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Abstract
Background In the last 5 years since our last systematic review, a significant number of articles have been published on the 
technical aspects of muscle near-infrared spectroscopy (NIRS), the interpretation of the signals and the benefits of using the 
NIRS technique to measure the physiological status of muscles and to determine the workload of working muscles.
Objectives Considering the consistent number of studies on the application of muscle oximetry in sports science published 
over the last 5 years, the objectives of this updated systematic review were to highlight the applications of muscle oximetry 
in the assessment of skeletal muscle oxidative performance in sports activities and to emphasize how this technology has 
been applied to exercise and training over the last 5 years. In addition, some recent instrumental developments will be briefly 
summarized.
Methods Preferred Reporting Items for Systematic Reviews guidelines were followed in a systematic fashion to search, 
appraise and synthesize existing literature on this topic. Electronic databases such as Scopus, MEDLINE/PubMed and 
SPORTDiscus were searched from March 2017 up to March 2023. Potential inclusions were screened against eligibility 
criteria relating to recreationally trained to elite athletes, with or without training programmes, who must have assessed 
physiological variables monitored by commercial oximeters or NIRS instrumentation.
Results Of the identified records, 191 studies regrouping 3435 participants, met the eligibility criteria. This systematic 
review highlighted a number of key findings in 37 domains of sport activities. Overall, NIRS information can be used as a 
meaningful marker of skeletal muscle oxidative capacity and can become one of the primary monitoring tools in practice 
in conjunction with, or in comparison with, heart rate or mechanical power indices in diverse exercise contexts and across 
different types of training and interventions.
Conclusions Although the feasibility and success of the use of muscle oximetry in sports science is well documented, there 
is still a need for further instrumental development to overcome current instrumental limitations. Longitudinal studies are 
urgently needed to strengthen the benefits of using muscle oximetry in sports science.

1 Introduction

Muscle oximetry, based on near-infrared spectroscopy 
(NIRS), is able to provide, non-invasively, information 
about the changes in oxygenation of haemoglobin (Hb), 
present primarily in smal vessels (< 1 mm in diameter) 
such as the capillary, arteriolar and venular bed, and myo-
globin (Mb), a cytoplasmic protein of the striated muscles 

[1–3]. Considering that Mb oxygenation is expected to 
remain almost unchanged during exercise, any alteration of 
the [Hb + Mb] signal reflects mainly changes in Hb. NIRS 
has been implemented in three main modalities that differ 
from each other based on the temporal characteristics of the 
employed light: continuous-wave NIRS (CW-NIRS: light 
with constant intensity), frequency-domain NIRS (FD-
NIRS: modulated light intensity) and time-domain NIRS 
(TD-NIRS: pulsed light intensity). CW-NIRS, based on con-
stant tissue illumination, measures only the light attenuation 
through the muscle. FD-NIRS, which illuminates the muscle 
with intensity-modulated light, measures both the attenua-
tion and the phase delay of the emerging light. TD-NIRS, by 
illuminating the muscle with short pulses of light, detects the 
shape of the pulse after propagation through the tissue. The 
quantification of muscle oxygenation depends on the NIRS 
technology adopted. Since the nineties, oximeters (utilizing 
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Key Points 

Near-infrared spectroscopy (NIRS), on which commer-
cially available oximeters are based, is a useful comple-
mentary method for non-invasively assessing, with good 
sensitivity, skeletal muscle oxygen delivery and utiliza-
tion in response to different exercise modes, training 
interventions and ergogenic aids.

NIRS instrumentation can assess a large panel of mus-
cles at single measurement sites.

NIRS is a functional tool in which skeletal muscle oxy-
genation data can be viewed in ‘real time’, complement-
ing external power and heart rate data, allowing coaches 
and physical trainers to make better-informed decisions 
to guide training or recovery processes.

Multi-modal techniques and sophisticated multi-channel 
NIRS instrumentations are required to provide a more 
detailed evaluation of muscle activity data during active 
exercise for a better understanding of muscle function.

spatially resolved CW-NIRS) have been made available for 
monitoring brain and muscle oxygen  (O2) saturation  (SmO2). 
The market launch of commercial relatively low-cost port-
able wireless muscle oximeters dates back to 2006, and our 
2018 systematic review [4] highlighted the application of 
muscle oximetry in the assessment of skeletal muscle oxi-
dative performance in sports activities. Fifty-seven studies 
published over 11 years were included in Ref. [4], emphasiz-
ing the application of this technology to physical exercise 
and training.

Afterwards, in 2019, Barstow [1] summarized the most 
common methodologies of skeletal muscle NIRS, their 
strengths and limitations, and discussed some of the poten-
tial confounding factors that may affect the quality and 
reproducibility of NIRS data in skeletal muscle. Recom-
mendations to reduce variability and errors in data collec-
tion, analysis and interpretation were also provided. Salva-
tore et al. [5] summarized the effects of aging in healthy 
individuals and muscle  O2 utilization; aging reduces  SmO2 
at rest, and during submaximal and maximal exercise, and 
extends the timeframe for restoration of  SmO2 following 
exercise. In 2021, Cornelis et  al. [6], summarizing the 
results of 11 clinical trials on the impact of exercise therapy 
on lower limb  SmO2 evaluated by NIRS in patients with 
lower-extremity artery disease, showed that exercise train-
ing improved the de-oxygenation and re-oxygenation pat-
terns. Recently, Tuesta et al. [7] reviewed 18 clinical tri-
als that evaluated the effects of physical exercise on  SmO2 

in subjects with different pathologies. Muscle oximetry 
made it possible to observe changes in muscle oxygenation/
deoxygenation parameters such as  SmO2, oxyhaemoglobin 
 (O2Hb), total haemoglobin (tHb) and deoxyhaemoglobin 
(HHb) upon exercise interventions in patients with chronic 
diseases and in healthy active subjects. NIRS is currently 
considered to be a particularly promising wearable biosen-
sor. This technology enables the continuous monitoring of 
physiological signals at the muscle site, thereby facilitat-
ing more accurate diagnoses and follow-up examinations 
pertaining to local exercise metabolism and adaptation in 
skeletal muscle performance.

In the last 5 years, several articles have been published 
focusing on the technical aspects of muscle NIRS, the inter-
pretation of the signals and the benefits of utilizing NIRS 
technique to measure the physiological status of muscles and 
to determine how the working muscles are being used [1, 3, 
8, 9]. Within the field of sports science field and beyond, 
NIRS monitoring has a huge potential that is often ignored 
in an applied exercise environment [9].

