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Abstract

Background There are a myriad of exercise variations in which upper body (UB) and lower body (LB) exercises have been
intermittently used. However, it is still unclear how training of one body region (e.g. LB) affects adaptations in distant body
areas (e.g. UB), and how different UB and LB exercise configurations could help facilitate physiological adaptations of either
region; both referred to in this review as vertical strength transfer.

Objective We aimed to investigate the existence of the vertical strength transfer phenomenon as a response to various UB
and LB exercise configurations and to identify potential mechanisms underpinning its occurrence.

Methods A systematic search using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
for Scoping Reviews protocol was conducted in February 2024 using four databases (Web of Science, MEDLINE, Scopus
and CINAHL) to identify peer-reviewed articles that investigated the vertical strength transfer phenomenon.

Results Of the 5242 identified articles, 24 studies met the inclusion criteria. Findings suggest that the addition of UB strength
training to LB endurance exercise may help preserve power-generating capacity for the leg muscle fibres. Furthermore,
systemic endocrine responses to high-volume resistance exercise may beneficially modulate adaptations in precedingly or
subsequently trained muscles from a different body region, augmenting their strength gains. Last, strength training for LB
could result in improved strength of untrained UB, likely due to the increased central neural drive.

Conclusions Vertical strength transfer existence is enabled by neurophysiological mechanisms. Future research should
involve athletic populations, examining the potential of vertical strength transfer to facilitate athletic performance and pre-
serve strength in injured extremities.

1 Introduction health and performance of professional athletes, it is cru-

cial to implement effective resistance exercise conditioning
Various resistance training strategies are used to support  [7_10]. Importantly, the changes that occur in upper body
athletic performance [1, 2] and accelerate return to sport  (UB) and lower body (LB) muscles differ in response to the

after injury [3]. These strategies take advantage of differ-  gjmilar exercise modes [11-14]. Furthermore, it appears that
ent exercise modes utilising mixed loads and high-velocity  concurrent training of both body segments elicits favour-
contractions with the goal to increase power production [2,  gple endocrine responses compared with the training of a

4], prevent injury occurrence [5] and preserve muscle mass  gingle body region [15-17], which could lead to improved
in players recovering from injury [6]. To ensure optimal functional outcomes in both regions [16, 18], regardless of
the combination type.
Unlike cross-education, where the confirmed transfer of
P4 Ivan Curovic strength dissipates from the trained to the untrained limb
icurovic @uclan.ac.uk in the same body compartment (e.g. LB) [19, 20], a cross-
transfer between UB and LB exercise only recently appeared
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Social Work and Sport, University of Central Lancashire, as a subject of more thorough investigations [21-23]. The
Preston, UK significance of this phenomenon is reflected in: (a) recorded
2 Human Performance Department, Burnley Football Club, strength improvements of untrained muscles from one
Burnley, UK body region (e.g. upper extremities) resulting from exer-
3 Jurija Gagarina 102/7, 11070 Belgrade, Serbia cise of another body region (e.g. leg muscles) [22], and (b)
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Upper body strength training positioned alongside a
running or cycling session may yield beneficial systemic
effects for the leg muscle fibres.

High-volume resistance exercise of an entire body seg-
ment (e.g. lower body) may facilitate strength training
adaptations in a subsequently trained single muscle
group from the other body segment (e.g. elbow flexors).

High-volume resistance exercise of the lower body
musculature may facilitate strength training adaptations
in previously or concurrently trained multiple muscle
groups from the upper body.

Lower body strength training alone may increase
strength in the untrained upper extremities, while the
opposite transfer direction (i.e. upper body to lower
body) has not been sufficiently explored.

enhanced strength adaptations of strength-trained muscles
from the targeted region (e.g. elbow flexors) facilitated by
concurrent high-volume exercise of remote muscle groups
(e.g. leg muscles) [24]. While former training adaptation
could be labeled as “vertical strength transfer” (VST), latter
adaptations are likely enabled via exercise-induced endo-
crine responses [24], and may be more accurately described
as “vertical strength facilitation”. Nevertheless, for the pur-
pose of this review, both cross-effects will be referred to
as VST, regardless of whether strength enhancement was
caused or facilitated by exercise of a remote body segment.

Circulating endocrine factors obtained by various train-
ing modes can systemically modulate different tissues and
neurons [25-29], thereby influencing exercise adaptations
on a whole-body level. For example, an acute bout of met-
abolic pre-conditioning with “all out” running has been
shown to successfully increase oxidative metabolism and
performance in subsequent anaerobic UB strength-endur-
ance exercise [30], potentially leading to enhanced chronic
adaptations. These humoral factors secreted into circulation
by the exercised muscles (i.e. “exerkines”) [29, 31] are not
only limited to the positive influence on overall health [32],
but have been suggested to contribute to strength improve-
ments of the untrained muscle groups in older adults [31].
Unfortunately, exact mechanisms are yet to be elucidated.
Moreover, neurological effect may be realised via increased
“voluntary activation” with strengthened neural impulses
from the motor cortex to the motoneuron pool and from the
motoneuron pool to the muscle fibres [33]. For instance,
Da Silva et al. [34] recorded successful post-activation per-
formance enhancement for the horizontal jumping task in

female soccer players after UB pre-conditioning activity
with heavy bench pressing, suggesting the role of the cen-
tral nervous system (CNS) for high-intensity contractions
in unrelated body areas. This effect may be transferred to
the long-term strength improvements on the account of an
intensified central neural drive [33].

The understanding of the crosstalk between separate mus-
cle tissues and motor neurons may aid in more successful
manipulations of training strategies and result in an aug-
mentation or preservation of the strength or power gains
in the targeted muscles. One such example is concurrent
UB resistance exercise and LB endurance exercise mode
for which research has mostly focused on the extent of the
negative impact towards UB strength development [35-37].
However, this combined training regime may yield advanta-
geous morphological adaptations for the leg muscle fibres
[38], preserving their size from decreasing after long run-
ning sessions [39], potentially leading to improved power
expression in LB [38]. Furthermore, resistance training of
LB muscles may lead to strength improvements in upper
extremities [18], regardless of whether they were active or
not [22], which could be critical during the injury recov-
ery periods. Therefore, the purpose of this scoping review
was to investigate the existence of the VST phenomenon as
a response to various UB and LB exercise configurations.
To help identify potential mechanisms that may underpin
VST, we included studies that investigated acute exercise
responses with immediate effect on remote muscle tissues.

