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Abstract
Within applied sports science and medicine research, many challenges hinder the establishment and detailed understand-
ing of athletic injury causality as well as the development and implementation of appropriate athletic injury prevention 
strategies. Applied research efforts are faced with a lack of variable control, while the capacity to compensate for this lack 
of control through the application of randomised controlled trials is often confronted by a number of obstacles relating to 
ethical or practical constraints. Such difficulties have led to a large reliance upon observational research to guide applied 
practice in this area. However, the reliance upon observational research, in conjunction with the general absence of sup-
porting causal inference tools and structures, has hindered both the acquisition of causal knowledge in relation to athletic 
injury and the development of appropriate injury prevention strategies. Indeed, much of athletic injury research functions 
on a (causal) model-blind observational approach primarily driven by the existence and availability of various technologies 
and data, with little regard for how these technologies and their associated metrics can conceptually relate to athletic injury 
causality and mechanisms. In this article, a potential solution to these issues is proposed and a new model for investigating 
athletic injury aetiology and mechanisms, and for developing and evaluating injury prevention strategies, is presented. This 
solution is centred on the construction and utilisation of various causal diagrams, such as frameworks, models and causal 
directed acyclic graphs (DAGs), to help guide athletic injury research and prevention efforts. This approach will alleviate 
many of the challenges facing athletic injury research by facilitating the investigation of specific causal links, mechanisms 
and assumptions with appropriate scientific methods, aiding the translation of lab-based research into the applied sporting 
world, and guiding causal inferences from applied research efforts by establishing appropriate supporting causal structures. 
Further, this approach will also help guide the development and adoption of both relevant metrics (and technologies) and 
injury prevention strategies, as well as encourage the construction of appropriate theoretical and conceptual foundations prior 
to the commencement of applied injury research studies. This will help minimise the risk of resource wastage, data fishing, 
p-hacking and hypothesising after the results are known (HARK-ing) in athletic injury research.

1 Introduction

Injuries in sport remain a major concern to athletes, practi-
tioners and sporting organisations as the negative impacts 
of athletic injuries are widespread, affecting athlete health, 
individual and team performances, as well as sporting clubs’ 
economies. Additionally, previous injury remains one of the 

leading risk factors for an increased risk of subsequent injury 
[1, 2], although in some contexts the causal nature of this 
relationship has been questioned [3]. Large scale epidemio-
logical studies continue to report the persistent nature of 
athletic injuries, with injury rates remaining relatively stable 
over a number of years across a multitude of sports [4–6]. 
Markedly, some types of injuries, such as hamstring injuries, 
are reportedly even increasing in certain contexts [7, 8].

Although it is difficult to attribute any lack of progress 
relating to athletic injury prevention to a single factor, a 
potential major contributor is a general absence of under-
standing regarding athletic injury causality. Indeed, injury 
prevention strategies have been widely implemented in the 
absence of causal explanations, causal frameworks or more 
generally, coherent supporting theories and conceptual 
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foundations [9–11]. Such strategies are contradictory to 
the popularised ‘sequence of prevention’ [12], whereby the 
establishment of injury causality and aetiology form the 
foundations on which appropriate injury prevention strate-
gies should be developed [12].

Determining the causes of natural phenomena is a key 
goal of science [13], and is an a priori requirement to the 
manipulation of variables to produce a favourable out-
come. However, in many scientific areas, developing causal 
knowledge is difficult. Within applied sports science and 
medicine research, numerous challenges hinder attempts 
to develop detailed understandings of injury causation. 
For example, the application of randomised controlled tri-
als (RCT; Table 1), particularly in elite sporting popula-
tions, is often confronted by a number of obstacles relating 
to either ethical or practical constraints that restrict their 
implementation. Such difficulties have arguably resulted in 
poor research practices and an over-reliance on observa-
tional research (Table 1) (without appropriate supporting 
causal inference tools and structures) for guiding both the 
acquisition of causal knowledge and the development and 
implementation of athletic injury prevention strategies. In 
addition, many current approaches to athletic injury research 
and prevention, and the development of new metrics in this 
area, appear to be primarily driven by the mere existence and 
availability of various technologies and data. For example, 

many metrics utilising technologies, such as global posi-
tioning systems (GPS) or inertial measurement units (IMU), 
have been proposed and adopted across the research and 
sporting landscape to assess athletic injury risks. However, 
little attention has been devoted to how these metrics and 
their underlying technologies can conceptually be related 
to the causal (mechanical and physiological) processes and 
mechanisms governing athletic injury occurrence (of which 
many different types exist) [9–11]. Such approaches are not 
reflective of theory-driven research, which is an essential 
component of the scientific method [14, 15]. Rather, these 
approaches more closely resemble a (causal) model-blind 
approach at high risk of bias, data fishing [16], p-hacking 
[16, 17] and hypothesising after the results are known 
(HARK-ing) [16, 18, 19]. Considering the current reliance 
on observational studies in athletic injury research, there 
remains an uncomfortable scarcity of much needed support-
ing causal inference tools and structures within the existing 
literature to guide statistical analyses and causal inferences. 
It follows that, many current approaches to understanding 
athletic injury and developing injury prevention strategies 
in the applied sporting world lack causal justification and 
are overly speculative.

To assist with some of the concerns described above, 
causal diagrams, including frameworks [20], models 
[14, 21], causal directed acyclic graphs (DAGs; Table 1) 
[22–26] and other causal diagrams [27–29], are relevant 
tools that provide substantial value, organising ideas and 
directing future research and causal inferences. Specifi-
cally, these tools help guide the research process by out-
lining key concepts relating to causality, such as relevant 
causal assumptions, pathways and mechanisms. In addi-
tion, these diagrams also have important implications for 
statistical analyses, with causal DAGs in particular outlin-
ing which variables to include and adjust for in a statistical 
analysis to identify causal and non-causal effects. Indeed, 
causal DAGs are instrumental in addressing bias, explic-
itly illustrating potential confounders (Table 1), while also 
highlighting when controlling for a variable inappropriately 
will introduce new bias into the analysis, such as collider-
stratification bias (Table 1). Accordingly, the adoption of 
causal diagrams may help alleviate many of the challenges 
facing athletic injury research by facilitating the investiga-
tion of specific causal links, assumptions and mechanisms 
with appropriate scientific methods, aiding the translation 
of lab-based research into the applied sporting world, and 
guiding causal inferences from applied research efforts by 
establishing appropriate supporting causal structures. Fur-
ther, the utilisation of causal diagrams will also help with 
the development and adoption of both relevant metrics (and 
technologies) and appropriate injury prevention strategies, 
and encourage the construction of coherent theoretical and 
conceptual foundations prior to the commencement and 

Key Points 

Athletic injury research has a large reliance upon obser-
vational research to guide applied practice. However, 
appropriate supporting causal inference tools and struc-
tures are generally absent within the existing literature, 
which is problematic.

Owing to various forms of bias, such as confounding and 
collider-stratification bias, current research approaches 
may erroneously implicate variables that are protective 
to athletes with an unchanged or increased injury risk, 
as well as variables that are harmful to athletes with an 
unchanged or decreased injury risk. This may facilitate 
the implementation of injury prevention strategies that 
are ineffective or, worse, increase the risk of injury and 
interfere with an athlete’s training process.

