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Abstract
Background  Findings from original research, systematic reviews, and meta-analyses have demonstrated the effectiveness 
of resistance training (RT) on markers of performance and health. However, the literature is inconsistent with regards to the 
dosage effects (frequency, intensity, time, type) of RT to maximize training-induced improvements. This is most likely due 
to moderating factors such as age, sex, and training status. Moreover, individuals with limited time to exercise or who lack 
motivation to perform RT are interested in the least amount of RT to improve physical fitness.
Objectives  The objective of this review was to investigate and identify lower than typically recommended RT dosages (i.e., 
shorter durations, lower volumes, and intensity activities) that can improve fitness components such as muscle strength and 
endurance for sedentary individuals or beginners not meeting the minimal recommendation of exercise.
Methods  Due to the broad research question involving different RT types, cohorts, and outcome measures (i.e., high het-
erogeneity), a narrative review was selected instead of a systematic meta-analysis approach.
Results  It seems that one weekly RT session is sufficient to induce strength gains in RT beginners with < 3 sets and loads 
below 50% of one-repetition maximum (1RM). With regards to the number of repetitions, the literature is controversial and 
some authors report that repetition to failure is key to achieve optimal adaptations, while other authors report similar adapta-
tions with fewer repetitions. Additionally, higher intensity or heavier loads tend to provide superior results. With regards to 
the RT type, multi-joint exercises induce similar or even larger effects than single-joint exercises.
Conclusion  The least amount of RT that can be performed to improve physical fitness for beginners for at least the first 
12 weeks is one weekly session at intensities below 50% 1RM, with < 3 sets per multi-joint exercise.

1  Introduction

Resistance training (RT) was not included in early (e.g., 
American College of Sports Medicine (ACSM) 1978) 
position statement recommendations and prescriptions for 
activity to ensure health in adults [1, 2]. In addition to the 
highly cited benefits of RT for muscle strength, hypertro-
phy, and endurance [3–7], the health benefits of RT are now 
well established. RT has been positively associated with 
reducing cardiovascular risk factors such as reductions in 
blood lipids (i.e., total cholesterol, low-density lipoprotein 
cholesterol concentrations, and triglycerides), blood pres-
sure, obesity, and glucose intolerance [8–12]. These RT-
induced responses result in fewer reported incidences of 
diabetes, stroke, cancer, dementia, arthritis, coronary artery 
disease, and pulmonary disorders [8–10, 13, 14]. Evidence 
from a recent meta-analysis [15] demonstrated that muscle 
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Key Points 

In the first 8–12 weeks, resistance training-hesitant 
individuals should begin with a single progressive 
resistance training session per week with at least one 
set of 6–15 repetitions ranging from 30 to 80% of 
one-repetition maximum using multi-joint functional 
movements.

Very low intensity activities such as prolonged static 
stretching (> 10 min of static stretching per muscle 
group) can improve strength and hypertrophy albeit with 
much longer duration training sessions.

It is unknown if these minimalist training 
recommendations would still be effective after 
8–12 weeks of resistance training and thus it may be 
necessary to provide progressively greater frequencies, 
volumes, and intensities of training.

strengthening (i.e., RT) activities reduce the relative risk of 
all-cause mortality, cardiovascular disease, total cancer, and 
diabetes by 10–17%. Another meta-analysis reported that RT 
was associated with 21% and 40% lower all-cause mortal-
ity rates alone and when combined with aerobic exercise, 
respectively, when compared with no exercise [16]. Depend-
ing on the health outcome under investigation (e.g., insulin 
resistance, hypertension, heart rate variability, cardiovascu-
lar and cardiometabolic syndrome), between 30 and 60 min 
of weekly RT have the largest effect [3–10]. Circuit-based 
RT [17] and blood flow restriction with RT [18] has been 
shown to improve maximum oxygen uptake (3.8–13.4%). To 
achieve large magnitude improvements in maximum oxy-
gen uptake, the authors recommended 14–30 sessions for 
6–12 weeks, with each session lasting at least 20–30 min, 
at intensities between 60 and 90% of one-repetition maxi-
mum (1RM) [17]. RT has also been shown to improve body 
composition, skeletal bone health, independent living, and 
mobility in older adults, decreasing back pain, falls, and 
fractures, and contributing to fewer functional (multi-joint 
movements mimicking daily tasks) limitations [10, 13, 14, 
19, 20]. Impaired balance, which can lead to falls resulting in 
fractures, especially with seniors, can also be enhanced with 
traditional RT exercises as well as RT exercises performed 
on unstable surfaces [21, 22]. Seniors can again benefit, 
as RT can contribute to improved cognitive function and 
memory performance. Apparently healthy individuals and 
individuals with psychological symptoms can experience 
increased feelings of well-being, self-efficacy, and reduc-
tions in schizophrenia, anxiety, depression, and other mood 
disorders with RT [10, 11, 23, 24].