2 Methods
2.1 Experimental Approach to the Problem

Scoping reviews are carried out to identify and analyse the
latest concepts within a specific research field [40]. These
reviews differ from standard systematic reviews because
they address broader and less defined research questions for
which the availability of relevant studies may be less clear
[41]. Therefore, to allow the examination of a broad range
of literature with the goal of evaluating the existence of the
VST in various training protocols, the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
for Scoping Reviews extension was followed [42]. A system-
atic search of four electronic databases (Web of Science,
MEDLINE, Scopus and CINAHL) was conducted in Febru-
ary 2024 by the lead author using the default fields search
setting within each database. Only original full-text peer-
reviewed articles written in English were considered with
no restrictions on year of publication. Search terms were
as follows: “cross transfer training” OR “strength training”
OR “unilateral training” AND “cross-transfer effect” OR
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“physiological effects” OR “systemic effects” OR “neuro-
muscular adaptation”.

2.2 Study Selection Criteria

After eliminating duplicates and removing records follow-
ing abstract screening, search results were independently
screened by two reviewers using the inclusion and exclusion
criteria. Any discrepancies were resolved through discus-
sion (n=7). Studies eligible for inclusion were those that
investigated: (1) concurrent LB endurance and UB resistance
exercise (acute or intervention) effect on LB muscle adaptive
potential (morphology, strength and power); (2) LB resist-
ance exercise (acute or intervention) effect on concurrently
trained UB muscle adaptive potential (morphology, strength
and power) or vice versa; and (3) LB resistance exercise
intervention effect on untrained UB strength or vice versa.

Studies were excluded from the review if they: (1) paired
LB endurance (i.e. running or cycling) with UB resistance
exercise without examining LB adaptive potential; (2) had
insufficient duration (< 5 min) of the LB endurance protocol
(i.e. running or cycling) to be considered an independent
exercise session (e.g. pre-workout warmup); (3) focused on
a unilateral training adaptation limited to the cross-education
phenomenon only (i.e. training of one limb influencing con-
tralateral limb); (4) applied an exercise intervention that did
not distinguish between the two body segments (i.e. weight-
lifting); and (5) applied an exercise intervention that was not
standardised between the training groups.

2.3 Data Extraction

All data for each study were extracted by the lead author
(IC), including: (1) general characteristics (year of publica-
tion, sample population, sample size); (2) participant charac-
teristics (sex, age, body mass, height); (3) aims of the study;
(4) details of the intervention; (5) outcome measures, and (6)
key findings (Tables 1, 2, 3). Following initial data extrac-
tion, a random subset of studies was assigned to one other
author (DH) to check the accuracy of extracted data. This
approach ensured the reliability of the collected information,
minimising errors or discrepancies in the dataset.

3 Results
3.1 Search Results

Initial database searches resulted in the identification of 5227
articles with 15 additional articles identified through other
sources. Following the removal of duplicates (n=1811) and
irrelevant articles (n=2899), 532 articles were retained for
the abstract screening process. Abstract screening resulted

in the exclusion of 397 articles, leaving 135 full-text articles
to be assessed for eligibility. A further 111 articles were
excluded because of not meeting inclusion/exclusion crite-
ria, resulting in 24 articles being included in the scoping
review (Fig. 1).

Four studies included mixed-sex participants [22, 31, 43,
441, two included only female individuals [23, 45] and 18
involved only male individuals [16-18, 21, 24, 38, 46-55].
The age range was 10-73 years inclusive of all eligible stud-
ies. However, children and older adults were present in only
six [16, 31, 50-52, 55] out of 24 studies included in the
review, which significantly expanded the age range. Out of
24 studies, 4 were acute study protocols [17, 48, 56, 57],
1 examining UB resistance and a LB endurance exercise
session [17], and other 3 exploring UB resistance and a LB
resistance exercise session [48, 56, 57]. Notably, only one
study from this review involved an athletic population [54].

3.2 Upper Body Resistance Exercise with Lower
Body Endurance Exercise

Table 1 provides a summary of the characteristics, out-
come measures and key findings of the eligible studies
that investigated VST when UB resistance exercise was
added to an endurance exercise session. One study paired
UB exercise with running [38], while three studies paired
UB exercise with cycling [16, 17, 55]. Verney et al. [55]
reported a 9-13% increase in maximal isometric and
isokinetic torque of the knee extensors after concurrent
3% 12 min cycling bouts and UB strength training across
14 weeks. This study [55] involved active older adults,
who followed a progressive resistance training programme
for upper limbs and trunk muscles. The participants per-
formed three exercises per UB muscle group with three
sets for each muscle every session [55]. Heavier weights
were used for shoulder and chest exercises [range from
10-12 to 3-6 of repetition maximum (RM)], while exer-
cises for arms initially had lighter resistance (20-RM), and
later progressed to heavier resistance (10-12-RM) [55].
Abdominal and lower back exercises used only body-
weight throughout the programme with three sets of 20
repetitions [55]. Another study that tested LB strength
[38] involved active young male individuals who failed
to make any improvements on 1-RM leg extension and
1-RM squat tests after a 12-week training plan. This plan
involved 40-min continuous running protocols (2 X /week)
and 200-800-m interval running bouts (2 X /week), both
paired with high-intensity UB exercises (10-RM and
5-RM load progression) on the same days [38]. Impor-
tantly, however, the Wingate leg cycling test showed that
the group with added UB strength sessions increased both
the peak (39 W) and mean leg power (20 W), whereas the



I. Curovic et al.

onel [0S1109
-0]-9U013]S03$3)
ur sagueyd
ou pamoys
DHSN Atym
‘QU0I19)$0)S9) UL
sagueyo ou pue
S[9AQ[ [0S1II0D
pasearour
pamoys HY
ogur
JUOPIAD ATOM
Jey) 9[osnwt
SITeIAJe[ SNJSBA
Jo eore 21qy O]
ad£) pue [ 2dKy
Ul 9SBAIIAP JUBD
-g1ugIs pAjudA
-o1d Sururen
Q0UB)SISAI ()
(e8e10A® UO
M 07+ 1omod
UBIW ‘A
6¢ +Iomod
yead) sosearour
Iomod [rews
ul pA)[nsal pue

