for the neu-
ral drive towards the LB muscles may only be possible when 
both regions are concurrently trained, and this is yet to be 
affirmed with future investigations.

To further evaluate the role of the CNS for the VST, this 
review included studies that examined strength changes in 
the upper limbs after interventions that exclusively involved 
LB exercises. They all resulted in significant strength 
increases for children [50, 51], older populations [31, 52] 
and adults [22, 23]. These improvements likely occurred 
under different adaptive mechanisms depending on the 
age categories. For instance, novel patterns of movements 
may have provoked enhanced global neural responses for 
youngsters [154], followed by superior neurophysiological 
adaptations [155, 156] that had the potential to preserve 
strength gains even after a 4-week detraining period [51]. 
In contrast, authors from the studies with older adults [31, 
52] suggested biochemical factors known as exerkines 
inducing a crosstalk between remote tissues and causing 
strength improvements in the upper extremities. However, 
despite the elevated levels of superoxide dismutase activ-
ity [31], which is a proven therapeutic agent [32], it may 
be more feasible to suggest that the activation of UB mus-
cles during cycling and strength training (to maintain bal-
ance) caused increases in handgrip strength for inactive 
older adults. Positive results were also found in a study by 
Aman et al. [23], where middle-aged women’s upper limb 
strength significantly improved (33.9–58.3% increase) after 
LB resistance and “neuromuscular exercises” (i.e. balance, 
agility, strength) across a 12-week period. It is possible that 
repetitive LB contractions supported the downregulation of 
inhibitory feedback by the afferent nerves [157], whose pur-
pose is to deactivate alpha motor neurons of the contracted 
muscle when high forces are applied [158]. With sustained 
muscular activation, these signals are inhibited [157], and 
favourable alterations in spinal reflexes have been proven to 
occur [77]. This would result in an enhanced motor drive 
by the CNS [159], supporting strength improvement in the 
untrained muscles. All these mechanisms look important 
for the further exploration of the VST with its potential to 
increase strength on the account of neurological enhance-
ments. For example, UB strength training may have a com-
plementary neuromuscular effect with the facilitation of 
leg-dominant high-intensity actions such as sprinting [160] 
or jumping [34]. Nonetheless, further research involving 
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athletic populations is necessary before making conclusive 
interpretations based solely on the findings from untrained 
individuals.

“Cross-education’’ is a well-established phenomenon that 
explains strength gains in the untrained limb after the exercise 
of the contralateral limb due to the modified neural plasticity 
[105, 148]. Two models proposed to interpret cross-education 
are the “bilateral access model,’’ which describes that unilat-
erally created motor engrams can be utilised bilaterally, and 
the “cross-activation model’’, which explains that unilateral 
contractions are driven by both the ipsilateral and contralateral 
motor cortices [148]. While strength training is proposed to be 
governed by cross-activation, more complex tasks have been 
suggested to promote bilateral access [105]. Magdi et al. [22] 
tried to maximise neuromuscular responses by taking advan-
tage of both models, organising participants to attend unilat-
eral leg training sessions where they were required to perform 
strength-based and proprioceptive-based leg exercises. The 
idea was to stimulate the VST from the trained leg to the 
untrained arm. Authors intended to magnify this effect by 
emphasising eccentric leg contractions [161–164] and got a 
remarkable transfer from the exercised lower limb to the non-
exercised upper limb (MVIC increase: men 14.7%, women 
69.4%; biceps 1-RM increase: men 10.5%, women 20.6%; 
power increase with low loads: men 59.0%, women 72.6%, 
medium loads: men 47.1%, women 60.8%, and high loads: 
men 19.6%; women: 53.3%) [22]. Unfortunately, no tests were 
conducted on the contralateral arm to examine whether the 
VST dissipated to this arm as well. The findings from this 
study [22] highlight the potential of unilateral eccentric-based 
resistance training to increase force and power production in 
the ipsilateral remote limb. Further research should explore 
the extent to which this type of exercise may be utilised to 
stimulate neurological responses with the application to the 
recovery from injury. It could be particularly beneficial for 
athletes who need to preserve strength in injured extremities 
during the rehabilitation process in order to be ready to per-
form again in shorter time periods.

The main limitation of this review was the lack of stud-
ies investigating the effect of UB resistance training on LB 
strength or power-generating adaptations, which required 
more speculative discussion using the reverse order of trans-
fer (i.e. LB to UB). Furthermore, VST was mostly discussed 
in relation to the recreational population, which is arguably 
more prone to neurological alterations compared with pro-
fessional athletes.

5 � Conclusions

The purpose of this systematic scoping review was to inves-
tigate the existence of the VST phenomenon as a response 
to different exercise configurations and identify potential 

mechanisms underpinning its occurrence. The findings from 
the review highlight some important points: (1) the addi-
tion of UB strength training to LB endurance training may 
help preserve leg muscle morphology and power genera-
tion in LB. This exercise combination may also contribute 
to strength gains in LB muscles for older population; (2) 
high-volume or BFR type of LB resistance exercise may 
facilitate strength training adaptations for: (a) previously 
or subsequently trained single muscle group from UB (e.g. 
elbow flexors) and (b) previously or simultaneously trained 
multiple muscle groups from UB (i.e. upper torso with upper 
limbs); and (3) strength exercise sessions for LB muscles 
could improve strength in untrained upper extremities on the 
basis of an increased neural drive. More research is needed 
to elucidate whether the VST phenomenon could help to 
enhance performance for an athletic population and poten-
tially preserve high-intensity force production in injured 
extremities as a result of exercise with healthy extremities. 
This phenomenon might also be important for the preser-
vation of power-generating capacity in endurance-trained 
LB muscles by strength-trained UB muscles, thereby also 
benefitting specific athletic populations (e.g. soccer players), 
for which future investigations are warranted.
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