To help alleviate these concerns, athletic injury research 
and prevention efforts should shift their attention towards 
the formation, utilisation, investigation and when neces-
sary, revision or replacement of causal diagrams includ-
ing theoretical and conceptual causal frameworks and 
models, DAGs and similar diagrammatical constructs.
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Table 1  Relevant nomenclature

Operational definitions

Randomised controlled trial (RCT) An RCT is a type of scientific experiment that aims to reduce certain sources of bias when testing the 
effectiveness of new treatments or interventions. This is achieved by randomly assigning participants to 
either the treatment group or the control group, with the randomisation process creating an expectation 
of ‘no confounding’ and exchangeability between groups

Observational research Observational research is a research method in which the investigator does not intervene or manipulate 
the study environment or subjects but rather observes and measures variables of interest without alter-
ing their natural state. This approach is used to identify and describe patterns, trends and relationships 
within data

Exchangeability Refers to the assumption that individuals or groups being compared in a study are interchangeable or 
equivalent with respect to all factors that cause the outcome, except for the variables or interventions 
under investigation. This assumption is crucial for the validity of RCTs and for making valid causal 
inferences, and ensures that any differences observed can be attributed to the specific exposure or treat-
ment being studied rather than differences in baseline characteristics

Internal validity Internal validity refers to the degree to which a study accurately establishes a causal relationship between 
variables; specifically, the extent to which it can be confidently stated that the change in the dependent 
variable was produced solely by the independent variable and not by any other factors

External validity External validity refers to the extent to which the results of a study can be applied to other situations, set-
tings, populations or time periods beyond the original conditions of the study

Transportability Transportability is a more specific term than external validity, and refers to the extent to which causal 
conclusions from one study conducted in one population can be applied to a different external target 
population. This is in contrast to generalisability, which refers to the extent to which findings from a 
study conducted with a specific sample can be applied to the broader population from which the sample 
was drawn

Causal directed acyclic graph (DAG) A causal DAG is a graphical tool used to represent causal relationships. In a DAG, nodes represent vari-
ables (such as factors or outcomes), and directed edges (arrows) represent causal influences from one 
variable to another. The ‘acyclic’ aspect means that the graph does not contain any cycles, implying that 
causality is not circular

Clinical equipoise Clinical equipoise refers to a genuine uncertainty within the expert medical community about the com-
parative therapeutic merits of each arm of a clinical trial. It is an ethical precondition for the justifica-
tion of conducting a RCT, ensuring that no patient is knowingly given an inferior treatment

Confounding Confounding occurs when a third variable, known as a confounder, affects both the independent variable 
(the cause or treatment being studied) and the dependent variable (the outcome or effect being meas-
ured), leading to a spurious (non-causal) association between these two variables. This phenomenon 
leads to a false estimation of the causal effect of one variable on another

Confounder A confounder is a variable that serves as a common cause of both the dependent and independent vari-
ables, creating a spurious association between them. This can result in misleading conclusions about the 
relationship between the variables being studied. Properly identifying and controlling for confounders is 
crucial in statistical analysis to accurately determine causal relationships

Deconfounder Refers to a variable or a set of variables that, when controlled for, can help to reduce or eliminate con-
founding bias

Stress Stress is defined as force per unit area and develops within a structure/tissue in response to an applied 
force. Stress is descriptive of the internal forces neighbouring particles of a given material exert on one 
another. Stress may be characterised as normal (force perpendicular to a plane) or shear (force parallel 
to a plane). Normal stress may be tensile or compressive depending on the mode of loading

Strain Refers to the amount of deformation expressed as a normalized change in shape or size. Two basic types 
of strain exist: normal strain, which is related to change in length, and shear strain, which is related 
to change in angle. Normal strain is the ratio of deformation (lengthening or shortening) to original 
length and as such may be tensile or compressive. Shear strain is the amount of angular deformation 
that occurs in a structure. For example, a rectangle drawn on one face of a solid before a shear stress is 
applied will appear as a parallelogram during the application of a shear stress

Mechanical strength Mechanical strength refers to the ability of a tissue to withstand and resist applied forces or loads without 
undergoing significant breakage or failure. It is a measure of how much stress and strain a tissue can 
handle before it begins to break or fail (athletic injury in this context)

Theory In essence, a scientific theory is an explanation of a phenomenon in the natural world. It is used to make 
predictions that are testable by experiments or observations

Theoretical framework Theoretical frameworks are structures that guide research by relying on a formal theory; that is, the 
framework is constructed by using an established, coherent theory (explanation) of certain phenomena 
and relationships
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allocation of resources to applied injury research efforts. 
This will help minimise the risk of bias, resource wastage, 
data fishing [16], p-hacking [16, 17] and HARK-ing [16, 
18, 19] in athletic injury research. In light of these proposed 
benefits of causal diagrams, the aims of this review article 
are two-fold; (1) to highlight some of the major challenges 
and shortcomings of some currently adopted approaches to 
athletic injury research, and (2) to illustrate how using causal 
diagrams for athletic injury research can lead to more robust 
scientific findings and causal understandings. Further, within 
this article a new model proposing the integration and uti-
lisation of frameworks and models for investigating injury 
aetiology and mechanisms, and for developing athletic injury 
prevention strategies, is also presented.

Finally, it is important to acknowledge that ‘causality’ is 
a complicated metaphysical concept that remains the subject 
of many philosophical debates. Further, ‘causal inference’ is 
a complex and technical scientific and mathematical task that 
relies on triangulating evidence from multiple sources and 

on the application of a variety of methodological approaches 
[24–26]. While a deep dive into the philosophy and his-
tory of causality, and the vast array of methodological tools 
available for causal inference across the sciences, would cer-
tainly be of value, such a task requires a large body of work 
that is outside the scope of this article. Rather, this article 
simply highlights the necessity for causal knowledge within 
the context of athletic injury prevention, some of the major 
challenges facing the pursuit of causal knowledge in athletic 
injury research and prevention, and the value of graphical 
tools to the research process. In the current literature, vari-
ous attempts to define causation have been presented [30], 
but a clear and agreed upon definition of causation continues 
to be elusive [25, 30], with some authors suggesting that the 
formation of such a definition may be too reductionist [25]. 
Accordingly, to avoid entering too deeply into the depths of 
the philosophy of causality, and for the operational purposes 
of this article, causality should tentatively be interpreted 
by its common understanding of cause and effect, i.e. the 

Table 1  (continued)

Operational definitions

Practical framework Practical frameworks are structures informed by the accumulated practical knowledge (ideas) of practi-
tioners. In this respect, practical frameworks rely on conventional wisdom including commonly held 
beliefs, opinions and anecdotal experience. While this is a feature of this particular kind of framework, 
it also makes this type of framework particularly susceptible to bias

Conceptual framework A conceptual framework refers to a compilation of concepts and/or constructs that are organised system-
atically to provide a foundation and tool for integrating and interpreting knowledge on a particular topic

Mediation Mediation refers to the process through which an independent variable influences an outcome variable 
indirectly through one or more intervening variables, known as mediators. These mediators help to 
explain the mechanism or pathway by which the initial variable exerts its effects on the outcome, pro-
viding insights into the underlying causal chain

Mediator A mediator is a variable that lies in the causal pathway between an independent variable and a dependent 
variable. It represents the mechanism that transmits the effect of one variable on another