Sururen

JO oam i

pue ‘I8 Uy

) Je paInseaw

(INU) [0S1)I0D

pue ‘()
QUO0I)SOISA,

BaIR

QIqy 9[osnur

3o ‘(;url) 430

SuoIssas Juru (e8e10A® UO -joydiow 21qy
-uni 3uoj 191je M P1-Iomod  o[osnur sijeIole|
Kyoedes Sunero uBdW ‘M §- smseA ‘(M)
-uag-romod a1} 1omod yead) 1$9) OIqOJoBUE 0'LFS9LI :DD
Suratesaxd saiqy DF Ul JUIPIAD QreSuIp ¥'SFT9L DD
Jrosnuwt g1 03 sso[ Jomod “(3Y) ssaxd G'8F9°GL :DFSN
Suturen y3uons 391 pojuanaxd Areyrur -1 DO sA L9FTYLOdS ¥ 9FIYLI :DHS
d[] Wolj I9jsuen Sururen soue ‘(83 ssoxd DHSN sA DAS oom L9FECLOA  §LFILLT O S[enprArput (S661) [8€]
SuenS [EITIA -Isisar g Youaq NY-1 SA DF SA DS 1od X {7 ‘Syeom 7T PIF99LDS  T9FECLI DS  TYFETC S¢ ofew AyieoHq ‘[e 39 IowaeI3
1S919)Ul JO SaIn
sopsuen -SBaW QWO UOTJUIAIU] uonem(  (3Y) ssew Apog (wo) amyeis  (s1eak) a8y U uonendog
1SUaI)s [BOT)IAA s3urpuy A9y [000301d Sururely, sonstId)oRIRyd Juedronred Apmgs

UOISSas JUIOAD 10 JuluuNI PUB ASIIXS dJURISISAT Apoq Joddn usamiaq s109)o 19jsuen YISuamns [eONISA | d|qel



Vertical Strength Transfer Phenomenon

SUoISSas JurpoAo
JUSLINOUOD 19}
juowaAoxdwr
y1Suans g1 0}
Sururen yi3uons
g WoIj Iojsuer)

rosnuu
sdooripenb

oy ur %7 4q
pasearour

VSO dsniy
‘S9rosSnuu wc_bw
-wrey ur jou jnq
‘(%¥1-¢ o3uer)
sa[osnuwr g J1oJ
VSD Ul asearour

JuUBOYIUSIS Y

K[eanoadsar
‘I1—5,0C] pue
209 ‘,0¢€ 18
(100=4) %01
pue (00'0=9)
%Tl (€0'0=4d)
%6 pue
(100=9) %€l
Kq Apueoyrusdis
pasearour
UOISUIXD 99Uy
JIoj anbioy onou
-DOSI pue JLI

({wo)
VSD .seposnu

q71pue dn
‘(wN) onbioy

9oUBINPU JOJ
SurpAd LITH Jo

urw gy x ¢ £q
posiadsiojur Sur

o1joUDYOSI pue -uren} ySuans Yoom

s[e

-NPIAIpUI d[eW (9002)

[1SUams [BON)I3A  -JOWIOST [BWIXBIA omowost 37 g :dnoiS ouQ 10d X ¢ ‘syyeom 1 I'v8— € 1L ZLT—91 SsmAhk4F¢L 01 I9P[O AATIOY  [GG] 'Te 10 AQuIop
JSQI)UT JO SaIn
-SeaW QWO UOTJUIAIU] uonem  (3Y) ssew Apog (wo) oarme)S  (sIeak) 98y u uonendod

IoJsuer)
qISuons [BONIOA

s3urpuy A9y

[000301d Sururely,

sonsL)oeIeyd Juedonied Apnig

(ponunuoo) | sjqey



I. Curovic et al.

(c00=4d
‘%ET +) STeId
-Je[ SNJSBA JO
sa1qy e[ 2dKy
ur A[uo eare
21qYy Jo dseaIour
juedyIusIs
(A1eanoadsax
‘SI[RIOIR] SNISBA
pue proyjop
ur‘goo=d
‘%EL+pue
‘v00=d
‘%8S +) s19qy
1 2dK) s
pareroosse
S[[99+NVON
JO Joquunu 9y}
ur oseaIour
JuUBOYIUSIS Y

so[osnuw
(s00=9)
S[osnw SI[eIo)R] SNISBA
ploj[op pauten pue (¢0'0=4a) oqy
-Q0UR)SISAI pue P103[op y10q 1d s[[e0 A
SNISEA pauren uroqy tod  -[91eS+ AVON QOUBINPUD IO
-Q0UBINPUD YJOq S[[92 A jo roquinu ‘a3e  JurpPAd L[TH Jo
103 21qy 1od S[[99 -1Bs + INVON -juoorad 21qy utw g X ¢ £q

Q[[IeS payIpow Jo Joquinu 2y} 8oy ‘(;url)  pessadsioyur ur s[e
)M IOJSURI) UL 9SBAIOUT %8¢ A3oroydiow -uren yiSuans yoom -NPIAIPUL 9[BW (8002)
I3ua1s [BONIA JueOyIuSIs v aqy3o]  gn :dnoiSouQ Iod X ¢ ‘syeom ] TLI-$91 SAHF¢L 01 IOP[0 2AIY  [91] 'TB 10 AouIop
1SQIOIUT JO SAIN
-SBaW QWO UOTJUIAIU] uonem  (3Y) ssew Apog (wo) orme)S  (sIeak) 98y u uonendod
Iojsuen
1SUaI)s [BOT)IA s3urpuy A9y [000301d Sururedy, sonstId)oeIRyd Juedronred Apmgs

(ponunuoo) | sjqey



Vertical Strength Transfer Phenomenon

running-only group experienced a decrease with these two
measures (peak power — 8 W, mean power — 14 W) [38].

Two of the included studies examined leg muscle fibre
adaptations to this training configuration [16, 38]. The
intervention by Kraemer et al. [38] observed the preserva-
tion of type I and type Ilc fibre areas of the vastus lateralis
with the inclusion of UB strength trainings compared with
the members of a running-only group who saw a signifi-
cant decrease [38]. Another study [16], being a follow-up
to the previous one [55], evidenced a 73% increase of the
satellite cell number per type II fibre of the cycling-trained
vastus lateralis (p =0.04), aided by significant increases
of type Ila fibre areas (13%, p=0.03) when UB strength
exercises were joined to cycling sessions [16]. Further-
more, in a study by Moberg et al. [17], various circulat-
ing endocrine factors were reported by the combination of
an intensive endurance-based cycling protocol (5 X4 min
high intensity interspersed with 25-min low intensity)
and subsequently exercised triceps muscle. These sys-
temic exerkines favourably alter muscle tissues in both
body regions leading to enhanced oxidative and glycolytic
adaptations [17], with a potential to increase muscle mass
and strength in both areas [58].