Considering the consistent number of studies on the 
application of muscle oximetry in sports science published 
in the last 5 years, the objectives of this updated system-
atic review were to highlight the most recent applications 
of muscle oximetry in the assessment of skeletal muscle 
oxidative performance in different sports activities and to 
emphasize how this technology has been applied to exer-
cise and training involving different interventions in sporting 
environments. In addition, some recent instrumental devel-
opments are briefly summarized.

2  Methods

2.1  Literature Search Methodology

A thorough systematic search of the research literature was 
performed conforming to the Preferred Reporting Items for 
Systematic Reviews (PRISMA) statement [10]. Our search 
of the literature began in December 2022 and continued 
through to March 2023. A search of electronic databases 
was conducted to identify all publications which utilized 
muscle oximetry in sport science published from March 
2017 up to March 2023. As a prerequisite, all studies should 
have been performed in healthy sports populations including 
both adolescents and adults. Three databases (Scopus, MED-
LINE/PubMed, and SPORTDiscus via the EBSCOHost) 
were searched electronically from inception using the terms 
‘‘near infrared spectroscopy’’ OR “NIRS”, OR “oximetry” 
OR ‘‘muscle oxygenation”, AND with the term ‘‘sports”. 
Additionally, these four terms were combined (AND) with 
terms of different sports (“athletics” OR “badminton” OR 
“baseball” OR “basketball” OR “biathlon” OR “bicycling” 
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OR “boxing” OR “canoeing” OR “climbing” OR “cricket” 
OR “croquet” OR “cross country” OR “cycling” OR 
“decathlon” OR “diving” OR “field hockey” OR “football” 
OR “futsal” OR “golf” OR “gymnastics” OR “handball” 
OR “high jump” OR “hockey” OR “ice hockey” OR “ice 
skating” OR “inline skates” OR “judo” OR “jumping” OR 
“karate” OR “kayaking” OR “kickball” OR “lacrosse” OR 
“long jump” OR “martial arts” OR “Nordic skiing” OR 
“paddling” OR “pentathlon” OR “ping pong” OR “polo” 
OR “racquetball” OR “rafting” OR “rock climbing” OR 
“roller skating” OR “rowing” OR “rugby” OR “running” 
OR “sailing” OR “skiing” OR”sledding” OR “snowboard-
ing” OR “soccer” OR “softball” OR “speed skating” OR 
“squash” OR “Sumo wrestling” OR “surfing” OR “swim-
ming” OR “synchronized swimming” OR “table tennis” OR 
“taekwondo” OR “tennis” OR “triathlon” OR “triple jump” 
OR “ultramarathon” OR “volley ball” OR “water polo” OR 
“waterskiing” OR”weightlifting” OR “white water rafting” 
OR “windsurfing”. Each database automatically uses its 
own term mapping. The results were screened to identify 
relevant studies, first by title, then by abstract, and finally 
by full text. Non-relevant titles and abstracts were omitted. 
full texts were screened for inclusion criteria and were only 
included in the review if they met all criteria. Differences in 
search outcomes were verified and consensus for inclusion 
was reached. We also extended the search scope to include 
“related articles”. Reference lists of fully evaluated publica-
tions were also examined for studies not found in the online 
database searches. Authors of published papers were also 
contacted directly if crucial data were not reported in the 
original paper.

2.2  Inclusion and Exclusion Criteria

The following inclusion criteria were used to select articles 
to be included in the systematic review:

1. Only full articles published in English in peer-reviewed 
journals were considered. Book chapters and Proceed-
ings were not included.

2. Studies performed in healthy sports populations including 
both adolescents (over 15 years) and adults were included.

3. Only studies performed using commercial oximeters or 
NIRS instruments that measure  SmO2, and/or  O2Hb and 
HHb changes utilizing the modified Beer–Lambert law 
were included.

4. Muscle studies in which physiological variables were 
monitored in recreationally trained to elite athletes with 
or without training programme were included.

5. NIRS muscle studies that did not report the oxygenation 
data units were discarded.

2.3  Study Selection and Data Extraction

Regarding the study eligibility, titles and abstracts of 
potentially relevant articles were screened independently 
by two reviewers (M.F. and V.Q.). The explicit rule was to 
select studies that could possibly meet the inclusion crite-
ria. Title duplicate publications were removed, and articles 
which did not meet the inclusion criteria were excluded. 
Full texts were assessed for eligibility by the three authors, 
and any articles that were ambiguous regarding inclusion 
were independently assessed against the eligibility cri-
teria. Disagreements regarding inclusion of ambiguous 
articles were discussed and a consensus was agreed. A 
pre-designed data extraction form was used to collate data 
from individual studies, including country/setting, study 
design, characteristics of participants, representativeness 
of the study sample and results. Data for each included 
study were extracted by two reviewers (M.F. and V.Q.) and 
were checked by a third reviewer (S.P.). For each article, 
a standardized document form was used to extract the fol-
lowing relevant information from the selected papers: the 
type of sport(s), authors, publication data, sample size, 
participant characteristics (age, sex, body mass, train-
ing status), exercise protocol, NIRS instrumentation and 
related-measured variables, outcome measures with train-
ing intervention if any, muscle(s) assessed, and a sum-
mary of main findings. All these data are included in the 
Table S1 of the Electronic Supplementary Material [ESM] 
available in the online version; the Table S1 includes 191 
studies [11–201]. We decided to not assess risk of bias due 
to several limitations of existing tools for assessing risk of 
reporting biases in systematic reviews [202].

3  Results

Figure 1 shows the flow of information through the system-
atic reviewing process. Of the total 12,018 (Scopus), 4176 
(PubMed) and 1288 (SPORTDiscus) articles retrieved, 
5408 were excluded as title duplicate publications (5293) 
and irrelevant topic (115). Other 7964 records were also 
excluded from the remaining 12,074 because they were 
not pertinent. A further 3798 records were excluded from 
the remaining 4110 after screening of the titles and the 
content of the abstracts; the remaining articles were 312. 
Nine studies that did not report oxygenation data units 
and 119 studies did not relate to sport were excluded from 
the 312 articles; the remaining articles were 184. Further 
7 articles were identified from the reference list of other 
articles and were added to the 184 articles. Therefore, 191 
studies were retained for inclusion in the final stage of this 
review. Study characteristics are summarized in Table S1.
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3.1  Sporting Disciplines and Characteristics

For the purposes of reporting and analysis, the 191 included 
studies with 3435 participants were grouped into 37 sport 
disciplines (Table 1). The included studies examined rec-
reational to elite athletes from a broad range of individual 
sports (e.g. cycling, rowing, skiing) and team-based sports 
(e.g. basketball, football, rugby). Of note, a total of eight 
studies included more than three sports [185–192] and a 
total of nine studies did not report the sporting discipline 
in their design [193–201]. The most common sports activi-
ties used in the 191 studies are cycling (n = 55), running 
(n = 23), and climbing (n = 11). Of the 191 studies, the 
majority utilized male participants (n = 119), 64 studies 
included males and females, and 8 studies included females 
only. Twenty-one studies reported a training intervention. A 
total of 53 studies (Table 1) included elite or highly trained 
participants, while 29 studies included well-trained partici-
pants, 51 studies included trained participants, and moder-
ately trained participants were included in 58 studies. Of 
note, 16 studies were targeted especially on elite athletes, 3 
studies compared young and old participants [66, 195, 197] 
and 7 studies investigated junior athletes (≤ 18 years) [15, 
18, 60, 68, 70, 101, 161].