Back-door path In a DAG, a back-door path is any path from the treatment (or exposure) variable to the outcome variable 
that goes through a common cause or confounder. Unlike a direct path, which represents a hypothesised 
causal effect, a back-door path indicates a non-causal association that can produce a spurious correla-
tion between the treatment and outcome

Causal mediation analysis Causal mediation analyses use statistical methods to examine how an independent variable influences 
an outcome through one or more mediator variables, distinguishing the effects into direct and indirect 
(mediated) pathways

Direct effect In causal inference, the direct effect refers to the impact of one variable on another without any intermedi-
ate variables mediating the relationship. It represents the direct causal pathway from the cause to the 
effect

Indirect effect The indirect effect, also known as the mediated effect, is the influence of one variable on another through 
one or more intermediate variables in a causal pathway. It represents the causal effect that is transmitted 
through one or more mediators

Collider A collider is a type of variable that is influenced by two or more other variables in a causal diagram or 
model. When two variables both influence a third variable (the collider), conditioning on this collider 
can create a spurious (non-causal) association between the two influencing variables, even if they are 
otherwise independent. This can lead to biased results in statistical analyses, making it crucial to iden-
tify and appropriately handle colliders in causal studies

Collider-stratification bias Collider-stratification bias is a specific type of bias that occurs when the researcher (1) conditions on a 
collider variable or (2) stratifies their analysis on the basis of it

Sufficient causal set A sufficient causal set is a specific combination of factors that, when present together, are sufficient to 
cause an outcome
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operation or relation of a cause and its effect. It should be 
noted that the terminology and language used in this arti-
cle has been adopted from the (mutually compatible) causal 
inference [24–26] and sufficient component causal model 
[31–33] perspectives for understanding causality.

2  The Four Step ‘Sequence of Prevention’ 
and ‘TRIPP’: A Brief Overview

Injury prevention research has been described by van 
Mechelen et al. [12] as a four step sequence in the highly 
popularised ‘sequence of prevention’ (Fig.  1a). The 
‘sequence of prevention’ is as follows. First, the magnitude 
of the problem should be identified and described in terms 
of the incidence and severity of sports injuries. Secondly, 
the risk factors and injury mechanisms that play a part in 
the occurrence of sports injuries should then be identified. 
The third step is to introduce measures that are likely to 
reduce the future risk and/or severity of sports injuries. Such 
measures should be founded on knowledge regarding the 
aetiological factors and injury mechanisms identified in the 
second step. Finally, the effect of the measures should be 
evaluated by repeating the first step, which can be achieved 
by time trend analysis of injury patterns or by means of 
a RCT [34]. Although various modifications and adapta-
tions to this model have been proposed in literature, with 
arguably the most notable being the ‘Translating Research 
into Injury Prevention Practice framework’, or ‘TRIPP’ [35] 
(Fig. 1b), this article is primarily concerned with the estab-
lishment of injury aetiology and mechanisms and how to use 
this information to form and implement injury prevention 
strategies. Therefore, the current variations to this model 
and their added components will not be explored in detail 
here. However, their existence and contributions to the area 
are acknowledged. For further exploration on these models 

please see articles by van Mechelen et al. [12], Bahr and 
Krosshaug [36], and Finch [35].

3  Establishing Injury Aetiology 
and Mechanisms: Current Challenges

3.1  Variable Control and Randomised Controlled 
Trials in Athletic Injury Research

A key goal of science is to establish the causes of natural 
phenomena [13]. Causal knowledge provides the critical 
foundations on which informed and appropriate actions can 
take place to alter a given outcome, i.e. intervention. In the 
context of athletic injury, it is unsurprising then that a key 
feature of the van Mechelen ‘sequence of prevention’ [12] 
and Finch’s ‘TRIPP’ framework [35] is to introduce meas-
ures that are likely to reduce the future risk and/or severity 
of sports injuries on the basis of causal and mechanistic 
understandings. However, developing causal knowledge is 
a challenging endeavour. To develop causal knowledge, the 
controlled experiment is a mainstay of modern science, and 
for good reason. Although context dependent, it is gener-
ally maintained that, to estimate a causal effect, all major 
variables at baseline that can influence both the exposure 
and the outcome must be controlled for [24–26]. By holding 
constant all major variables influencing both the exposure 
and the outcome (with the exception of the independent vari-
able of interest), one can determine if a particular variable is 
indeed responsible for a given outcome. However, achiev-
ing such conditions in real world settings can be extremely 
challenging. This is problematic. If a confounding (Table 1) 
variable remains uncontrolled for, this can lead to inaccu-
rate conclusions about the causal relationship between vari-
ables (confounder bias). Concerns such as these gave rise 
to a particular type of controlled study, the RCT. In modern 

Fig. 1  The ‘sequence of preven-
tion’ (a) and the ‘Translating 
Research into Injury Prevention 
Practice (TRIPP)’ (b) models.  
Modified from van Mechelen 
et al. [12] and Finch [35] with 
permission
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medicine, RCTs are commonly regarded as the ‘gold stand-
ard’ for assessing causality [37], as it is widely considered 
that the randomisation process applied to the samples within 
these types of studies serves to eliminate the effects of con-
founding variables [13, 37]. However, while RCTs certainly 
have high internal validity (Table 1) [38], the ‘gold standard’ 
label commonly attributed to this type of study remains con-
troversial, as under many circumstances ethical or practical 
constraints oppose their implementation [25, 26, 38]. For 
example, in the absence of clinical equipoise (Table 1), it 
would be unethical to conduct an RCT that actively exposes 
one group of athletes to an intervention that is harmful (in 
relation to injury, performance or wellbeing). Notably, in 
some cases intervention may be physically impossible. For 
example, if we are interested in investigating the effect of 
either age or previous injury on injury risk, we cannot ran-
domise individuals to different age groups or to having a 
previous injury. Thus, a RCT is not a feasible option for 
directly studying the causal effect of either of these vari-
ables on injury risk. It follows that, while RCTs certainly 
have high internal validity and should be conducted when 
feasible, the best method for understanding causality ulti-
mately depends on what methods are actually available for 
answering a specific causal question [25, 26, 38].

Where RCTs are technically feasible in athletic injury 
research, there are also many practical challenges to over-
come for the application of this particular type of study. At 
the forefront is obtaining a sufficient number of participants 
and injuries. This is crucial for achieving the necessary sta-
tistical power to ensure exchangeability (Table 1) between 
groups and to maintain the integrity of the RCT. However, 
this can be difficult, especially when a relatively small, 
potentially highly specialised population, such as elite ath-
letes, is being investigated or when a specific type of injury 
is being studied. Indeed, conducting RCTs on elite sporting 
populations can be a particularly challenging endeavour, as 
not only are these populations limited in size, but owing to 
their professional nature, elite athletes and sports organisa-
tions may prove unwilling to cooperate and participate in 
studies that could potentially interfere with their training 
and preparation processes. As a result, RCTs are often con-
ducted on alternative population groups, e.g. sub-elite ath-
letes. Approaches such as these raise a number of concerns 
relating to the external validity and transportability (Table 1) 
of results when the findings from these studies are applied 
to different contexts, such as elite athletes [39]. While some 
of the practical considerations mentioned are not strictly 
insurmountable, these obstacles still pose significant chal-
lenges that researchers need to overcome to conduct this type 
of study successfully. Encouragingly, however, it is simply 
untrue that RCTs are the only way of discovering causality 
and developing causal knowledge [13, 25, 26]. Certainly, 
young children did not require a robust RCT to learn that 

putting their hand in the fire causes a painful burning sen-
sation [13]. While RCTs are still widely considered to be 
the ‘gold standard’ for assessing causality [13] and should 
be done when feasible, exploration of alternative research 
approaches that may assist with the development of causal 
knowledge in relation to athletic injury appears necessary.