With such an important health-promoting activity, every 
individual might want to include RT among other health 

strategies (i.e., aerobic exercise, proper nutrition, among 
others) in their activities of daily living. However, this is 
not the case. In Canada 25% of adults aged 18–79 years 
participate in the recommended RT at least twice per week 
[25] (Statistics Canada, Canadian Health Measures Survey 
Activity monitor data 2018–2019]). US statistics are similar, 
with a survey of 397,423 US citizens showing that only 30% 
of American adults engage in muscle strengthening activities 
and 24% meeting recommended aerobic and muscle strength 
activity guidelines (2  days/week) [26]. In Australia, in 
a survey of 195,926 participants, aged 15–98 years, only 
10.4% and 9.3% met the muscle-strengthening activity 
recommendations (two times/week, 150 weekly minutes 
of moderate-vigorous intensity activity) over 2 weeks and 
within a year, respectively [27]. Similarly, a cross-sectional 
study of English adults (n = 253,423; 18- to 65-year-
olds) found that 29% of men and 24% of women met the 
guidelines for the Health Survey for England definition 
of strengthening activity, whereas 16% of men and 9% of 
women met the strengthening guidelines for which evidence 
of health-related benefits could be found; furthermore, 
using the most-stringent definition in UK physical activity 
guidelines (two times/week, 150 weekly minutes of 
moderate-intensity activity), only 7.3% of males and 4.1% 
of females achieved the recommendations for strengthening 
activities [28]. In both the Australian and the English 
surveys, older individuals (50+ years), and individuals 
in socioeconomically disadvantaged or deprived areas or 
rural areas and those with lower education were less likely 
to report sufficient muscle-strengthening activities [26, 
28]. Low participation rates were also reported by Garcia-
Hermoso et  al. [29] when reviewing the World Health 
Organization (WHO) guidelines for aerobic and muscle 
strengthening activities including over 3 million individuals 
from 31 countries. Garcia-Hermoso et al. [29] reported 
that adherence to these guidelines was 17.1%, 13.6%, and 
19.5% in young and middle-aged adults, older adults, and 
adolescents, respectively. The WHO guidelines for adults 
and older adults recommend two or more days a week of 
muscle-strengthening activities at moderate or greater 
intensity. Recommendations for children and adolescents 
are for muscle-strengthening activities at least 3 days per 
week [30].

The low participation rates for RT have been attributed 
to a number of factors. Higher intensity exercise can con-
tribute to the exercise apathy [31]. Many people do not have 
positive experiences with exercise, since their physiologi-
cal responses to exercise associated with neurotransmit-
ters (e.g., dopamine, and serotonin associated with cortical 
reward centres) [32, 33], endorphin or enkephalin (mor-
phine-like hormones that inhibit pain and increase feelings 
of well-being) [34, 35] release are muted compared to others 
who enjoy exercise. Hence, there is little or no reward of a 
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runner’s or exercise “high” (e.g., drug-induced euphoria) 
to provide exercise enjoyment and motivation to continue. 
Diurnal rhythms play a role in the motivation to exercise 
with the majority of people more motivated to move in the 
afternoon (≥ 15:00) [36]. Hence, for individuals with lower 
motivation for exercise, a morning training program would 
be even more problematic. Another common problem is the 
lack of time available for exercise [37–39]. According to a 
narrative review by Fyfe et al. [40], since adherence to tradi-
tional RT is poor, “minimal-dose RT involving lower session 
volumes with either (1) higher training intensities/loads per-
formed at lower frequencies or (2) lower training intensities/
loads performed at higher frequencies and with minimal-to-
no equipment may be more feasible approaches to improving 
muscle strength and function across the lifespan.”