A total of 20 muscle sites (Fig. 2), covering both the 
lower and upper body, were measured by muscle oximetry 
during exercise. The vastus lateralis muscle (n = 138) was 
used in the majority of the 191 studies for the lower limbs, 
and the biceps brachii and brachioradialis muscles (n = 12 
each) were used for the upper limbs. The adipose tissue 
thickness was not measured in 128 out of 191 studies using 
skinfold caliper or ultrasound or computed tomography (CT) 
or magnetic resonance imaging (MRI).

A range of commercially available muscle NIRS oxi-
meters (Table 2) were used to assess muscle oxygenation 
during exercise in the 191 selected studies, during either 
local (small muscle mass) or global (whole body mass) 
exercise with increased load (isometric or dynamic con-
traction) on the primary active muscles. A total of 130 
studies (68%, Table 1) used wearable devices to assess 
muscle oxygenation during exercise. Among these studies, 
a total of 40% used the PortaMon device (Artinis Medical 
System, the Netherlands) and a total of 24% studies used 
the Moxy device (Fortiori Design LLC, USA). Both are 
CW-NIRS wearable systems with wireless data transmis-
sion. The remaining 12 NIRS devices (Table 2) utilized 
different techniques, and several are no more commercially 
available. In most of the studies (n = 179) CW-NIRS was 
employed. The other two NIRS techniques were FD-NIRS 

Records identified from*:
Scopus (n = 12,018)
PubMed (n = 4,176)
SPORTDiscus (n = 1,288)

Records removed before 
screening:

Duplicate records removed (n
= 5,293)
Irrelevant topic (n = 115)

Records screened for abstract 
and title
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Records excluded
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Reports sought for retrieval
(n = 312) Reports not retrieved

(n = 0)

Reports assessed for eligibility
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Studies not reporting the 
oxygenation data units (n = 9)
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Records identified from:
Search in reference list (n = 7)
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Fig. 1  Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow diagram of search strategy PRISMA illustrating the 
systematic review process and the inclusion and exclusion of research papers



979Muscle Oxygenation in Sports

[47, 56, 61, 62, 65, 66, 148, 149, 160, 197] or TD-NIRS 
[40]. These latter technologies could measure the  O2Hb 
and HHb in absolute quantitative units in micromoles/litre, 
as well as the tHb.

3.2  Main Findings

Over the last 5 years, there has been a significant growth in the 
use of NIRS technique to study muscle oxygenation in con-
junction with physical exercise and training as an intervention 
(Table 1). Regarding the sample size, in a total of 52 studies 

Table 1  Overview of some characteristics (in terms of numbers N) for the different sports included in the review

E elite or highly trained participants, F female, F/M female and male, M male, MT moderately trained participants, N number of studies, T 
trained participants, WT well-trained participants. Note that wearable devices were Humon Hex, Moxy or Portamon

Sport Studies Partici-
pants

Gender Training level state Wear-
able 
device

Assessed 
muscles

F M F/M E WT T MT

1 Alpine skiing 1 17 1 1 1 1
2 American football 1 16 1 1 1 1
3 Badminton 2 16 1 1 2 2 1
4 Basketball 5 81 4 1 4 1 4 2
5 Climbing 11 279 5 6 1 6 3 1 9 4
6 Combat sport (jiu-jitsu, judo) 4 51 3 1 2 2 3 3
7 Cross-country skiing 3 39 2 1 1 2 3 5
8 Cycling 55 907 34 21 10 10 15 20 33 7
9 Diving 3 43 3 2 1 3 2
10 Football 9 158 4 5 6 1 2 7 5
11 Futsal 1 13 1 1 1 1
12 Kayak 3 23 2 1 2 1 2 5
13 Lacrosse 1 7 1 1 1
14 Long-track speed skating 4 36 1 3 3 1 4 1
15 Marathon 4 75 3 1 1 1 2 4 4
16 Nordic walking 1 30 1 1 1 1
17 Resistance training 5 61 3 2 5 4 4
18 Roller ski skating 1 9 1 1 1 2
19 Rowing 3 35 3 1 2 3 1
20 Rugby 1 22 1 1 1 1
21 Rugby 7 2 28 2 2 2 1
22 Running 23 623 16 7 6 2 7 8 15 4
23 Speed skating 1 27 1 1 1 1
24 Sprint (track field) 1 9 1 1
25 Sprint canoe-kayak 3 51 1 2 1 1 1 2 3
26 Swimming 5 73 2 3 2 3 4 4
27 Team sports 6 113 1 4 1 1 1 4 4 2
28 Triathlon 5 70 3 2 1 4 5 2
29 Ultra running 3 52 1 2 1 1 1 1 2
30 Cross-country running and swimming/rowing 1 19 1 1 4
31 Cycling and running 1 10 1 1 1 1
32 Cycling and triathlon 1 13 1 1 1 1
33 Handball and Football 1 9 1 1
34 Judo and cycling 1 30 1 1 1 1
35 Running and triathlon 1 11 1 1 1 1
36 Cross-country, CrossFit, or power lifting 1 24 1 1 1
37 More than three 8 133 1 5 2 2 6 2 5
38 Not reported 9 222 1 5 3 9 3 7
Total 191 3435 8 119 64 53 29 51 58 130 –
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20 and more participants were recruited, and in a total of 139 
studies less than 20 participants were recruited. Several NIRS 
use and applications in sport sciences research can be found 
among the 191 studies reported in detail in Table S1.