3.2  Observational Research: Benefits and Pitfalls

Consistent struggles relating to ethical or practical con-
straints often restrict applied athletic injury research efforts 
and the appropriate application of RCTs. While RCTs are 
still widely considered to be the ‘gold standard’ for estab-
lishing causation, owing to their often-infeasible nature, 
especially at the elite sporting level, exploration of alter-
native methods and research practices that may assist with 
developing causal knowledge and guiding applied practice is 
warranted. In sports science, owing to their general simplic-
ity and greater feasibility, descriptive research methodolo-
gies are frequently conducted to determine associations or 
correlations between variables, make predictions or describe 
injury risks and rates. These are useful studies that can pro-
vide the first exploratory step in the process of causality 
determination by identifying specific variables of interest. 
Across sports science, observational studies investigating 
the relationship between a selected variable of interest and 
athletic injury risk are particularly common. However, an 
important consideration when examining these types of stud-
ies and the potential relationships that may be present, is that 
association and correlation do not imply causation [13, 40]. 
This is a frequently reiterated mantra within the scientific 
community, and for good reason. Associations can present 
for a number of reasons other than causality, such as con-
founding [13, 24–26, 40].

To better highlight the issue of confounding, a simple 
non-sporting example of confounding is presented in Fig. 2. 
In this example, the causal relationships between three vari-
ables (age, shoe size and education level) in children are 
considered. Reasonably, it can be concluded that shoe size 
is not a cause of the level of education that a child receives, 
and the level of education a child receives is not a cause of 
a child’s shoe size, i.e. there is no causal link between these 
two variables. Despite this, shoe size and education level 
remain highly correlated in children. The reason for this cor-
relation is that these two variables are statistically related 
by the effects of a third ‘confounding’ variable, age. In this 
example, age is considered to be a confounder as it is a com-
mon cause of both shoe size and education level (as children 
get older their feet grow and they go up school years). The 
consequence is that, owing to the effects of age on both shoe 
size and education level in children, shoe size and education 
level are statistically associated with one another despite 
there being no causal relation between them. Confounding 
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is common in science, with observational studies being par-
ticularly susceptible to this form of bias. Accordingly, while 
observational studies may provide an estimate of the statisti-
cal association or correlation between variables, interpreting 
these relationships in a causal manner can be problematic 
and should only be undertaken after careful evaluation of the 
underlying assumptions.

3.3  Confounding in Athletic Injury Research

3.3.1  Definitions of Athletic Injury

Confounding is a causal concept [25], and accordingly, 
prior to providing some examples of confounding in applied 
athletic injury research, it is worthwhile to explore some 
of the causal complexities and fundamental mechanisms 
that underpin athletic injury occurrence. It has previously 
been noted that injury occurs as a result of a transfer of 
kinetic energy to a tissue [36, 41, 42]. Athletic injury has 
also been described as occurring when the stresses and 
strains (Table 1) experienced by a tissue result in damage 
that is deemed severe enough to be considered an injury, 
i.e. tissue loading exceeds tissue strength [42, 43]. Note 
that these descriptions are, in fact, the same as one another, 
with the area under a stress–strain curve representing the 
energy absorbed during deformation, typically as a result of 
a transfer of kinetic energy. It follows that the International 
Olympic Committee (IOC) defines injury as “tissue damage 
or other derangement of normal physical function due to par-
ticipation in sports, resulting from rapid or repetitive transfer 
of kinetic energy” [41]. While this is a useful definition, it 
is important to clarify some inaccuracies. Most notably, it 
is clear that damage or other derangement can exist without 
an injury necessarily being present. For example, muscle 
damage is common after sporting activity and may be an 
unavoidable part of the training process, while it can also 
be argued that fatigue constitutes a form of derangement of 

normal physical function. These should not be considered 
an injury. Rather, an injury more accurately occurs when 
the tissue damage experienced exceeds some critical dam-
age threshold, whereby the damage sustained is not a nor-
mal part of the training process, but is rather chronically 
detrimental and severe enough to be considered an injury 
[43]. Future definitions of athletic injury should make such 
distinctions clearer.

3.3.2  The Ultimate Mechanism of Athletic Injury

Considering the definitions of athletic injury presented 
above, and as highlighted within a recently presented con-
ceptual framework for athletic injury [42], the causes of an 
athletic injury can conceptually be separated into two fun-
damental components: the mechanical loading (force) expe-
rienced by a tissue and the mechanical strength (Table 1) of 
that tissue, one (or both) of which all causal variables must 
act through, i.e. these two components are reflective of the 
proximate (ultimate) mechanism of athletic injury. For illus-
trative purposes, two causal DAGs displaying this assump-
tion for both acute and gradual onset injury in athletes are 
presented in Figs. 3 and 4.

In Fig. 3, a causal DAG is presented that is reflective 
of acute sudden onset athletic injury, whereby a single 
mechanical load exceeds the strength of a tissue. Some 
examples of this include anterior cruciate ligament rup-
ture owing to sudden knee trauma, tibial break owing 
to a poorly timed tackle in soccer etc. In this DAG, the 
exceeding of tissue strength by a single mechanical load 
serves as the ultimate mechanism of injury. The ‘U’ vari-
ables presented in the diagram represent unspecified par-
ent nodes (distal variables) of the ultimate mechanism 
and are included to represent a wider causal structure 
for athletic injury. This wider causal structure may be 
extensive and will vary between each individual injury 
type owing to unique, differing etiological pathways. In 
Fig. 4, a simple (wider variables excluded) causal DAG 
for gradual onset injury is presented, assuming no com-
mon causes of mechanical load, tissue strength and injury. 
Under this same assumption, an example of this type of 
injury may include a tibial stress fracture owing to repeti-
tive loads from running. In this figure, repetitive mechani-
cal loads fatigue a tissue until a critical damage threshold 
is exceeded and an injury occurs. In this type of injury 
physiological processes can also affect tissue strength, e.g. 
through remodelling and repair processes, but for simplic-
ity’s sake this has intentionally been excluded from the 
DAG. In Fig. 4, the mechanical strength of the tissue is 
considered a time-varying variable as it deteriorates over 
time owing to cyclic loading. It is for this reason that tis-
sue strength after each separate applied mechanical load 
is considered a different variable to tissue strength prior 

Fig. 2  A signed causal DAG [62, 63] illustrating the basic structure 
of confounding: age is a common cause (confounder) of the relation-
ship between shoe size and education level, producing a statistical 
relationship between shoe size and education level despite there being 
no causal relationship between these two variables. The (+) symbols 
represent a positive effect of age on shoe size and education level. 
DAG directed acyclic graph
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to that load; after each mechanical load is applied, tissue 
strength is represented by a new separate node.