eficial systemic

responses by
concurrent LB

transfer poten-
cycling and
UB resistance
exercise

Vertical strength
tial via ben-

transfer

Key findings
Systemic molecu- Vertical strength
lar changes
by HIIT leg
cycling and arm
exercise with
positive remod-
elling influence
for both regions

lar responses
extracted from
plasma and arm
muscle biopsies

Outcome meas-

ures of interest

Various molecu-
(PGC-1al,
PGC-1a4,
MuRF-1
mRNA)

Intervention

One group with
two different
protocols on
separate days:
arm-resistance
training vs arm-
resistance train-
ing preceded
by HIIT leg
cycling (5x4
min high inten-
sity and 25-min
low intensity)

3.3 Upper Body Resistance Exercise with Lower
Body Resistance Exercise

Training protocol

Duration

Acute study
protocol

Table 2 provides a summary of the characteristics, outcome
measures and key findings of the eligible studies that inves-
tigated VST facilitation with the combination of UB resist-
ance training and LB resistance training in the same session.
Fourteen studies were identified [18, 21, 24, 43-49, 53, 54,
56, 57]. Twelve of them investigated how a LB resistance
exercise session facilitated an UB strength session [18, 21,
24, 43-49, 53, 54]. This resulted in an augmented increase
of UB strength or power in seven studies [18, 21, 24, 45-47,
54], while no enhancement was found for UB strength in
four studies [43, 44, 49, 53], nor for acute arm muscle pro-
tein synthesis in one study [48]. Although no chronic train-
ing interventions were identified with a reverse facilitating
order (UB for LB), there were two studies that examined
how UB resistance exercise may facilitate LB strength train-
ing adaptations via immediate systemic responses [56, 57].
In one protocol, muscle androgen receptor content from
the vastus lateralis was preserved with the preceding high-
volume UB exercise session [56], while the same protocol
from another study [57] revealed beneficial binding of the
vastus androgen receptors to the DNA and increased canoni-
cal Wnt/B-catenin signalling [57], suggesting the potential
for a strength-enhancing effect of a targeted leg muscle when
it was exercised after resistance training of UB muscles.
Kraemer et al. [45] reported increased UB power meas-
ured by ballistic bench press and greater arm muscle

Body mass (kg)

Age (years) Stature (cm)
182+5

31+5

n
8

individuals

Participant characteristics

Population
Trained male

[17] (2021)

CG control group, CSA cross-sectional area, EG cardio-respiratory endurance training group, HIIT high-intensity interval training, LB lower body, min minute, LSG leg strength training group,
RM repetition maximum, SEG whole-body strength and cardio-respiratory endurance training group, SG whole-body strength training group, UB upper body, USEG UB strength and cardio-

Table 1 (continued)
respiratory endurance training group

Study
Moberg et al.
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hypertrophy for the group with added leg strength training
sessions to UB strength training sessions compared with
the UB-only exercise group. In contrast, Walker et al. [53]
did not observe any additional improvement in arm mus-
cle strength when other muscle groups were jointly trained
within the same sessions. Notably, plasma insulin-like
growth factor-1 did not change, while myostatin levels were
equally lowered with arm-only exercise and whole-body
exercise [53]. Furthermore, when unilateral arm resistance
training was followed by endocrine-producing leg resistance
training, arm strength improvement was enhanced for both
untrained [24, 46] and trained [47] young male individu-
als. Two of these studies [46, 47] incorporated blood-flow
restriction (BFR) leg exercises, which led to the augmented
strength responses in the trained arm [46, 47]. Similarly, the
only study that involved an athletic population [54] observed
facilitated improvements in a 1-RM bench press when UB
muscles were trained alongside leg-BFR exercises after only
3 weeks [54]. Contrary to these findings, BFR applied to all
limbs did not augment trunk extension strength when trunk
muscles were trained alongside arms and legs [43]. The par-
ticipants from this study [43] were untrained adults with
back pain who followed a light 10-week training programme

with three sets of leg extension, calf raises and arm curls
at 25% of their maximal voluntary isometric contraction
(MVIC) two times a week [43].

Studies with a within-subject design showed conflict-
ing findings when male participants trained different arms
on different occasions [18, 49]. Acutely elevated hormonal
milieu by a leg resistance session failed to enhance the pro-
tein synthesis rate in previously trained elbow flexors of a
trained arm [48], and this exercise protocol did not support
unilateral arm strength improvement after a 15-week exer-
cise plan [49]. However, when the LB region was trained
prior to a single arm, both strength and hypertrophy were
greater in this arm following an 11-week training plan [18].
Finally, two studies investigated whether performing high-
volume leg exercise sessions could enhance the effectiveness
of UB strength training sessions targeting multiple muscle
groups (chest, back, shoulders and upper limbs) [21, 44]. A
study with 17 mixed-sex participants found no enhancement
for UB strength when UB exercises followed LB sessions
despite produced elevations in growth hormone levels [44].
In contrast, a study with 20 trained male individuals, who
exercised their UB muscles before high-volume LB sessions,
reported more significant hypertrophy for the arm muscle
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area, more significant bench press improvement, and more
significant UB power expression compared with the low-
volume leg exercise group [21].

3.4 Vertical Strength Transfer with the Exercise
of One Body Segment

Table 3 provides a summary of the characteristics, outcome
measures and key findings of the eligible studies that inves-
tigated VST with the exercise of one body segment. Six stud-
ies [22, 23, 31, 50-52] of the seven included [22, 23, 31, 45,
50-52] evaluated changes in untrained UB strength as an
outcome of a LB exercise intervention. All the interventions
reported increased strength of upper extremities measured
by handgrip and MVIC after various exercise plans includ-
ing: bilateral LB strength exercise [23, 50, 51], unilateral
LB strength exercise [22] and cardiorespiratory endurance
LB exercise [31, 52]. Only one investigation examined the
influence of an UB strength training intervention for the
untrained LB strength [45]. The authors reported a marginal
strength improvement on a 1-RM squat for both the 3-8
RM training group (p =0.08) and 8§—12 RM training group
(p=0.10) [45].

Ben Othman et al. [50] reported a higher strength increase
in untrained upper extremities measured by elbow flexor’s
MVIC and handgrip for a high load-low repetition group
of boys compared with the low load-high repetition group.
These strength improvements were retained after 4 weeks of
a detraining period for the same participants [51]. Further-
more, Pietrangelo et al. [52] and Ceci et al. [31] reported
improved handgrip strength in older male individuals as a
result of a leg resistance [52] and leg endurance training
programme [31, 52]. Aman et al. [23] also demonstrated a
significantly improved level of strength in the untrained arms
for middle-aged female individuals allocated to groups with
distributed rehabilitative practice and massed rehabilitative
practice [23]. Finally, Magdi et al. [22] organised unilateral
leg training with accentuated eccentric loading for the group
of trained young male and female individuals, examining the
effect on the ipsilateral arm. There was a significant increase
in arm MVIC and power at low, medium, and high loads,
with no gains in muscle mass nor differences between the
sexes compared to the control group after a 10-week plan
[22].