While most researchers, coaches, and athletes want to 
know the optimal exercise prescription for the greatest 
fitness component gains (i.e., aerobic capacity, muscle 
strength, endurance, power, flexibility), most sedentary 
individuals want the minimum recommendations for 
fitness and health benefits [1]. Haskell proposed a 
theoretical dose–response curve that illustrated the 
greatest benefits occur with individuals with the lowest 
baseline activity (sedentary), and this activity/benefits 
relationship plateaus for high baseline activity individuals 
(active or trained) [1].

Thus, the objective of this narrative review was to 
investigate and identify lower than typically recommended 
RT dosages (i.e., shorter durations, lower volumes, and 
intensity activities) that can improve fitness components 
such as muscle strength, hypertrophy, and endurance for 
sedentary individuals or beginners not meeting the minimal 
recommendation of exercise. Since increased muscle 
strength and endurance are associated with improved health 
outcomes and mortality [41–45], identifying minimal RT 
recommendations should provide benefits to both physical 
performance (e.g., muscle strength, endurance, power, and 
hypertrophy) [7, 46–49] and health. A narrative review 
rather than a systematic meta-analysis was chosen since the 
high heterogeneity of the study protocols (e.g., different RT 
frequencies, sets, repetitions, intensities, types of exercise) 
and measures (e.g., isometric, isoinertial, and isokinetic 
strength, isokinetic and jump power, muscle endurance 
(duration, number of repetitions)) would not allow for an 
evaluation or comparison of “similar” studies.

2 � Resistance Training Frequency

Twelve years following the original ACSM position 
statement that excluded RT recommendations [2], the 
1990 ACSM position stand recommended one set of 
8–12, moderate-intensity RT exercises at least two times 

per week per muscle group [50]. This recommendation 
is in accord with other reviews and association 
recommendations, which provide typical minimum 
recommendation for RT weekly frequency of two to three 
times per week in order to achieve significant increases 
in muscle strength, endurance, and hypertrophy [19, 25, 
26, 30, 49, 51, 52]. Multiple weekly RT sessions are 
often reported to provide greater positive strength and 
endurance adaptations than fewer sessions; 4 > 2 [53], 
3 > 1 [54], 5 > 1 [55, 56], which would suggest that greater 
RT volumes may be more effective. However, the literature 
is not unanimous. College-aged men who had previously 
done RT for at least 6 months, performed powerlifting 
(bench press, squats, and deadlifts) RT for 6 weeks, and 
found that 6 days per week did not provide greater strength 
or hypertrophy gains than training 3 days per week when 
volume and intensity were equated [57]. Lasevicius et al. 
[58] reported that RT men who had previously trained 
3 days per week for at least 1 year reported that 2 days 
per week RT produced similar increases in muscular 
adaptations as 3  days per week; however, effect size 
magnitudes for muscle hypertrophy were greater when 
training 2 versus 3 days. A meta-analysis by Cuthbert 
et  al. [59] found that over a 6- to 12-week training 
period, there were no significant differences in strength 
development between training frequencies (one to nine 
times per week) when training volumes were equated 
in well-trained populations. Hence, if well-trained RT 
individuals can benefit from lower training frequencies, 
it would be suspected that lesser trained individuals 
would also receive significant benefits even with a lower 
frequency RT schedule. A meta-analysis reported that 
untrained individuals experience their greatest gains with 
RT 3 days per week at 60% 1RM, while trained individuals 
show more optimal gains with 2 days per week at 80% 
1RM [60]. The higher volumes and intensity of RT per 
session with the trained individuals may account for the 
need for fewer training sessions per week in order to 
provide more time for overcompensation adaptations. 
Hence, multiple RT sessions per week are recommended 
and provide meaningful gains [61, 62], but more is not 
always significantly more beneficial than less (e.g., 6 vs. 
3, 3 vs. 2) [57, 58, 61].