3.3.3  Confounding in Athletic Injury Research

Within sports science and medicine research, many obser-
vational studies that assess relationships with and describe 
injury risks have been conducted across the sporting land-
scape, with a number of injury prevention recommenda-
tions and strategies commonly (but often erroneously) aris-
ing from such studies. As these studies are observational in 
nature, they are particularly susceptible to the previously 

highlighted issue of confounding. Accordingly, in the 
absence of appropriate supporting causal inference tools and 
structures, approaches such as these do not offer a reliable 
means for acquiring the necessary causal knowledge needed 
to intervene and alter injury outcomes.

To illustrate some of the problems that arise when using 
observational studies for estimating causal effects in rela-
tion to athletic injury, a contextually relevant example of 
confounding may prove useful. For instance, consider a 
theoretical scenario in which a researcher adopts an obser-
vational approach to investigate the relationship (associa-
tion) between some hamstring tissue characteristic, labelled 
‘T’, and the risk of hamstring injury in soccer players. For 

Fig. 3  A signed causal DAG [62, 63] depicting mechanical loading 
exceeding tissue strength as the ultimate mechanism of acute athletic 
injury. A generic wider causal structure is included for illustrative 
purposes with the ‘U’ variables representing unspecified variables 
and the ellipses alluding to the existence of a wider causal network 
beyond that presented in the DAG. The (+) symbol reflects that as 

the mechanical load increases, the probability of the load exceeding 
the tissue strength and causing injury also increases. The (−) sym-
bol reflects that higher tissue strength reduces the probability of the 
mechanical load exceeding this strength, decreasing the chance of 
injury. DAG directed acyclic graph

Fig. 4  A signed causal DAG [62, 63] depicting repetitive mechanical 
loading as a cause of the deterioration of tissue strength (mechanical 
fatigue) and which eventually results in gradual onset injury occur-
rence. The subscript values represent the sequence of events, e.g. the 
tissue of interest has its original strength (tissue  strength1) prior to 
a mechanical load (1) being applied. This causes a reduction in tis-
sue strength (2) owing to mechanical fatigue. A second subsequent 
mechanical load (2) is applied, which causes a further reduction in tis-
sue strength (3). This process continues until a critical damage thresh-

old is exceeded and injury occurs. The (−) symbols represent a nega-
tive effect of mechanical loading on tissue strength (i.e. a reduction 
in tissue strength). The (+) symbols reflect that a higher initial tis-
sue strength (e.g. tissue  strength1) leads to a higher subsequent tissue 
strength (e.g. tissue  strength2) despite repetitive mechanical loading 
reducing tissue strength over time. The ellipses in the figure represent 
a time jump to the point where injury occurs. Note: Physiological 
processes, i.e. remodelling and repair, have been intentionally omitted 
from this DAG for simplicity. DAG directed acyclic graph
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the purpose of this example, let us stipulate that (1) the 
data utilised to assess this relationship are derived from a 
large pool of soccer players of varying ages, including both 
elite and junior players; (2) T is some developmental char-
acteristic, i.e. it increases with maturation into adulthood, 
and accordingly, elite level soccer players exhibit greater 
levels of T compared with junior level soccer players; and 
(3) greater levels of T also have a protective causal effect 
on hamstrings by increasing the mechanical strength of the 
hamstring muscles, but have no causal effect on athletic 
performance. Accordingly, in this scenario age has a ben-
eficial causal effect on injury risk by increasing levels of T. 
However, age can also influence injury risk through other 
causal pathways. For example, elite adult soccer players 
sprint faster than junior soccer players, which subsequently 
increases the stresses placed on the hamstrings [44, 45]. 
Reasonably, this may increase hamstring injury risk. The 
nature of these proposed relationships is depicted in Fig. 5.

As shown in Fig. 5, age has an effect on hamstring injury 
through two causal pathways: (1) T, which has a protective 
(decreasing) effect on hamstring injury risk by increasing 
hamstring strength, and (2) increased hamstring stresses 
owing to faster sprint speeds (elite adult soccer players sprint 
faster than junior soccer players), which has an increasing 
(harmful) effect on hamstring injury risk. In this scenario, 
age is a common cause (confounder) of both T and the 
mechanical stresses placed on the hamstring. Therefore, the 
association that presents between T, our exposure of interest, 
and the risk of hamstring injury, our outcome of interest, 
will not be reflective of the causal relationship between these 
two variables, as this relationship will be impacted by con-
founding. This is important, since if higher levels of T are 
primarily associated with elite adult soccer players, and elite 
adult soccer players exhibit a heightened risk of hamstring 

injury (which indeed appears to be the case [46]), this may 
result in increased levels of T being statistically associated 
with an increased risk of hamstring injury despite actually 
having a causally protective effect. In scenarios such as this, 
causal interpretations of these associations may have dire 
consequences. Protective variables, such as increased levels 
of T, may be interpreted as being harmful to an athlete’s 
injury outcomes, while harmful variables, such as decreased 
levels of T, may be interpreted as being beneficial, i.e. cau-
sality is misinterpreted. Concerningly, in some contexts mis-
interpretations of causality will likely facilitate the imple-
mentation of inappropriate strategies that actively detrain 
athletes or damage athletic pursuits in an attempt to improve 
injury risk [9], and in some circumstances, may potentially 
even increase injury risk, e.g. implementing strategies that 
reduce levels of T as a result of T being associated with an 
increased injury risk when increased levels of T actually 
have a protective causal effect.

Alone, observational studies exploring relationships with 
injury risk cannot be expected to reliably bestow the nec-
essary causal knowledge required to develop strategies to 
manipulate an athlete’s injury risk. Indeed, such is the poten-
tial impact of confounding on research outcomes, confound-
ing can result in no association when there is a causal effect, 
an association when there is no causal effect and in some 
circumstances, associations that are in the opposite direction 
of the actual causal effect, such as in the example provided 
in Fig. 5. While the utilisation of observational studies for 
causal inferences is problematic owing to bias (‘association 
or correlation does not imply causation’), it is important to 
note that ‘some correlations do imply causation’, but appro-
priate causal inference tools and structures are needed [25]. 
Indeed, various tools exist that can assist with providing 
proposed causal structures, identifying and controlling for 

Fig. 5  A causal DAG illustrating that age has a causal effect on ham-
string injury through two identified causal pathways: (1) T, which has 
a protective effect on hamstring injury risk by increasing hamstring 
strength, and (2) increased hamstring stresses owing to faster sprint 
speeds (elite adult soccer players sprint faster than junior soccer play-
ers), which have a negative effect on hamstring injury risk. The (+/−) 

symbols represent a positive (increasing) and negative (decreasing) 
effect, e.g. the (−) symbol illustrates a reduction in hamstring injury 
risk owing to increased hamstring strength. Note: This is a simple 
DAG that is presented for illustrative purposes and should not inter-
preted as a complete example. DAG directed acyclic graph
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confounding and other forms of bias, as well as obtaining 
causal effects and knowledge from observational research, 
with this article being particularly concerned with introduc-
ing the reader to the importance of causal frameworks, mod-
els and DAGs in particular.

4  Frameworks, Models and DAGs: 
Organising Ideas for Understanding 
Causation

Owing to the many challenges in athletic injury research 
and the potential pitfalls accompanying attempts to acquire 
causal knowledge from observational studies, there is a need 
to explore potential strategies that can assist with develop-
ing causal understandings of athletic injury. Notably, the 
formation and utilisation of frameworks, models and causal 
DAGs provides an approach that may alleviate some of these 
current obstacles and provide value for research pursuits.