4 Discussion

The purpose of this systematic scoping review was to inves-
tigate the existence of the VST phenomenon as a response
to various UB and LB exercise configurations and to iden-
tify potential mechanisms underpinning its occurrence. The

main findings are as follows: (1) concurrent UB strength
and LB endurance training (i.e. running or cycling) for older
adults may stimulate beneficial satellite cell expression in
both regions, benefitting LB muscle morphology and LB
strength enhancement. This training combination also shows
the potential to protect leg muscle fibres from a catabolic
environment and to preserve power-generating capacity in
LB muscles via neurophysiological mechanisms, highlight-
ing promising applications for athletic populations, (2) high-
volume or BFR type of LB resistance exercise may facilitate
strength improvements in previously or subsequently trained
upper limbs, and previously or simultaneously trained mul-
tiple UB muscle groups. The opposite direction of trans-
fer (i.e. UB to LB) has not been investigated with strength
testing outcomes, (3) high-volume UB resistance exercise
beneficially modulates androgen receptor response in sub-
sequently exercised quadriceps, demonstrating the potential
for a strength-enhancing effect of LB muscles, (4) strength
training for LB muscles may result in improved strength
of untrained upper extremities, and (5) VST likely occurs
because of the combination of neurological adjustments and
circulating endocrine factors. Future research should exam-
ine the extent of VST facilitation in an athletic population,
especially with respect to the influence of UB resistance
training on LB strength or power-generating adaptations.

4.1 Upper Body Resistance Exercise with Lower
Body Endurance Exercise

An important finding from this review that has potential
implications for athletic performance is the noted protec-
tive role of UB strength training for the prevention of leg
power loss and type I and type Ilc leg muscle fibre area
when it was performed after various running sessions across
a 12-week training period [38]. This finding is reinforced
with the observed increase of type II fibre area and satellite
cell number per type II fibre in the vastus lateralis [16], as
well as improved strength of the quadriceps muscle [55]
when UB exercise was joined to the leg cycling sessions
for older adults [16, 55]. In addition, when high-intensity
interval cycling for endurance was performed prior to arm
resistance training, this led to the production of circulating
factors that beneficially modulate muscle adaptations in both
body regions, potentially leading to strength improvements
on a whole-body level [17].

A possible explanation for the leg-protective effect by
concurrent UB strength training and LB endurance train-
ing may lie in various physiological mechanisms provoked
by the exercise of an entire UB region [38]. 5’Adenosine
monophosphate-activated protein kinase (AMPK) is well
known for the regulation of energy homeostasis [59], and it
responds to endurance training [60], acting as a suppressor of
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the mammalian target of rapamycin (mTOR) pathway known
for its anabolic effects [61-63]. However, when resistance
exercise follows endurance training, mTORI1 signalling is
not inhibited despite the pre-activation of AMPK [64], and
anabolic gains are not compromised [65]. This could explain
why UB strength improvement was not negatively impacted
when these muscles were trained after the running sessions
[38]. In reverse order of signalling pathways, anabolic medi-
ators such as mTOR]1, insulin-like growth factor-1 and ser-
ine-threonine protein kinase (Akt) after resistance exercise
do seem to suppress catabolic processes in human organ-
isms [66—69]. This “switch’” between different pathways
affects muscle fibre size depending on the dominant type
of activity [70, 71]. Thus, UB strength training may have
systemically induced endocrine factors that interfered with
LB muscle morphology in the mentioned protocols [72].
For instance, one study observed that performing an UB
strength training 1 day after a muscle-damaging leg exercise
session accelerated the recovery of concentric force genera-
tion in the trained leg [73], which may be explained by the
recovery potential of circulating anabolic hormones such
as testosterone [74]. Notably, Kraemer et al. [38] organised
a training plan with multi-joint exercises for large muscle
groups (i.e. bench press, military press, latissimus pull-
down), with the capacity to stimulate testosterone production
for systemic influence [56]. This circulating androgen might
have improved nerve conduction velocity and myelination
[75, 76], potentially leading to faster and stronger electrical
signals to any muscle in the body. Indeed, strength train-
ing intensifies CNS for increased impulses [77], leading to
modified behaviour of the motoneurons [78], which could
have resulted in the protective effect on the leg power output
[38]. Moreover, two acute exercise studies have shown that
UB strength training could effectively potentiate quadriceps’
androgen receptor response to exercise [56, 57]. This poten-
tiation may offer protection against catabolism [56] aiding
the anabolic enhancement of strength and power capacity in
the targeted muscles [75]. Beyond the effects of testosterone,
muscle growth and maintenance are also influenced by other
complex regulatory mechanisms. One such systemic factor
is follistatin, a glycoprotein induced by resistance exercise
[28, 79, 80]. Elevated follistatin induces muscle hypertro-
phy [28] and may decrease myostatin levels [15], a myokine
that negatively affects muscle mass [81]. One study from
this review observed lowered total myostatin levels by 20%
with as little as three exercise sets for elbow flexors in the
training plan [53]. Hence, intensive exercise of an entire UB
segment may have the potential to produce endocrine factors
that could counterbalance leg muscle fibre atrophy seen after
long running sessions [39], resulting in the preservation of
high-intensity performance for the LB [38]. This could bring
novel considerations for exercise sequence programming
that needs to address both aerobic power and high-intensity

force production by lower extremities for an athletic popula-
tion competing in multi-directional sports [82, 83]. Future
research should explore this link further as it may have sig-
nificant implications in sports like soccer where current UB
resistance sessions do not seem to result in pronounced neu-
rophysiological adaptations [84] compared to the require-
ments placed on the LB musculature [85, 86].