3.2.1  Variables in Evaluating Muscle Oxygenation

The variables reported in the review for evaluating muscle 
oxygenation are:

1.NIRS-derived muscle  O2 saturation  (rSO2/SmO2/StO2/
SO2/TOI/TSI named according to the different instruments);

2.muscle  O2 consumption  (mVO2), evaluated by meas-
uring changes in  (O2Hb +  O2Mb) during arterial occlusion 
manoeuvres;

3.blood flow changes evaluated as tHb changes;
4.absolute blood flow evaluated by using venous occlu-

sion manoeuvres;
5.the rate of reoxygenation after submaximal, maximal 

and brief high-intensity exercise.
Absolute blood flow was measured in a total of 35 studies. 

Specifically, 6 studies assessed muscle blood flow and  mVO2 
[41, 117, 138, 167, 169, 190], while 8 studies measured 
muscle blood flow [18, 41, 90, 117, 138, 167, 169, 190], 
and 25 studies quantified  mVO2 [26, 39, 41, 53, 54, 58, 82, 
98, 102, 116, 117, 121, 126, 132, 134, 138, 167, 169, 175, 
184–186, 190, 195, 201]. Finally, the rate of reoxygenation 
after submaximal, maximal and brief high-intensity exer-
cise are among key indicators for assessing muscle oxidative 
capability [26, 27, 95, 132, 138, 144, 178, 185, 195, 201].

3.2.2  Delineating the Exercise Intensity Domains

Specific physiological breakpoints have been assessed using 
NIRS technique in many muscle groups [73, 79, 91, 115, 
145, 179] during ramp incremental exercise testing to bet-
ter understand how distinct working muscles are differently 
affected by exercise intensity or training dose. These data 
were compared with other well-known physiological mark-
ers that delineate exercise intensity zones, such as the meas-
urements of the blood lactate [73, 79] and ventilatory [91, 
115, 145, 179] thresholds.

3.2.3  Examining the Impact of Ergogenic Aids on Muscle 
Oxygenation Responses

Over the last 5 years, the NIRS technique has received 
increasing attention in the world of sports and exercise 
science as a way to examine the physiological effects that 
different various ergogenic aids may have on changes in 
muscle oxygenation (e.g. as a means of enhancing muscle 
performance or recovery). The following situations were 
compared with some control scenarios to evaluate the 
muscle oxygenation responses and the potential benefits 

of the tested product or intervention: the use of a tracksuit 
jacket with heating elements [162], nonivamide-nicoboxil 
cream [180], sports compression garment (n = 3 for lower 
limb: tights, calf sleeve, socks; n = 1 for upper limb, fore-
arm) [18, 19, 31, 107], core and skin cooling [136], under-
going thigh cooling by a water-circulating pad [85] and 
oral supplementation with dietary inorganic nitrate-rich 
and placebo beetroot juice [32, 33, 40, 43, 63, 75, 76, 131, 
146, 158, 183, 190, 201], supplementation with pomegran-
ate extract and co-supplementation with N-acetylcysteine 
[39], protein powder [134], pre-exercise ingestion of a 
drink with higher dissolved  O2 [135], anthocyanin-rich 
New Zealand blackcurrant supplementation [27], 1 h after 
a single dose of mango leaf extract rich in mangiferin and 
lecithin, or mango leaf extract rich in mangiferin and 
quercetin, phospholipids addition [53–55], red spinach 
extract [121], citrulline drink/citrulline malate [190, 196], 
l-arginine [141, 143], Montmorency cherry polyphenols 
[67], eicosapentaenoic acid and docosahexaenoic acid (fish 
oil) [198], caffeine intake [189] and dark chocolate [81].

The extent of notable changes in the muscle oxygena-
tion levels measured with NIRS indicators in response 
to various physiological stressors (hypoxia, exercise 
intensity, exercise profile, training) was investigated in 
the following cases: repeated sprint training [14, 15, 34, 
107, 157, 165, 168, 172, 188, 191, 192], high-intensity 
interval training [15, 25, 43, 137, 157, 164, 184], volun-
tary hypoventilation at low lung volume versus normal 
breathing [17, 34, 88, 89, 151], inspiratory muscle train-
ing/pre-activation [45, 97, 100, 112, 113, 140, 152, 181, 
187], blood flow restriction [12, 14, 147, 149, 191, 192], 
intermittent bilateral cuff inflation of lower limbs with 
three 5/10-min ischemia–reperfusion cycles [53], hypoxia 
(normo- and hypo-baric) [14, 35, 59, 72, 76, 77, 90, 108, 
123, 129, 130, 137, 142, 148–150, 168, 188, 191, 192, 
200], ischemic preconditioning [38, 46, 57, 111, 112, 120, 
138, 153, 169, 172, 173, 199], water immersions [21, 85, 
94, 95], breathing atmospheric air at 1.35 atmospheres 
[94, 95], muscle heating [46], cold face immersion while 
breath-holding [93], active passive recovery at different 
air temperature (20–40  °C) and/or simulated altitudes 
(400–3800  m) [86, 166], photobiomodulation therapy 
[105], hyperoxic conditions/preconditioning [11, 56, 95, 
165, 194], muscle electrical stimulation [138, 144, 173, 
184, 197] and stretching [193].

4  Discussion

This updated systematic review of studies on the applica-
tion of muscle oximetry in sports sciences published over 
the last 5 years, aimed at synthesizing data on the use of 
muscle oximetry in evaluating oxidative skeletal muscle 
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performance in 37 major sporting disciplines from included 
191 studies.

4.1  Methodological Considerations

Some points need to be made about the NIRS devices and 
measured NIRS variables used in the studies included in 
this systematic review. Table 2 presents the 14 models 
of NIRS devices/instruments, belonging to nine manufac-
turers, used in the 191 selected studies. Only three CW-
NIRS instruments (Humon Hex, Moxy and PortaMon), 
dedicated to muscle measurements only, are lightweight, 
compact and wearable and have wireless data transmis-
sion. The reliability and validity of these oximeters have 
been reported [203–205]. A study comparing  SmO2 meas-
urements from Moxy and PortaMon devices provided 
physiologically credible  SmO2 measures at rest and during 
exercise [206]. However, absolute values obtained during 
exercise were generally not comparable between devices 
unless corrected by physiological calibration after arte-
rial occlusion. This indicates that further efforts should 
be made to standardize all muscle oximeters, for example, 
by using tissue-simulating phantoms [207] and following 
the guidelines of ISO 80601-2-85:2021 (Medical electri-
cal equipment—Part 2–85: particular requirements for the 
basic safety and essential performance of cerebral tissue 
oximeter equipment). The cumbersome instruments, devel-
oped for brain oximetry measurements, can be utilized for 
muscle studies. The light sources used are laser diodes 

(in eight devices) or light-emitting diodes (LEDs) (in six 
devices), with the latter being much less expensive. Only 
one wireless instrument (PortaMon) includes a six-axis 
motion sensor, a built-in gyroscope and accelerometer, 
that can be used to acquire real-time position and orienta-
tion movement data and synchronize it with NIRS data. 
To the best of our knowledge, data from the motion sensor 
have never been included in a publication. This monitor-
ing of movement combined with machine learning may be 
useful outside the laboratory for both athletes and coaches 
in sports applications such as performance enhancement, 
technical analysis and injury risk mitigation [208]. In addi-
tion, movement, or any compression on the area near the 
NIRS optodes may cause changes in local blood flow that 
are reflected in the NIRS signals. Therefore, some adaptive 
filtering with this additional reference signal can be used 
to control any non-physiological alterations in the NIRS 
signals that may interfere with proper interpretation.