There are a number of studies demonstrating that 
significant strength gains can even be achieved with a single 
training session per week. For instance, Brigatto et al. [63] 
reported no significant differences in muscle strength and 
endurance when comparing one versus two RT sessions per 
week equated for training volume over 8 weeks with RT 
young men (4.1 ± 1.8 years of RT). Following 8 weeks of 
RT, untrained young adult males displayed no significant 
differences in muscle strength and hypertrophy when 
training was reduced to either one- or two-volume equated 
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training session days per week in untrained men [64]. Similar 
results were reported by Graves et al. [65] who had adult 
participants (24 men and 26 women) experience 12 weeks 
of reduced training volume after either 10 or 18 weeks of 
RT. They found no significant muscle strength differences 
when reducing training to 1 or 2 days per week. In the same 
vein, but with pubescent male baseball players, DeRenne 
et al. [66] reported no significant difference in leg press 
or pull-up strength measures when 12 weeks of in-season 
maintenance training was reduced to 1 or 2 days per week 
following 12 weeks of RT. A meta-analysis by Ralston et al. 
[62], while reporting greater strength gains with moderate 
and high weekly set volumes, still found large magnitude 
effect size gains with single sets in novice and intermediate 
male trainees.

Faigenbaum et al. [67] also demonstrated no significant 
differences in children 7–12 years of age, between RT 1 or 
2 days per week over 8 weeks. In another 8-week, volume-
equated, RT program (Nordic hamstrings exercise) for youth 
soccer players, no significant differences were detected 
between the 1- and 2-day RT groups; however, three of 
four tests (40-m sprint, change of direction, standing long 
jump) exhibited larger magnitude effect sizes with the twice-
weekly group [68].

For sedentary or less active individuals, lower prescribed 
RT frequencies may be sufficient to induce muscular 
adaptations, which is in line with the law of diminishing 
returns [69]. If the recommended training frequency for 
trained or active individuals is too high for the sedentary 
individual, then overtraining will occur that could result in 
diminished physical adaptations. Hence, for the previously 
sedentary individual, multiple RT sessions per week 
may not provide additional benefits and, thus, without 
proportional improvements for the additional effort, the 
enjoyment, motivation, or enthusiasm for exercise may 
diminish [69]. Although there is some disagreement [59], if 
optimal or more substantial muscle strength, endurance, and 
hypertrophy gains are the goal, then multiple weekly training 
sessions are recommended over single weekly sessions, 
especially for the more highly trained or active individuals 
[19, 25, 26, 30, 49, 51–56]. However, the evidence does 
indicate that a RT program beginning with a single session 
per week can provide strength gains for sedentary or less 
active individuals who are only interested in the minimal 
weekly RT frequency to attain significant muscle strength 
and endurance gains over at least 8–12 weeks. The duration 
of improvements with single weekly RT sessions may 
persist for longer than 8–12 weeks, but there is little to no 
research investigating single RT sessions per week for more 
than 3 months. If a RT plateau is reached after 12 weeks, 
an increase in training frequency would be recommended.

3 � Resistance Training Volume

3.1 � Sets

The appropriate number of sets to obtain optimal muscle 
strength and endurance adaptations was investigated soon 
after World War II, when Delorme recommended the now 
ubiquitous prescription of three sets of 8–12 repetitions [70, 
71]. There are many articles demonstrating the superiority 
of three sets of RT over one set with RT programs of six 
[72–74], nine [75], or 12 weeks [76]. While it seems that < 3 
sets could still be effective in RT beginners, > 3 to 4 sets 
of training have been reported to result in a ceiling effect 
with, for example, older adults [52]. There may also be a 
muscle-specific effect with a lower number of sets (i.e., 
single set) providing superior training adaptations with 
upper body training versus more pronounced training gains 
with three sets versus one set for the lower body [72]. For 
optimal muscle hypertrophy, Dankel et al. [77] suggested 
in their review that with trained individuals, similar muscle 
groups should be trained more frequently while reducing 
the number of sets per training session. They indicated that 
increasing set number past a certain threshold or ceiling has 
negligible effects on muscle hypertrophy.