Further evidence for beneficial effects of combining LB
endurance and UB strength exercise in one session arrived
from Moberg et al. [17], who found that elevations in PGC-
co-activator-y-1 (PGC-1a)1 and PGC-1a4 were markedly
larger when arm resistance training followed after the endur-
ance-based high-intensity interval cycling session. PGC-1al
is elevated after endurance training [87, 88] and has a benefi-
cial role in oxidative adaptations, promoting fatigue resist-
ance [87, 89], while PGC-1a4 expression is greater after
resistance exercise, and has a facilitating role for muscle
hypertrophy [58] and glucose uptake via augmentation of
key glycolytic genes [90]. These two isoforms are a signifi-
cant part of a large PGC-1a transcription coactivator group
that serves as a key stimulator of mitochondrial biogenesis
heavily linked to lactate metabolism [91], a beneficial modu-
lator of metabolic genes [92, 93] and an efficient preserver
of muscle mass in the face of a catabolic environment [94]
with a role on a whole-body level [95]. Concurrent exercise
modes with the same muscles (e.g. cycling and leg resist-
ance exercise) have been shown to increase these two iso-
forms [65, 96], but here the systemic effect was noted with
separate muscles (legs and triceps). A similar occurrence
happened in a study by Birnbaumer et al. [30] who reported
elevated systemic blood lactate levels after the warm-up
activity that involved 30-s all-out running, which improved
performance in the subsequent pull-up exercise via enhanced
glycolytic and oxidative metabolism [30]. This cross-tissue
lactate utilisation from concurrent types of exercise may
explain the augmentative effect on exercise performance [91,
97-99]. Nevertheless, the evidence for long-term benefits is
still scarce and requires careful investigations with chronic
exercise adaptations in the future.

Two intervention studies from this review examined the
cross-effects of concurrent UB strength training and LB
cycling sessions spread across a 14-week period for older
adults [16, 55]. With the absence of control group, it remains
unclear whether the improvement in leg strength [55], fol-
lowed by a beneficial similar increase in the satellite cells
per fibre in both regions [16], was supported by the physi-
ological cross-talk [17]. Although an older population could
increase strength solely on the basis of endurance exercise
[100], concurrent exercise modes lead to augmented strength
improvements [101, 102], optimising both cardiovascular
and neuromuscular gains [102]. Therefore, combining LB
endurance training with UB resistance training may provide
endurance-related adaptations to resistance-trained muscles
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and vice versa. Future research should further explore this
effect as it may hold significance for the population with the
limited training capacity like older adults who could obtain
health benefits from two distinct exercise types in one train-
ing session.

4.2 Upper Body Resistance Exercise with Lower
Body Resistance Exercise

This review has identified that neurophysiological adapta-
tions arising from the exercise of one body region may aug-
ment strength development in another body region [18, 24,
45, 46, 54]. However, VST is less likely to be facilitated if
multiple factors are not accounted for, such as the exercise
load and volume [43, 53], exercise order [48, 49] and exer-
cise type [44].

4.2.1 Neurophysiological Underpinning of the Facilitated
Transfer

Training of the whole body elicits greater systemic responses
compared with the protocols that involve a smaller number
of muscle groups [15, 103]. In addition to anabolic hor-
mones [74], these signals also involve myokines that regu-
late muscle adaptations such as myostatin and follistatin
[15, 79, 81], modified satellite cell activity [104] and trig-
gered anabolic pathways like Akt/mTOR [62, 68]. While
exercise sessions that involve large muscle groups, being
high in volume and moderate to high in intensity, are criti-
cal to producing substantial endocrine responses [74, 103,
105-108], a weak or insufficient stimulus by the selection
and intensity of included exercises may lack the capacity to
affect these changes [109]. This could be seen in the stud-
ies that applied LB resistance exercises with a high-volume
approach, which often resulted in an augmented increase of
concurrently trained arm muscles [18, 43], whereas low-
volume protocols showed conflicting results [43, 54]. When
both UB and LB regions are trained together, it is difficult
to distinguish whether physiological or neurological adap-
tations facilitate the VST. For example, UB power (meas-
ured by a ballistic bench press) improved significantly more
after a whole-body strength training programme than after
the same UB exercise plan without LB involvement (delta
change +68 W, p <0.05) [45]. This may have occurred as
a result of magnified neuromuscular adaptations arriving
from heavy loads with the enhanced neural drive for UB
muscles by the inclusion of intensive LB contractions [2,
110-112]. Hence, it looks likely that both neurological and
physiological mechanisms underpin the adaptations that lead
to the VST occurrence when UB and LB muscles are con-
currently trained.

Three studies from this review demonstrated a higher
increase in UB strength when UB exercises were performed

alongside leg-BFR exercises compared with the leg exer-
cises without BFR [46, 47, 54]. This probably occurred
via emphasised circulating endocrine factors [12], as evi-
denced in the two studies that took the measures [46, 54].
Likely mediators of these physiological cross-adaptations
are lactates [30], which accumulate under hypoxic condi-
tions caused by BFR [113] or by high-volume exercise pro-
tocols [114—-116]. Lactates have the ability to impact distant
tissues as signalling molecules [91, 98, 99, 117], stimulate
reactive oxygen species production [118], increase type II
fibre recruitment [119, 120], and elevate anabolic hormone
levels [113, 121, 122], promoting hypertrophic effects [113,
123]. In addition, lactate produced by one muscle can be
systemically utilised as an effective energy fuel by other
“recipient” muscles [97]. Its shuttle transport is supported
by elevated testosterone [172], a hormone proposed as a pos-
sible facilitator of the VST in four studies [18, 24, 46, 54].
While oxidative muscle fibres use lactates directly [97], type
II fibres primarily dispose them via gluconeogenesis [125].
Lactates are also preferably used as a source of energy in
brain cells [25, 126], where they promote neuroplasticity
and cerebrovascular plasticity [25, 26], with the potential to
enhance corticospinal excitability and reduce intracortical
inhibition [127]. This mechanism might explain significant
strength increases of the contralateral (untrained) arm after
leg-supported unilateral arm training [24, 47], which points
to an improved motor unit recruitment in that limb [105,
128].

In addition to the lactate-induced neuroplasticity, testos-
terone has also been shown to significantly associate with
neuromuscular performance measured by squat jump and
change-of-direction speed in young athletes [129], as well as
with dose-dependent and concentration-dependent increases
in maximal voluntary leg strength and leg power in healthy
young men [27]. While suppression of endogenous testoster-
one production diminishes strength gains [130], its elevation
leads to increased levels of released neurotransmitters and
reorganisation of neurons [75]. Therefore, the inclusion of
exercises from a distant body region might have had a vital
neurophysiological complementary influence on another
region’s strength training adaptations with the production
of circulating lactates and androgens. When considering
practical applications for athletic populations, however, it
is important to recognise that, with the exception of Cook
et al. [54], who studied semi-professional rugby players,
all other investigations involved untrained or recreationally
active individuals who could gain notable improvements in
strength and hypertrophy with a smaller number of resist-
ance training sessions [131]. Consequently, the extent to
which these cross-training adaptations are applicable and
impactful for a sports population remains unclear. None-
theless, presented findings could hold potential significance
for leg-dominant athletes such as soccer players who do not
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seem to prioritise strength development in UB muscles [84].
Future research is, therefore, warranted to investigate if this
population may benefit from emphasising high-resistance
UB exercises in addition to LB sessions, optimising over-
all athletic performance via increased neurophysiological
effects.