4.1  Frameworks and Models

In science, a framework serves as an intellectual structure 
(often graphically represented) that is used to make concep-
tual distinctions and organise ideas, deconstructing complex 
phenomena into relevant theories, assumptions, causal links 
and concepts of interest. In this respect, frameworks break 
down a system into relevant components, and align these 
components within a proposed theoretical, conceptual and/or 
causal architecture. Through this, frameworks help orientate 
research, with the adopted ideas and concepts assisting with 
the development and investigation of various research prob-
lems/questions, hypotheses, assumptions and causal links, 
while also serving as guides for collecting and analysing 
data and for interpretations of causality. Considering these 
benefits, it is unsurprising that some researchers have argued 
that, in the absence of a framework, research and scholarship 
are considerably ‘weakened’ [47, 48]. A variety of frame-
work types are recognised across science, such as concep-
tual, theoretical and practical (Table 1), each distinguished 
by its unique functions and objectives [20].

While a scientific theory (Table  1) provides a 
substantiated explanation of a phenomenon in the natural 
world, and is used to make predictions that are testable 
by experiments or observations [47], a framework has 
the unique capacity to weave together multiple theories 
by providing a context within which the theories apply. 
Theories that might seem disparate at first can be interlinked 
within a framework that highlights their relevance to one 
another, and to a larger body of knowledge. Notably, when 
researchers contemplate how the various elements within a 
framework interrelate, they engage in theorising, i.e. form 
conjectures about the relationships between the concepts 

identified for a particular phenomenon. This process 
involves crafting hypotheses about the interplay among the 
concepts delineated for a given phenomenon, enhancing our 
understanding of the phenomenon and potentially leading to 
new scientific insights.

In contrast to theories and frameworks, models can be 
conceptualised as instantiations of theories or frameworks, 
and are therefore typically narrower in scope. Models may 
focus on a particular component of a given theory or frame-
work, highlighting key elements, properties, and relation-
ships within that component [14, 21]. Accordingly, models 
typically provide a more local description or understanding 
of a phenomenon, and commonly serve as intermediaries 
between theories and the real world [14]. However, owing 
to their more focused nature, models may also ignore a large 
part of reality. This is considered a feature [14, 21]. Much 
in the same way that a map of Rome is useful because it 
ignores much of reality to help us navigate Rome, a model 
may be useful because it ignores the rest of a particular the-
ory or framework, instead focusing on specific components 
of interest [14, 21].

The utilisation and investigation of frameworks and mod-
els, and their proposed research links and assumptions, is 
akin to identifying, researching and confirming pieces of a 
puzzle with the intention of, one day, explaining the puzzle 
in its entirety. By deconstructing the problem into compo-
nents, alternative scientific approaches and practices may 
be considered, and various elements and mechanisms may 
be targeted for investigation, potentially alleviating many 
of the challenges facing injury outcome-based research. 
Indeed, such an approach may be particularly useful for the 
translation of lab-based research into the applied sporting 
world, whereby the investigation of various causal links 
and assumptions within the controlled laboratory setting 
can better illuminate the specific roles of relevant variables 
and mechanisms within a given system. For example, as 
opposed to investigating the relationship between various 
tissue characteristics and athletic injury within the uncon-
trolled environment of the sporting arena, an alternative 
(and supplementary) approach that might offer important 
scientific insights could be to assess the relationship between 
these same tissue characteristics and tissue strength (under 
the assumption that tissue strength is a relevant mechanism 
through which various tissue characteristics can influence 
injury outcomes) within the controlled environment of the 
laboratory. Similarly, as opposed to researching the relation-
ship between certain training load metrics of interest and 
athletic injury outcomes in applied sports settings, research-
ers can take an alternative approach. They could instead 
research how these training load metrics relate to tissue 
forces and cumulative tissue damage under the assumption 
that tissue forces and cumulative tissue damage are relevant 
mechanisms through which training load can cause certain 



Athletic Injury Research: The Need for Causal Knowledge

types of athletic injury [9, 43, 49]. The knowledge gained 
from investigating specific research links in more controlled, 
and potentially more viable (depending on the context) envi-
ronments can then inform the construction or revision of 
relevant frameworks. Researchers can then use the under-
lying theory and causal knowledge presented within these 
frameworks to develop useful multi-faceted models con-
structed with appropriate scientific reasoning for application 
in the applied sporting world, and to guide injury preven-
tion strategies and decision-making. The effectiveness of 
these strategies can then be assessed by time trend analysis 
of injury patterns, observational studies using appropriate 
causal inference methodologies, or when possible, RCTs. 
Additionally, the comprehensive utilisation of frameworks 
and models can help guide the development of new, relevant 
technological advancements and metrics, while also ensur-
ing that a coherent theoretical and conceptual underpinning 
is presented prior to the allocation of resources for resource 
intensive applied injury research studies (such as large-scale 
multicentre studies and RCTs). Accordingly, their adoption 
will assist with the development of appropriate conceptual 
foundations prior to the commencement of research studies, 
reducing resource wastage and minimising the risk of data 
fishing [16], p-hacking [16, 17] and HARK-ing [16, 18, 19]. 
Importantly, a framework can include a number of proposi-
tions, and accordingly, the various assumptions and links 
put forward within a framework should be challenged and 
either confirmed or dismissed through empirical evidence. 
Upon the emergence of data supporting new ideas and the 
subsequent dismissal of certain assumptions and links, a 
framework must be either revised or replaced, which is a 
normal step in the scientific process [20]. A proposal on how 
best to utilise frameworks and models for the investigation of 
injury causation and the development of injury intervention 
strategies is presented in Fig. 6.

4.2  Causal Directed Acyclic Graphs (DAGs)

Causal DAGs, numerous examples of which have been 
presented throughout this article, are powerful tools in 
the science of causal inference. DAGs are a specific type 
of acyclic graph, i.e. there are no cycles, which provides 
a simple way of graphically representing, communicating 
and understanding key concepts of relevance regarding cau-
sality [23]. Specifically, DAGs provide a proposed causal 
model of reality, constructed by an investigator on the basis 
of their beliefs regarding the topology of the causal pro-
cesses at work [25]. In this respect, DAGs require a subjec-
tive commitment by the investigator and can serve as a form 
of causal framework that explicitly lays out any underly-
ing causal assumptions. This is an important feature that 
provides much needed transparency, as too often the causal 
assumptions of researchers are undeclared, and therefore 
unknown and unverifiable [26]. However, it is important 
to emphasise that DAGs are not valuable simply because 
they are explicit, nor are they solely conceptual in nature. 
DAGs are also complex mathematical tools, with each arrow 
between variables representing a quantifiable causal effect. It 
follows that, the development of DAGs has provided a criti-
cal step in the ‘mathematization’ of causal inference [25], 
and their value and importance in the science of causal infer-
ence should not be underestimated [24–26]. Indeed, these 
diagrams have opened up new avenues for understanding 
causality from observational research [24–26], as not only 
do DAGs provide a practical means of graphically represent-
ing specific causal pathways, mechanisms and assumptions, 
they also have important implications for guiding statistical 
analyses for the acquisition of causal effects from observa-
tional data. DAGs serve as potent instruments for addressing 
bias, explicitly showcasing critical confounders [and decon-
founders (Table 1)], as well as highlighting when inappro-
priately adjusting for a variable will introduce new bias into 
the analysis, e.g. collider-stratification bias. As testament 
to their potency, a number of notable research successes 

Fig. 6  A proposed model for 
facilitating the integration of 
frameworks and models into 
the athletic injury research and 
prevention process
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can be attributed to DAGs, with these diagrams providing 
explanations for a series of apparent paradoxes, including 
the so-called Berkson’s [50], birth weight [51], obesity [52] 
and Simpson’s [53] paradoxes.