Most of the instruments (n = 13) are capable of meas-
uring  SmO2 and ~ 85% of the studies reported  SmO2 
measurement or equivalent obtained by spatially resolved 
spectroscopy method aiming to correct for light scattering. 
One study utilized a TD-NIRS oximeter, while nine stud-
ies utilized an FD-NIRS oximeter. FD-NIRS in skeletal 
muscle is less sensitive to superficial layer while TD-NIRS 
can disentangle scattering from absorption information. 
As a result, both methods improve the accuracy of the 
muscle haemodynamics assessment. The other CW-NIRS 
studies, assuming constant path length, potentially lead to 

Fig. 2  Muscle oxygenation sites 
measured by muscle oximetry. 
Number of studies in brackets
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Table 2  Commercial muscle NIRS oximeters utilized in the sports science articles included in Table S1

Device Manufacturer Technique Light source No. of wl 
(SD, mm)

Time- resolu-
tion (Hz)

No. of chan-
nels

Measurable 
parameters

Website

Oxymon 
MkIII

Artinis 
Medical 
Systems, 
Elst, The 
Nether-
lands

Multi-dis-
tance CW

Laser diodes 2 (50) 250 1 ΔtHb/ΔO2Hb/
ΔHHb

http:// www. artin 
is. com

PortaLitea,b,c Artinis 
Medical 
Systems, 
Elst, The 
Nether-
lands

Multi-dis-
tance CW

LEDs 2 (40) 50 1 TSI, ΔtHb/
ΔO2Hb/
ΔHHb

http:// www. artin 
is. com

PortaMona,b,d,e Artinis 
Medical 
Systems, 
Elst, The 
Nether-
lands

Multi-dis-
tance CW

LEDs 2 (40) 10 1 TSI, ΔtHb/
ΔO2HbΔHHb

http:// www. artin 
is. com

Hb11,  Hb14f Astem, 
Kyoto, 
Japan

Multi-dis-
tance CW

LEDs 2 (3) 1 1 StO2/ΔtHb/
ΔO2Hb/
ΔHHb

http:// www. astem- 
jp. com

Humon 
 Hexa,b,g,h

Dynomet-
ric, Inc, 
Cambridge, 
USA

Multi-dis-
tance CW

LEDs 2 (2.4) 4 1 SmO2 http:// www. humon. 
io

Moxya,b,i,j,k For-
tiori Design 
LLC, 
Hutchin-
son, MN, 
USA

Monte Carlo 
modeling/

CW

LEDs 4 (25) 2 1 SmO2, autHb http:// www. moxym 
onitor. com

NIRO-200l Hamamatsu 
Photon-
ics K.K., 
Hamamatsu 
City, Japan

Multi-dis-
tance CW

Laser diodes 3 (40) 20 2 TOI, ΔtHb 
ΔO2Hb/
ΔHHb

http:// www. hamam 
atsu. com

NIRO-
200NXm

Hamamatsu 
Photon-
ics K.K., 
Hamamatsu 
City, Japan

Multi-dis-
tance CW

Laser diodes 3 (40) 20 2 TOI, ΔtHb/
ΔO2Hb/
ΔHHb

http:// www. hamam 
atsu. com

TRS-20g Hamamatsu 
Photon-
ics K.K., 
Hamamatsu 
City, Japan

TRS Laser diodes 3 (30) 0.5 1 StO2, atHb 
 aO2Hb, 
aHHb

http:// www. hamam 
atsu. com

Imagent ISS Inc, 
Cham-
paign, IL, 
USA

FD Laser diodes 2 50 16–512 ΔtHb, ΔO2Hb, 
ΔHHb

http:// www. iss. com

OxiplexTS ISS Inc, 
Cham-
paign, IL, 
USA

Multi-dis-
tance FD

Laser diodes 2 (40) 50 2 SO2, atHb, 
 aO2Hb, 
aHHb, 
reduced 
scattering 
coefficient

http:// www. iss. com

http://www.artinis.com
http://www.artinis.com
http://www.artinis.com
http://www.artinis.com
http://www.artinis.com
http://www.artinis.com
http://www.astem-jp.com
http://www.astem-jp.com
http://www.humon.io
http://www.humon.io
http://www.moxymonitor.com
http://www.moxymonitor.com
http://www.hamamatsu.com
http://www.hamamatsu.com
http://www.hamamatsu.com
http://www.hamamatsu.com
http://www.hamamatsu.com
http://www.hamamatsu.com
http://www.iss.com
http://www.iss.com


983Muscle Oxygenation in Sports

errors in estimating of muscle metabolic changes due to 
incorrect assumptions about tissue scattering. This in turn 
underestimates actual muscle oxygenation/deoxygenation 
as compared with measurements obtained by real-time 
path-length determination by either TD-NIRS or FD-NIRS 
[209, 210]. Therefore, the implementation of TD- and FD-
NIRS approaches on dedicated wearable sensors remains 
to be achieved. This may be an evolving topic for the next 
generation of NIRS devices.