4.2.2 High-Volume Resistance Exercise Facilitation
for the Isolated Muscle from a Remote Body Region

In this review, three studies showed that the anabolic-pro-
ducing type of weight training for LB muscles had a posi-
tive impact on strength development for the elbow flexors
that were trained earlier in the session [24, 46, 47], likely
due to augmented neurophysiological adaptations [47]. In
contrast, a similar approach by West et al. [49] did not
result in any enhancements of arm strength improvement
after the intervention. This finding [49] is in line with
research showing that raised levels of endogenous ana-
bolic hormones do not always correlate with hypertrophy
and strength gains [132-134], questioning their role in the
facilitation of strength [132]. Importantly, however, this
within-subject study [49] required participants to ingest
18 g of protein before and after each of the workouts that
were separated by 24 h, involving a unilateral arm exercise
session followed by a high-volume LB exercise session
first, and a contralateral arm exercise session alone the
next day. After the combined session, post-exercise protein
availability may have been prioritised for consumption by
the leg muscle cells [135], whereas the arm-only training
protocol had the same amount of protein content readily
available to the exercised arm muscle [49]. Furthermore,
with the increased amino acid presence in 2 consecutive
days, training of the contralateral arm may have benefitted
from the previous day’s high-volume session via prolonged
anabolic pathway signalling [136] and altered systemic
metabolic state potentiating muscle stem cells [72] in the
untrained arm. For example, muscle damage in one limb
triggers metabolite signals that prime distant stem cells
in the opposite limb [72], placing them in a prolonged
mTOR-dependent “alert state” ready for potential future
modifications if required [137].

The opposite exercise design, in which anabolic-pro-
ducing weight training from one body region was posi-
tioned before the strength training of a muscle from a
remote body region, proved effective in augmenting a tar-
geted muscle’s response [18, 56, 57], possibly due to the
contractions occurring under an altered systemic environ-
ment with the additive effect [18, 30, 56, 57]. For instance,
weight training for several UB muscles (i.e. chest, back,
shoulders, arms) was efficient in potentiating favourable
transcriptional changes in the DNA-ribosome complex of
a subsequently exercised quadriceps [56, 57], revealing

the potential for strength enhancement of LB muscles
[138—-141], though without a clear link to the elevated
testosterone [57]. By reversing the direction of facilita-
tion, LB resistance training sessions conducted before
isolated biceps exercises provided a considerable boost in
elbow flexor strength after the training programme [18].
Therefore, using the logic that elevated systemic factors
may remodel muscles trained later in the session [56, 74],
likely via complementing neurophysiological adaptations
[75, 124], it looks conceivable to suggest that high-vol-
ume exercise of the LB musculature may provide sup-
port for the progress of arm strength trained afterwards,
which could be critical during the rehabilitation process
after injury. As an example, this concept might also be
applied to an isolated hamstring exercise placed after
the UB resistance session to maximise its strength gains,
potentially leading to enhanced athletic performance [142,
143] or a hamstring injury risk reduction [144]. It remains
unclear, however, whether this training combination has
the capacity to result in significant strength improve-
ment for an athletic population, which should be further
investigated.

4.2.3 High-Volume Resistance Exercise Facilitation
for Multiple Muscles from a Remote Body Region

The previous section showed that when the goal was to
maximise strength exercise response of a single muscle
(e.g. biceps brachii), high-volume exercise of other body
region was partly successful when positioned afterwards [24,
47-49], but reliably effective when positioned before [18,
56, 57]. In contrast, however, when the goal was to augment
strength gains for multiple muscles across the whole UB
region, preceding high-volume LB exercise failed to sup-
port it [44], whereas succeeding high-volume LB exercise
successfully facilitated it [21]. The explanation for this dis-
crepancy may lie in the impaired contractions from large UB
muscle groups when they were trained later in the session
due to the reduction in voluntary muscle activation [145]
resulting from the previous leg workout. The central fatigue
[146] may not substantially affect contractions of a single
muscle [18], but it might hinder the activation of multiple
muscles from various UB areas and result in the lack of
strength enhancement [44]. Furthermore, a study that failed
to facilitate strength adaptations [44] had female individu-
als for half of the participants compared to the study that
involved only male individuals and proved successful [21].
The differences between the sexes might have affected physi-
ological responses to exercise (e.g. no difference in testos-
terone was noted between the female training groups) [147],
contributing to the deficiency of a transfer effect [44].

The inconsistency in findings between West et al. [49] (no
strength facilitation for previously exercised biceps muscle)
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and Bartolomei et al. [21] (successful strength facilitation
for previously exercised multiple UB muscles) may originate
from the absence of local testosterone production follow-
ing the exercise of a singular muscle from the UB [48, 49]
compared to the comprehensive engagement of a total UB
segment [56, 57]. This broader engagement likely triggered
an anabolic response in the targeted UB [56], complemented
by systemic endocrine factors released into circulation by
subsequently trained LB [24]. For example, the change in
myostatin-follistatin levels is almost twice as large if both
UB and LB are exercised together compared with any of
these regions alone, shifting the ratio in the advantage of
follistatin [15]. Therefore, a limited body of research sug-
gests the potential of the VST to arise from an endocrine-
producing (i.e. high-volume) LB workout to strength-trained
(i.e. high-resistance) multiple UB muscles in recreational
male population under the condition that these (UB) muscles
are exercised either before the leg session [21], or simultane-
ously [54], but not afterwards [44] so to avoid enervation of
the neural impulses toward the targeted fibres. Notwithstand-
ing relatively speculative conclusions, these investigations
offer valuable insights into the strategies for taking advan-
tage of the VST phenomenon magnifying strength gains via
effective training sequencing. More research is needed to
evaluate the magnitude of these adaptations with different
exercise interventions involving different sexes and athletes
from different sports.

4.3 Vertical Strength Transfer with the Exercise
of One Body Segment

While uncertainties may exist around the main contribu-
tors to the VST when both body segments are concurrently
trained, it is highly unlikely to suggest any other but neu-
rological adaptations explaining strength increases in the
untrained body parts as a response to the training of remote
body parts. The main findings from this section suggest that
neurophysiological responses to LB exercise may be impor-
tant in increasing and preserving strength gains for the mus-
cles in upper extremities [22, 23, 31, 50, 52].