Untrained women who participated in a 24-week RT 
program demonstrated that one set provided similar 
strength gains as two to four sets for the first 12 weeks, but 
the multiple sets were more effective over the full 24-week 
period [78]. As mentioned in the previous section, with 
training doses that are too high, overtraining and diminished 
training returns may occur. In accordance with this rationale, 
Rhea and colleagues’ [60] meta-analysis illustrated a strength 
development dose–response relationship following RT, 
with maximal strength gains in both trained and untrained 
individuals with four sets per muscle group. Five and six 
sets resulted in diminished strength gains. Peterson et al.’s 
[79] meta-analysis differentiated between trained states and 
summarized that the optimal number of sets for large effect 
size magnitude strength gains for untrained individuals was 
approximately three sets, whereas for trained and athletic 
individuals, large magnitude improvements would be 
experienced with four and eight sets, respectively. However, 
while three sets could provide very large magnitude effect 
size ratio increases over 2.0 for the untrained, one set still 
induced large magnitude strength gains in the previously 
untrained, with effect sizes exceeding 1.0. From this review 
of the literature, it is difficult to find any study that reported 
a single set to be superior to multiple sets [80].

However, the focus of this present review is not to 
evaluate the number of sets that provide the greatest strength 
or hypertrophy gains, but to investigate lower set volumes 
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that can still provide significant benefits. Kraemer and 
Ratamess [80] in their review suggested that single sets 
would be more likely to be effective in the first 6–12 weeks 
of RT. A review paper in the Canadian Medical Association 
Journal recommended one to two sets of 8–12 repetitions for 
the novice training individual [14].

In summary, single sets have been shown to significantly 
and substantially increase muscle strength, especially in 
untrained individuals.

3.2 � Repetitions

The recommendation of 8–12 or 8–15 repetitions within 
a set for novice or previously untrained individuals is 
pervasive throughout the literature [14, 25, 50, 52, 71, 
81–84]. The number of repetitions during a set interacts 
with the training load. Typically, the repetition endpoint 
(8–12 or 15 repetitions) would be determined by an inability 
to continue moving the specified resistance through a full 
range of motion, otherwise known as training to repetition 
failure. For resistance-trained men, Androulakis-Korakakis 
et  al.’s [85] systematic review recommended that for 
suboptimal yet significant strength increases, a single set 
of 6–12 repetitions with loads ranging from approximately 
70–85% 1RM reaching volitional or momentary (repetition) 
failure for 8–12 weeks can suffice. A meta-analysis of 13 
studies ranging from 6 to 14  weeks’ training duration 
found that RT to repetition failure may provide similar 
or in some cases greater increases in dynamic strength 
and power, but no significant difference was detected for 
muscle hypertrophy when RT volumes were equalized [86]. 
A few reviews have concluded that training to repetition 
failure may provide greater strength [87], hypertrophy [88], 
and cardiorespiratory fitness [89] adaptations. Training to 
repetition failure did provide additional strength benefits in 
elite junior athletes [90], and may provide higher mechanical 
and metabolic stresses on the muscle [91, 92]. However, 
there are a number of studies that report no additional 
muscle strength [93–98] or hypertrophy [96] benefits of 
training to repetition failure. Conversely, an 8-week RT 
program reported greater enhancements in muscle strength, 
power, and rowing performance with repetition training not 
to failure compared to repetitions to failure in highly trained 
rowers [99].

For untrained individuals, the literature tends to indicate 
that one set of 8–15 repetitions will improve muscle strength 
and power without the need for lifting to momentary 
repetition failure or adding forced repetitions to increase 
the stress associated with more numerous repetitions. The 
number of repetitions to perform before reaching momentary 
failure may be detected by monitoring the movement 
velocity as the decrease in velocity is a strong indicator of 
the degree of fatigue before reaching momentary failure 

[100–102]. Kubo et al. [103] compared four, eight, and 
12 repetition maximums with twice-weekly training over 
10 weeks, and found that increases in muscle hypertrophy 
were similar among the three training protocols when the 
training volume was equated. However, they did report lower 
increases in muscle strength with the 12RM protocol.

Performing repetitions to momentary failure induces 
significantly higher ratings of perceived exertion [95, 100], 
which probably would not be pleasurable or motivating 
for individuals who are not highly motivated to exercise. 
Mangine et al. [104] used the term “repetitions in reserve” 
to describe ceasing repetitions prior to momentary failure. 
They found that the repetitions in reserve strategy allowed 
the workload to be maintained better across the sets at a 
lower rating of perceived effort.