It is well known that the relatively high attenuation of the 
near-infrared light in muscle measurements is due to (i) the 
two main chromophores (Hb and Mb); (ii) light scattering; 
and (iii) other molecules (mainly skin melanin, water, lipids 
of the adipose tissue, intramuscular lipids and cytochrome 
c oxidase) [2]. Adipose tissue greatly attenuates the signals; 

correcting for its attenuation has been suggested on the basis 
of the strength of the relationship between NIRS-derived 
measurements and the adipose tissue thickness [211, 212]. It 
remains difficult to discriminate between Hb and Mb spectra 
as they are very similar in the near-infrared range [4]. There-
fore, the contribution of Mb desaturation to the NIRS signal 
during exercise remains unclear [213]. Subjects with darker 
skin tones have significantly larger and more concentrated 
melanosomes, which increase the absorption cross-section 
of melanin, resulting in enhanced light absorption. Some of 
the studies included in Table S1 reported the impossibility to 
perform oximetry measurements on subjects with a dark pig-
mented skin. More recently, the robustness of two commer-
cial CW-NIRS oximeters (using four or five wavelengths) 
to variations in skin pigmentation was evaluated using a 

Table 2  (continued)

Device Manufacturer Technique Light source No. of wl 
(SD, mm)

Time- resolu-
tion (Hz)

No. of chan-
nels

Measurable 
parameters

Website

moorVMS-
NIRS

Moor Instru-
ments Ltd, 
Axminster, 
UK

Multi-dis-
tance CW

LEDs 2 (50) 5 2 SO2,  auO2Hb 
auHHb

http:// www. moor. 
co. uk

NIMOj,n Nirox Srl, 
Borgosa-
tollo (BS), 
Italy

Multi-dis-
tance CW

Laser diodes 3 (30) 40 2 SmO2, atHb, 
 aO2Hb, 
aHHb

http:// www. nirox. it

BOM-
L1TRW 

Omegawave, 
Inc., Fuchu, 
Japan

Multi-dis-
tance CW

Laser diodes 3 1 1 StO2/autHb/
auO2Hb/
auHHb

http:// www. omega 
wave. co. jp

a absolute, au arbitrary units, Δ relative changes, tHb total haemoglobin concentration changes, CW continuous-wave spectroscopy, FD fre-
quency-domain spectroscopy, HHb deoxyhaemoglobin concentration changes, LED light-emitting diode, NIRS near-infrared spectroscopy, O2Hb 
oxyhaemoglobin concentration changes, SD longest source–detector distance, SmO2/SO2/StO2/TOI/TSI muscle oxygen saturation %, TRS, time-
resolved spectroscopy, wl wavelengths
a Wearable NIRS system with wireless data transmission
b Smartphone-controllable system
c System no longer commercially available replaced by PortaLite MKII which samples six channels at 100 Hz
d Accelerometer is available on request
e System no longer commercially available replaced by; (a) PortaMon MkIII which samples six channels at 100 Hz, and exports six channels at 
100 Hz; (b) Train.Red FYER (smartphone controllable wearable waterproof to IPX7 system with wireless data transmission, and accelerometer; 
https:// train. red/) which samples and exports one channel at 10 Hz; (c) Train.Red PLUS (smartphone-controllable wearable waterproof to IPX7 
with wireless data transmission, and accelerometer; https:// train. red/) which samples six channels at 100 Hz, and exports one channel at 10 Hz 
[236]
f Hb11 system no longer commercially available replaced by Oxy-Pro (Hb141; smartphone-controllable wearable sweat-proof 20 Hz system with 
wireless data transmission, accelerometer, and fat layer correction)
g System no longer commercially available
h Waterproof to IPX7
i Waterproof to IPX8
j Fat-layer correction
k Water spectra with fixed water volume fraction included in the calibration model
l System no longer commercially available replaced by NIRO-200NX
m Not commercially available in European Union
n Measured water absorption used to calculate optical path length

http://www.moor.co.uk
http://www.moor.co.uk
http://www.nirox.it
http://www.omegawave.co.jp
http://www.omegawave.co.jp
https://train.red/
https://train.red/
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tissue-simulating phantom; unexpectedly increasing mela-
nin content decreased the  O2 saturation values displayed by 
both devices [214]. Differences in melanin content must be 
taken into account when measuring  SmO2 values [215]. In 
addition to the topics included in Table 3 entitled “Pressing 
issues to improve the quality in muscle oximetry for sports 
science” of our 2018 review [4], we suggest reporting skin 
colour using the Fitzpatrick skin type classification scale.

4.2  Meaningful and Promising Applications 
of Muscle Oxygenation Measures

Monitoring muscle oxygenation during exercise, as assessed 
by wearable NIRS, is becoming a common physiological 
marker of internal burden [9]. Muscle  O2 saturation meas-
ured by wearable NIRS was found to have similar reliabil-
ity to  O2 uptake and heart rate, across exercise intensities, 
suggesting that it is suitable for daily use as a non-invasive 
method of monitoring internal burden alongside other regu-
lar systemic physiological variables [216]. Thus, NIRS can 
become one of the primary monitoring tools in practice, 
such as heart rate or mechanical power monitoring during 
endurance exercise. Muscle oxygenation offers a distinct 
viewpoint on the physiological response of the muscle site 
being investigated in conjunction with, or in comparison 
with, other systemic physiological responses observed in dif-
ferent exercise contexts and through different types of train-
ing. Currently, wearable NIRS measurements using either 
PortaMon or Moxy, demonstrated moderate-to-excellent 
relative reliability scores, and CV as low as 10% for  SmO2 
[217, 218]. Hence, NIRS is a functional tool in which skel-
etal muscle oxygenation data can be viewed in ‘real time’, 
complementing external power and heart rate data, allowing 
coaches to make more informed decisions [4]. Real-time 
potential can guide athletes’ muscle performance during 
training and competition, by providing real-time feedback 
on the metabolic status of the working muscle groups during 
exercise. This information can be advantageous for handling 
large datasets by utilizing machine learning models in pre-
dicting internal burden [219] and may be suitable for diag-
nosing muscle fatigue during long-term monitoring. There is 
probably also a need to establish individual reference values 
of muscle oxygenation during standardized tests, such as 
during incremental exercise to exhaustion and an isomet-
ric contraction test inducing total arterial occlusion. These 
two tests performed regularly according to the training pro-
gramme make it possible to assess the relative evolution of 
the metabolic state of the trained muscles.