Neural adjustments to strength training generally include
two major sites: (1) the CNS with the modified corticospinal
excitability and intracortical inhibition [77, 148, 149] and
(2) the peripheral nervous system with altered motor unit
behaviour reflected through the increased discharge rate, rate
coding, synchronisation, recruitment and reduced coactiva-
tion of antagonists [150-153]. Any of the aforementioned
mechanisms may explain the dissipation of strength from
the trained to the untrained muscle groups. However, it is
somewhat intuitive to assume that UB resistance training
will not have the capacity to alter neural responses in suf-
ficient amounts to modify LB strength without the local
exercise stimulus owing to the difference in the size of the

muscles between these two regions. For example, the cross-
education effect is greater in lower extremities [19, 20], and
it is likely that larger muscles require more intense neural
signals to result in pronounced neuromuscular adaptations.
This was suggested with the findings by Kraemer et al. [45],
where LB power and strength were barely impacted by the
UB strength training programme alone, whereas UB power
expression was augmented by the addition of high-resistance
LB exercises. Therefore, a complementary result for the neu-
ral drive towards the LB muscles may only be possible when
both regions are concurrently trained, and this is yet to be
affirmed with future investigations.

To further evaluate the role of the CNS for the VST, this
review included studies that examined strength changes in
the upper limbs after interventions that exclusively involved
LB exercises. They all resulted in significant strength
increases for children [50, 51], older populations [31, 52]
and adults [22, 23]. These improvements likely occurred
under different adaptive mechanisms depending on the
age categories. For instance, novel patterns of movements
may have provoked enhanced global neural responses for
youngsters [154], followed by superior neurophysiological
adaptations [155, 156] that had the potential to preserve
strength gains even after a 4-week detraining period [51].
In contrast, authors from the studies with older adults [31,
52] suggested biochemical factors known as exerkines
inducing a crosstalk between remote tissues and causing
strength improvements in the upper extremities. However,
despite the elevated levels of superoxide dismutase activ-
ity [31], which is a proven therapeutic agent [32], it may
be more feasible to suggest that the activation of UB mus-
cles during cycling and strength training (to maintain bal-
ance) caused increases in handgrip strength for inactive
older adults. Positive results were also found in a study by
Aman et al. [23], where middle-aged women’s upper limb
strength significantly improved (33.9-58.3% increase) after
LB resistance and “neuromuscular exercises” (i.e. balance,
agility, strength) across a 12-week period. It is possible that
repetitive LB contractions supported the downregulation of
inhibitory feedback by the afferent nerves [157], whose pur-
pose is to deactivate alpha motor neurons of the contracted
muscle when high forces are applied [158]. With sustained
muscular activation, these signals are inhibited [157], and
favourable alterations in spinal reflexes have been proven to
occur [77]. This would result in an enhanced motor drive
by the CNS [159], supporting strength improvement in the
untrained muscles. All these mechanisms look important
for the further exploration of the VST with its potential to
increase strength on the account of neurological enhance-
ments. For example, UB strength training may have a com-
plementary neuromuscular effect with the facilitation of
leg-dominant high-intensity actions such as sprinting [160]
or jumping [34]. Nonetheless, further research involving
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athletic populations is necessary before making conclusive
interpretations based solely on the findings from untrained
individuals.

“Cross-education’’ is a well-established phenomenon that
explains strength gains in the untrained limb after the exercise
of the contralateral limb due to the modified neural plasticity
[105, 148]. Two models proposed to interpret cross-education
are the “bilateral access model,”” which describes that unilat-
erally created motor engrams can be utilised bilaterally, and
the “cross-activation model’’, which explains that unilateral
contractions are driven by both the ipsilateral and contralateral
motor cortices [148]. While strength training is proposed to be
governed by cross-activation, more complex tasks have been
suggested to promote bilateral access [105]. Magdi et al. [22]
tried to maximise neuromuscular responses by taking advan-
tage of both models, organising participants to attend unilat-
eral leg training sessions where they were required to perform
strength-based and proprioceptive-based leg exercises. The
idea was to stimulate the VST from the trained leg to the
untrained arm. Authors intended to magnify this effect by
emphasising eccentric leg contractions [161-164] and got a
remarkable transfer from the exercised lower limb to the non-
exercised upper limb (MVIC increase: men 14.7%, women
69.4%; biceps 1-RM increase: men 10.5%, women 20.6%;
power increase with low loads: men 59.0%, women 72.6%,
medium loads: men 47.1%, women 60.8%, and high loads:
men 19.6%; women: 53.3%) [22]. Unfortunately, no tests were
conducted on the contralateral arm to examine whether the
VST dissipated to this arm as well. The findings from this
study [22] highlight the potential of unilateral eccentric-based
resistance training to increase force and power production in
the ipsilateral remote limb. Further research should explore
the extent to which this type of exercise may be utilised to
stimulate neurological responses with the application to the
recovery from injury. It could be particularly beneficial for
athletes who need to preserve strength in injured extremities
during the rehabilitation process in order to be ready to per-
form again in shorter time periods.

The main limitation of this review was the lack of stud-
ies investigating the effect of UB resistance training on LB
strength or power-generating adaptations, which required
more speculative discussion using the reverse order of trans-
fer (i.e. LB to UB). Furthermore, VST was mostly discussed
in relation to the recreational population, which is arguably
more prone to neurological alterations compared with pro-
fessional athletes.

5 Conclusions

The purpose of this systematic scoping review was to inves-
tigate the existence of the VST phenomenon as a response
to different exercise configurations and identify potential

mechanisms underpinning its occurrence. The findings from
the review highlight some important points: (1) the addi-
tion of UB strength training to LB endurance training may
help preserve leg muscle morphology and power genera-
tion in LB. This exercise combination may also contribute
to strength gains in LB muscles for older population; (2)
high-volume or BFR type of LB resistance exercise may
facilitate strength training adaptations for: (a) previously
or subsequently trained single muscle group from UB (e.g.
elbow flexors) and (b) previously or simultaneously trained
multiple muscle groups from UB (i.e. upper torso with upper
limbs); and (3) strength exercise sessions for LB muscles
could improve strength in untrained upper extremities on the
basis of an increased neural drive. More research is needed
to elucidate whether the VST phenomenon could help to
enhance performance for an athletic population and poten-
tially preserve high-intensity force production in injured
extremities as a result of exercise with healthy extremities.
This phenomenon might also be important for the preser-
vation of power-generating capacity in endurance-trained
LB muscles by strength-trained UB muscles, thereby also
benefitting specific athletic populations (e.g. soccer players),
for which future investigations are warranted.
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