4.2.1  Causal Paths and Mediation (Mechanisms)

A major benefit of causal DAGs is the explicit nature in 
which these diagrams outline specific causal pathways. 
In any complex system, numerous causal pathways may 
exist. In DAGs, a causal path is represented by a sequence 
of arrows (edges) that connect a set of variables (nodes), 
indicating the direction of causal influence from one vari-
able to another. These paths represent hypotheses about how 
changes in one variable might propagate through a system to 
affect another variable. The identification of a causal path in 
a DAG can be quite straightforward. For example, in Fig. 5, 
it is quite clear that there are two hypothesised causal path-
ways through which age can impact hamstring injury risk. 
The identification of causal pathways is important for a num-
ber of reasons; it provides clarity in understanding direct and 
indirect effects (Table 1) within a causal relationship [a key 
feature of causal mediation analysis (Table 1)], enhances 
the accuracy of statistical models in predicting outcomes, 
and guides the development of more effective interventions 
and policies. Furthermore, it plays a critical role in identify-
ing instances where an effect is mediated through another 
variable [a mediator (Table 1)]. In science, mediators are 
considered to be the mechanism that transmits the effect 
of one variable on another [25], and are visually depicted 
in a DAG as a variable that lies on the causal path between 
two variables. A simple example of this can be observed in 
Fig. 7, whereby calcium intake is an identified mechanism 
through which diet impacts bone strength.

While effective treatments have been produced in the 
absence of identified mechanisms, the identification of 
mechanisms is invaluable to science, as understanding 
mechanisms is critical for guiding interventions under 
changing conditions [25]. For example, in scenarios where 
bone strength is a concern and dietary consumption of cal-
cium from food sources is lacking, understanding calcium 
intake as a key mechanism through which diet can impact 
bone strength can be vital for guiding the development and 
implementation of appropriate intervention strategies, such 
as additional calcium supplementation. Of course, many 
mechanisms can exist within a causal path. For example, 
in Fig.  7, one might identify calcium absorption as an 

important mediator of the effect of calcium intake on bone 
strength, and this could be added to the DAG. Nutrition is 
an area of science that offers many examples highlighting 
the importance of understanding mechanisms. In the late 
1800s and early 1900s, had it been known that vitamin C 
was the mechanism through which citrus fruit worked to 
prevent scurvy, many sailors would not have lost their lives. 
Indeed, oranges and lemons would never have been replaced 
with cheaper alternatives (such as West Indian limes) that 
contained a fraction of the vitamin C [25]. Further, sail-
ors would not have taken to boiling these fruits, degrading 
the vitamin C within them and disabling the mechanism 
through which fruits prevented scurvy. Subsequently, had 
it been known that vitamin C was the mechanism through 
which certain fruits prevented scurvy, this also would have 
prevented the role of citrus fruits in preventing scurvy being 
brought into disrepute [25].

4.2.2  Back‑Door Criterion

The back-door criterion is a fundamental concept in causal 
inference, providing a systematic method to identify and 
address confounding. This is achieved by identifying a set 
of variables that, when controlled for, block all ‘back-door 
paths’ (Table 1) from a treatment or exposure variable to 
the outcome variable of interest. A back-door path refers 
to any path from the treatment (or exposure) variable to the 
outcome variable that goes through a confounder. Accord-
ingly, back-door paths are indicative of confounding and 
can create spurious (non-causal) associations between vari-
ables. The explicit nature of DAGs makes the identification 
of back-door paths, and by extent confounding, relatively 
straightforward. To exemplify this, a DAG displaying two 
back-door paths is presented in Fig. 8.

In the example presented in Fig. 8, bone strength is our 
exposure variable of interest, and risk of bone fracture from 
falling (RBFFF) is our outcome variable. In this example, 
we can see that there are two back-door paths (presented in 
red) between bone strength and RBFFF, both of which pass 
through age: path 1, which includes age and U (an unknown 
variable), and path 2, which includes age and balance. By 
identifying these paths, we now know which variables to 
control for in our analysis to reveal the true causal effect of 
bone strength on RBFFF (assuming that the DAG presented 
provides a valid representation of the world). As both back-
door paths pass through age, the simplest solution to this 
problem would be to control for age, as doing so would close 

Fig. 7  A causal DAG presenting the basic structure of mediation (Table 1). In this DAG, the effect of diet on bone strength is mediated by cal-
cium intake, i.e. calcium intake is a mediator. DAG directed acyclic graph
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both back-door paths, i.e. by controlling for age we have 
controlled for all relevant bias in the DAG, and we can now 
determine the true causal effect of bone strength on RBFFF. 
However, let us assume that age is unavailable to us, and 
therefore cannot be controlled for. An alternative solution 
to this problem would be to control for the other variables 
along these back-door paths, as long as doing so does not 
introduce new bias into the analysis. By controlling for U, 
back-door path 1 is closed, but back-door path 2 remains 
open. Accordingly, to control for all of the bias, balance 
must also be controlled for to close back-door path 2. Once 
both back-door paths are closed, all of the bias is controlled 
for. Unfortunately, as U is an unknown variable in this exam-
ple, we might not have a measure for it, which is a problem if 
we want to control for it. While there are certainly scenarios 
where controlling for all relevant confounding and bias using 
the back-door criterion is simply not possible, where the 
back-door adjustment fails, other methods not explored in 
this article are available and may offer alternative solutions, 
e.g. front-door adjustment, instrumental variables, Do-cal-
culus, G-methods etc. [24–26].

4.2.3  Collider‑Stratification Bias

Confounding has featured quite prominently throughout 
this article, with its most basic structure being presented in 

Fig. 2. While confounding is a relatively well-known prob-
lem in research, a more commonly overlooked problem is 
that of ‘collider bias’, a form of overcontrol. Collider bias, in 
many ways, presents the opposite problem to confounding. 
In confounding, owing to the effects of a third confounding 
variable, two variables can start out statistically associated 
with one another despite actually being causally independ-
ent, i.e. there is a statistical relationship between two vari-
ables despite there being no causal relationship between 
these variables. In collider bias, two causally independ-
ent variables can start out statistically independent of one 
another, but by incorrectly controlling for a third (collider) 
variable, a spurious (non-causal) association is produced. 
To better illustrate this issue, a simple example of ‘collider 
bias’ is presented in Fig. 9. For this example, the shoe size 
and school children example presented in Fig. 2 is revisited, 
except in this case the causal relationships between age, shoe 
size and a new variable, biological sex, are considered. On 
the basis of our causal understandings of the relationships 
between these variables, it can reasonably be concluded that 
a child’s age is not a cause of a child’s biological sex, and 
biological sex is not a cause of a child’s age, i.e. there is no 
causal link between these two variables. However, both age 
and biological sex are causes of a child’s shoe size, i.e. as 
a child gets older their shoe size increases, and biological 
males tend to have larger feet than biological females as 

Fig. 8  Back-door paths. Note: This is a simplistic DAG that is pre-
sented for illustrative purposes and should not be interpreted as a gen-
uine proposal for risk of bone fracture from falling (RBFFF). In this 
scenario, bone strength is our exposure variable, and RBFFF is our 
outcome variable of interest. The red lines and numbered circles in b 
represent back-door paths (paths 1 and 2) between bone strength and 

RBFFF, which reveals confounding, i.e. which variables to control 
for in the statistical analysis to reveal the true causal effect of bone 
strength on RBFFF. Note that DAGs are typically presented as in a. It 
is abnormal to explicitly illustrate back-door paths in DAGs. The red 
lines are included in b for illustrative purposes. DAG directed acyclic 
graph



 J. T. Kalkhoven 

they mature [54]. This proposed causal structure is visually 
depicted in the DAG presented in Fig. 9.