VO2max, ventilatory/lactate thresholds and maximum 
lactate steady state are basic physiological evaluations 
related to endurance performance. The minimum level 
of oxygenation and the magnitude of  O2 extraction in the 
biceps brachii, latissimus dorsi and vastus lateralis muscles 

were found to be more predictive of canoe kayak perfor-
mance than  VO2max [156] in a short endurance event 
(200 m). While measuring muscle oxygenation appears to 
be useful, this finding needs to be replicated and tested in 
other sports involving different muscle groups. Submaximal 
to maximal exercise intensities are prescribed to optimize 
training and improve cardiovascular fitness and endur-
ance using specific intensity zones (moderate, heavy and 
severe). Typically, this is done by identifying ventilatory 
or blood lactate thresholds, and critical power/speed can 
be used. The determination of thresholds or zones of exer-
cise intensity domains using muscle oxygenation variables 
as an alternative to pulmonary gas exchange or blood lac-
tate methods has been extensively tested in the last 5 years 
[73, 79, 91, 115, 145, 179]. However, the proximity of the 
deoxygenation breakpoint to the respiratory compensation 
point remains controversial [220–222]. Yogev et al. [222] 
reported that the deoxygenation breakpoint derived from a 
wearable NIRS sensor over the vastus lateralis did not dif-
fer from the respiratory compensation point in a group of 
trained male and female cyclists with heterogenous fitness. 
A recent systematic review and meta-analysis on 15 studies 
indicated that the reliability (based on intraclass correlation 
coefficient) between the first ventilatory or lactate thresh-
old and the first muscle oxygenation threshold was 0.53 
(based on data from 3 studies), while the second threshold 
was 0.80 [223]. These moderate to good reliability values 
for the determination of the second ventilatory and lactate 
thresholds with the NIRS device are likely due to signifi-
cant variations between the methods of determination, the 
ability to detect the first threshold and other factors to be 
investigated (e.g. muscle region, adipose tissue influence). 
This appears similar to the decades-long debate surrounding 
the ventilatory profile reported with two inflection points 
during graded exercise testing [224]. Concerns about using 
these indices interchangeably are raised by the considerable 
individual variability. Apart from the measurement of meta-
bolic breakpoints, contextual observations of muscle oxy-
genation responses and their repeatability may still provide 
practitioners with pertinent data to comprehend a specific 
athlete's response to endurance exercise. Muscle oxygena-
tion provides athletes with a targeted measurement of muscle 
performance during exercise.

An approach to appraise the determinants and limita-
tions of endurance exercise performance is by identify-
ing the work rate that corresponds to the highest steady-
state metabolic rate. The critical power/speed model, and 
the work rate at maximal lactate steady state are widely 
accepted approaches for this purpose. Recent research 
[225] has found that, during whole-body exercise, dynamic 
muscle oxygenation profiles which describe the balance 
between muscle  O2 supply and metabolic  O2 demand are 
a valuable physiological surrogate for critical metabolic 
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rate. This refers to the highest exercise intensity at which 
a plateau in the muscle oxygen saturation rate (zero-slope) 
is reached [224]. Critical oxygenation, as an alternative to 
critical power/speed, may provide insight into the causes 
of muscle performance and fatigue in various sporting 
activities, through its determination at different workloads 
and durations, based on a physiological framework [226]. 
It is worth noting that critical metabolic rate, determined 
by the balance between muscle  O2 supply and metabolic 
demand in quadriceps and forearm muscle sites, predicts 
the time of exhaustion during continuous and intermittent 
exercise [227].

Deoxygenation breakpoint measurements [222, 228] 
may allow better categorization of the training stimulus into 
zones of exercise intensity (e.g. percentage of one-repetition 
maximum for the load prescription or percentage of maxi-
mum voluntary contraction) for specific muscle groups in 
resistance/strength training, thereby favouring the desired 
local muscle adaptations. Strength training research is fre-
quently interested in how and when muscle is activated/
recruited during movement, when muscle fatigue occurs and 
how different neuromuscular mechanisms contribute to force 
production. Surface electromyography (sEMG) is the most 
commonly used measurement for these purposes. However, 
evaluating the effects of resistance training on skeletal mus-
cles might be characterized by a lower muscle oxygenation 
response due to a restriction in blood supply to the primary 
muscle in relation to the number of repetitions and the load, 
which induces increased intramuscular mechanical pres-
sure. A recent systematic review [229] examined baseline 
and end-points values acquired by NIRS during resistance 
exercise in healthy persons.  SmO2, the most studied variable 
with NIRS devices (Moxy and Portamon), decreases as an 
acute response to muscular strength exercise, according to 
the four included lower limb studies using squat-like exer-
cise modalities.

Another relevant variable to discuss is that in some 
selected articles we have observed that data reported by 
NIRS during exercise or training interventions have been 
introduced by adding manipulations in the form of venous 
and arterial occlusion to assess both muscle blood flow 
and  mVO2 [41, 117, 138, 167, 169, 190]. Muscle oxidative 
capacity is the maximum rate at which the muscle can uti-
lize  O2 to meet the energy demand of exercise [230]. With 
NIRS, the initial rate of muscle deoxygenation during tran-
sient arterial occlusion is a direct measure of  mVO2, a reli-
able indicator of muscle oxidative capacity [2]. In the pre-
sent review, 25 studies quantified  mVO2 (see Table S1 and 
Results). Venous occlusion has also been used with NIRS to 
provide measurements of muscle blood flow during or after 
repeated high-intensity exercises [231]. Incorporating this 
simple test both before and after intervention [232] provides 
additional insight into changes in muscle haemodynamics 

and metabolic activity as a result of training. During and 
after exercise, repeated transient arterial occlusions can yield 
sequential  mVO2 measurements [82, 232]. Therefore, for the 
purpose of determining changes in mitochondrial capacity, 
the recovery of  mVO2 values after exercise provides infor-
mation that is essentially the same as that obtained from 
the kinetics of phosphocreatine levels after exercise [233, 
234]. These possibilities offered by NIRS may be useful for 
practitioners.

The NIRS tests, evaluating potential physiological 
responses that may contribute in some way to the ergogenic 
effects, are the final aspect of the data collected in the pre-
sent review. Coaches and athletes are looking for effective 
strategies to enhance performance and speed up recovery. 
The NIRS device was employed to find out whether the 
ergogenic aid would affect the balance between local  O2 
delivery and muscle  O2 utilization in skeletal muscle and 
thus improve performance. Ergogenic aids are any of the 
methods, including dietary, pharmacological and physiologi-
cal ones, that can improve performance. Cherry polyphenols 
[67] and mango leaf extract rich in mangiferin [53–55] may 
be useful nutritional aids for improving muscular endurance 
performance. Contrarily, this does not appear to be the case 
for acute dietary nitrate supplementation [33, 63, 75, 76, 
158, 183, 190], citrulline [190, 196], l-arginine, red spin-
ach extract [121], dark chocolate [181] and caffeine [189]. 
Additionally, mechanical ergogenic aids like compression 
clothing [18, 19, 31, 107] tend to increase blood flow and 
muscle oxygenation, especially at rest. With regard to physi-
ological ergogenic aids, techniques like blood flow restric-
tion [12, 14, 147–149, 191, 192], voluntary hypoventilation 
at low lung volume [17, 34, 88, 89, 151], electrical muscle 
stimulation [138, 144, 173, 184, 197] and dynamic stretch-
ing [193] typically alter the muscle oxygenation response; 
however, the effects of other interventions like photobio-
modulation therapy [105] or immersion in water [21, 85, 94, 
95] are less certain. All these data, obtained using different 
protocols, show that the sensitivity of the NIRS technology 
is being study here to assess the true value of a particular 
ergogenic aid. It is interesting to note that they show how 
some ergogenic aids can modulate blood volume (strictly 
related to tHb) variations and hence the balance between  O2 
delivery and utilization (and hence  O2 extraction) within the 
interrogated region.

4.3  Unanswered Questions and Future Research

Because the current NIRS technique only allows for the 
analysis of a small volume of muscle (superficially, with the 
average depth reaching only half the distance between the 
light source and the detector, e.g. 1.5–3 cm approximately), 
it is currently not indicative of what is happening in the other 
working muscles. We may develop NIRS equipment that can 
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be integrated into sports clothing and can be utilized outside 
of the laboratory using energy harvesting technologies (solar 
batteries, sunlight as a light source, and bandpass filters). 
This equipment would be used to map whole-body activity. 
The surface electromyogram sensors should be utilized in 
conjunction with the NIRS equipment to provide an overall 
picture of changes in muscle function during exercise [235]. 
In addition to the haemodynamics and metabolic data pro-
vided by NIRS, we also gain knowledge about muscle-level 
activation using surface electromyography, and the effect of 
motion from accelerometers on these two signals.

4.4  Limitations and Strengths

Although this review was conducted according to the 
PRISMA guidelines updated in 2020 [10] and with stand-
ardized critical appraisal, several factors limit our ability to 
draw strong conclusions.

A common limitation of all systematic reviews is that 
some articles may be overlooked. To overcome this prob-
lem, we conducted an extensive search using sensitive search 
criteria and synonyms. Another limitation of this system-
atic review is that the quality of the study varied widely. 
For instance, details of participant selection were unclear in 
most articles. There was a large heterogeneity in the study 
populations examined. The number of participants was gen-
erally small (n < 20 in 72% of the studies), which limits the 
generalizability of the obtained results. Several studies did 
not follow a standardized research protocol. There was also 
considerable heterogeneity in study design and outcomes.

While the included studies mainly focused on athletes 
at the national/international level, differences between the 
included sports in terms of training, remuneration and other 
relevant parameters need to be taken into account. Although 
systematic reviews are generally considered to be of as “a 
high quality of evidence”, we believe that the reported find-
ings are of moderate quality, taking into account the limita-
tions mentioned above. A strength of the present review is 
that it provides an update of our previous systematic review 
of the literature on muscle oximetry in sports science [4]. 
Given the heterogeneous nature of the reported studies and 
the wide variation in the methods used, it is not possible to 
draw general conclusions about the role of muscle oximetry 
in sports science.

5  Conclusions and Prospects

There is no doubt that NIRS is a useful method for evaluat-
ing muscle adaptation effects in studies involving intermit-
tent or continuous aerobic/anaerobic exercise and strength 
training, and it can therefore be utilized by physical trainers 
to guide training or recovery processes, and to test many 

potential interventions (the so-called ergogenic aids) favour-
ing changes in the balance of  O2 delivery and  O2 utilization 
as a key factor in muscle performance.

The future of muscle oximetry in sports science is closely 
related to the instrumental development. In terms of min-
iaturization, CW-NIRS technology is the most convenient 
method. Different lightweight (about 20 g), compact, smart-
phone-controllable and wearable multi-distance CW-NIRS-
based oximeters with Bluetooth connection up to 150 m and 
on-board data collection (up to 50 h) are commercially avail-
able [236]. The novel CW-NIRS oximeter (Train.Red Plus, 
Artinis Medical Systems) also includes very useful haptic 
feedback, so that the subject can feel a buzzer on the skin 
during the exercise [237]. The CW-NIRS technology has 
been incorporated into OctaMon M (Artinis Medical Sys-
tems), the only commercial imager dedicated to muscle stud-
ies (50 Hz sampling time; four source–detector distances in 
the range 25–40 mm) using eight measurement points [238].

Multi-modal techniques based on two types of sensors, 
sEMG and CW-NIRS, have been developed to provide a 
more detailed evaluation of muscle activity, as the infor-
mation obtained by each sensor is based on different phe-
nomena induced by muscle activity. The fusion of these 
wearable technologies in sporting garments can provide an 
objective assessment of the quality and the quantity of the 
muscle activity, as well as the continuous monitoring of 
exercise programs. A new wearable integrated quadriceps 
muscle oximetry/sEMG system adopting smart textiles for 
sEMG has been recently tested under resting and dynamic 
conditions (treadmill running and resistance exercise) 
[239]. More recently, the sEMG and CW-NIRS signals have 
been measured during isometric ramp contraction of the 
forearm and cycling exercise of the vastus lateralis muscle 
with stepped increments of the load using a wireless multi-
layered sensor [240]. More complex devices using FD-
NIRS and TD-NIRS allow the monitoring of both absorp-
tion and scattering and can provide more accurate signals 
under a wider range of conditions [2, 235]. The first com-
mercial FD-NIRS and TD-NIRS systems were introduced 
in 1998 and 2003, respectively, but their high price limited 
the application. Recently, a commercial two-wavelength 
battery-operated wireless wearable TD-NIRS system, which 
fits into a backpack (3 kg) and performs measurements on 
the brain and muscle tissue of freely moving subjects using 
a 10-g optode, has been introduced [241]. This system pro-
vides  SmO2 as well as absolute concentrations of  O2Hb and 
HHb at 20 Hz.

Over the last 20 years, diffuse correlation spectroscopy 
(DCS) has emerged as a versatile, non-invasive method for 
the continuous measurement of microvascular blood flow as 
a tissue blood index [242]. DCS uses the temporal fluctua-
tions of diffusely reflected light to quantify the motion of 
tissue scatterers (primarily the velocity of red blood cells). 
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Application to ramp-incremental cycling exercise has been 
successfully demonstrated utilizing a complex and expensive 
commercial hybrid system equipped to employ FD-NIRS 
and DCS [243]. The technical limitations of this hybrid tech-
nology remain an important barrier to wider adoption.

NIRS technology continues to evolve, and the nature of 
this approach provides distinct advantages when studying 
human muscle during exercise. Despite current limitations, 
which are largely confined to limited penetration depth, 
low spatial resolution and interference from adipose tissue 
thickness [1], we believe that the feasibility and success of 
applying muscle oximetry in sports science have been well 
documented and encourage its routine use in sports science 
and medicine [4, 6, 7, 9].
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