In Fig. 9, it is clear that there is no causal relationship 
between age and biological sex, as indicated by the absence 
of an arrow between these variables. However, both age 
and biological sex have a causal effect on shoe size. In this 
example, shoe size is a collider (Table 1; illustrated by the 
two arrows ‘colliding’ at this variable). In causal inference, 
conditioning on a collider is disastrous if one’s aim is to find 
the causal effect between two variables, as doing so distorts 
the estimates of associations (collider bias). For example, if 
we were to control for shoe size (the collider) when analys-
ing the relationship between age and biological sex, a new 
bias will be introduced into our analysis (collider bias), and 
age and biological sex will become statistically associated 
despite there being no causal relationship between these 
two variables. In certain scenarios, collider-related bias can 
become even more pronounced, such as when the analysis 
is stratified on the basis of different levels of a collider (col-
lider-stratification bias). For example, if we were to stratify 
our analysis by different shoe size (the collider) categories 
when analysing the relationship between age and biological 
sex, we would introduce collider-stratification bias into our 
analysis. While it is unlikely that one would stratify their 
analysis by shoe size in a study investigating the relation-
ship between age and biological sex, there are a number 
of well-known examples where collider-stratification bias 
has not been so obvious. Indeed, the identification of col-
lider-stratification bias has led to important developments 
in improving understandings of various phenomena. For 
example, this form of bias largely explains the association 
reported between postmenopausal hormone treatment and 
coronary heart disease [55], the birth weight paradox [51] 
and the obesity paradox [56].

4.2.4  A Message of Caution for the Implementation 
of Causal DAGs

While it should be noted that some previous calls to include 
DAGs in sports science and medicine research have been 
presented in literature [57], these have been bereft of infor-
mation and a more detailed outlining appeared necessary to 
foster greater engagement with these particularly powerful 
research tools. However, it is also important to emphasise 
that the information provided in this article should not be 
considered comprehensive or sufficient for the practical 
implementation of causal DAGs. Despite its apparent sim-
plicity, the use of causal DAGs in research includes nuances, 
and a deeper understanding can help avoid some common 
pitfalls [58]. In addition, DAGs have many functions and 
purposes beyond those that have been explored in this arti-
cle. The aim of presenting this information was primarily to 
act as an intermediary between the reader and causal DAGs 
to encourage further engagement with, and in-depth study 
of, these diagrams and the science of causal inference. As 
such, individuals interested in applying these concepts are 
strongly advised to seek additional resources, engage with 
more detailed academic literature, and, if possible, consult 
with experts in the field to ensure accurate and responsible 
application of these methods in their research endeavours. 
For readers seeking a more comprehensive understanding of 
the science of causal inference and the utilisation of DAGs 
for causal research, the following seminal texts on this topic 
are recommended [24–26].

5  A Call for Injury‑Specific Causal Diagrams 
(Where Necessary)

Considering the value of frameworks and models to the 
research process, it is unsurprising that a series of concep-
tual frameworks and models for athletic injury have been 
presented within the literature [36, 42, 43, 59–61], with 
some notable examples including the comprehensive model 
for injury causation presented by Bahr and Krosshaug [36], 
the Edwards framework for modelling overuse injury as a 
mechanical fatigue phenomenon [43], the Kalkhoven frame-
work for stress-related, strain-related and overuse athletic 
injury [42] and the Bolling model for contextual factors [60]. 
While these models and frameworks are certainly useful for 
the organisation of ideas surrounding athletic injury, and for 
communicating key concepts of relevance regarding athletic 
injury causality, these frameworks and models are generic 
in nature, addressing all injuries within a singular frame-
work or model. Accordingly, many of these diagrams do 
not address the unique mechanisms and circumstances that 
contribute to different types of injury. Given the multifaceted 
and intricate nature of specific injury types, a more tailored 

Fig. 9  A causal DAG presenting the basic structure of a collider. In 
this DAG, age and biological sex are independent causes of a child’s 
shoe size, and shoe size is a collider. DAG directed acyclic graph
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approach to athletic injury research and prevention appears 
increasingly necessary.

To address this gap, and where researchers consider it 
necessary, the development of causal frameworks and mod-
els, including causal DAGs, that are tailored to specific inju-
ries and sporting contexts, is encouraged. This will facilitate 
a more nuanced analysis and understanding of the complex 
causal networks underpinning specific types of athletic 
injury, offering a foundation for the development of more 
targeted injury prevention strategies. Indeed, to reliably 
intervene across varying contexts, an understanding of the 
specific causal effects, and ideally the pathways and mecha-
nisms, of relevant variables contributing to athletic injury 
occurrence is needed. This necessitates the development of 
a coherent causal model that explicitly outlines all causal 
assumptions, thereby allowing these assumptions to be sub-
ject to evaluation. The construction of such models may 
prove particularly valuable in the context of complex injury 
events, which may occur in many different ways across dif-
ferent sports, and potentially within the same sport, indi-
cating multiple sufficient causal sets (Table 1) for a given 
injury type.

6  Conclusions

Causal knowledge of athletic injury provides the critical 
foundations on which appropriate injury prevention strat-
egies should be developed. However, acquiring causal 
knowledge is challenging. To assist, it is recommended that 
athletic injury research and prevention efforts should shift 
their attention towards the formation, utilisation, investi-
gation and, where appropriate, revision or replacement of 
theoretically sound and evidence-informed causal diagrams, 
including frameworks, models and causal DAGs. The adop-
tion of these tools will assist the research process by shift-
ing athletic injury research away from a predominantly 
model-blind observational approach at high risk of bias, 
and towards a more sophisticated analysis of complex causal 
networks. Specifically, the adoption of causal diagrams will 
help organise key ideas and concepts surrounding athletic 
injury causation within a clear causal structure, opening up 
new avenues for the investigation of specific causal links 
and assumptions with appropriate scientific methods; lead-
ing to a more accurate and comprehensive understanding 
of the mechanisms underpinning sports injury occurrence. 
The adoption of causal DAGs in particular will provide 
much needed transparency regarding the causal assump-
tions of investigators (which are too often undisclosed and 
potentially even unknown by the investigators themselves) 
and will assist with the acquisition of causal effects from 
observational research. By enhancing understandings of 
injury causality, causal diagrams will also better facilitate 

the formation of appropriate athletic injury prevention strate-
gies for utilisation in the applied sporting world. Such strate-
gies should ideally be grounded in causal and mechanistic 
reasoning. Finally, to advance our field it is recommended 
that athletic injury researchers, and all of sports science and 
medicine, should engage more closely with the growing 
science of causal inference, for which seminal texts exist 
[24–26].
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