Another strategy to increase repetitions and hence RT 
volumes is to incorporate advanced RT techniques such as 
“forced repetitions.” Forced repetitions involve a spotter 
providing some assistance to the lifter when momentary 
repetition failure is reached in order to allow the individual 
to force or add another few repetitions to the set volume. 
Wallace et al. [105] reported that whereas forced repetitions 
and other advanced RT techniques (e.g., drop sets, super sets, 
rest-pause sets) may induce small changes in volume load, 
muscle excitation, and fluid accumulation in strength-trained 
individuals, there were no significant differences in these 
variables compared to traditional RT when comparing single 
training sessions. Similarly, Drinkwater et al. [106] reported 
no additional strength benefits from forced repetitions with 
elite basketball and volleyball players (18–24 years) over 
a 6-week RT period. Other advanced RT routines such as 
drop sets and rest-pause sets can also decrease training time, 
but may be more effective for inducing greater hypertrophy 
than strength [38], while the increased intensity and 
discomfort would probably discourage the reluctant RT 
individual. Therefore, these advanced RT methods appear 
to be primarily suited for athletes accustomed to regularly 
performing RT.

A radical departure from the traditional recommendations 
was provided by Sato et  al. [107] who had 13 young 
sedentary adults perform either a single 3-s isometric, 
concentric, or eccentric maximal voluntary contraction once 
a day for 20 days, while ten individuals were assigned to a 
control group. The single 3-s eccentric contraction group 
enhanced isometric (10.2 ± 6.4%), concentric (12.8 ± 9.6%), 
and eccentric maximal voluntary contraction (MVC) torque 
(12.2 ± 7.8%), with lower and less comprehensive increases 
for the concentric (isometric MVC torque: 6.3 ± 6.0%) 
and isometric training groups (eccentric MVC torque: 
7.2 ± 4.4%). There were no muscle thickness changes in any 
group. Hence, with young sedentary adults, performing a 
single daily 3-s maximal voluntary contraction can increase 
muscle strength, with greater effects when using eccentric 
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maximal voluntary contractions. It is likely that sedentary 
individuals performing single maximal contractions would 
soon accommodate this level of muscle stress decreasing the 
potential strength and power benefits, but it does illustrate 
how even such a minimal RT dose can initially (at least for 
3 weeks) provide strength benefits. Future research should 
prolong the training period to determine the maximum 
training duration that elicits positive strength and power 
adaptations.

In summary, there is inconclusive evidence with regards to 
the number of repetitions needed to maximize physiological 
adaptations. While a large number of studies emphasize that 
repetition to failure is key to achieve optimal adaptations, 
other authors report similar adaptations with fewer 
repetitions. There is still a need for “unaccustomed stress” or 
suprathreshold stimuli to induce strength adaptations, but in 
the previously untrained, overcompensatory responses may 
still be achieved with repetitions near momentary failure 
but it may not be necessary to achieve full repetition failure. 
Differences in training status could be responsible for the 
controversial outcomes. In summary, individuals can employ 
6–15 repetitions without extending themselves to repetition 
failure or using other advanced RT techniques such as forced 
repetitions.

4 � Resistance Training Intensity

In accord with previous research indicating that RT 
techniques that force the individual to continue to 
momentary (repetition) failure or even push past this point 
(e.g., forced repetitions, drop sets, rest-pause sets) may 
not be necessary to achieve significant and meaningful 
improvements in muscle strength, power, or hypertrophy, 
there is abundant research espousing the effectiveness of 
lower intensity RT. A meta-analysis by Rhea et al. [60] 
reported that RT with an intensity of 60% 1RM elicits 
maximal gains in untrained individuals, whereas 80% is 
most effective with trained individuals. Munoz-Martinez 
et al.’s [17] systematic meta-analytical review suggested that 
to elicit large effects in 1RM bench press, the RT intensity 
should be 30–60% 1RM, with sessions lasting at least 
22.5–60 min. However, the low baseline fitness levels in 
this review might rationalize the lighter loads used in circuit 
training studies that exhibited higher strength gains. Sawan 
et al. [10] in their review suggested that RT health benefits 
can be attained by lifting lighter loads to volitional failure, 
and thus RT benefits may not necessitate heavier resistances. 
Higher intensity loads (80% 1RM) lifted three times 
per week for 6 weeks elicited greater neural adaptations 
than 30% 1RM but provided similar muscle hypertrophic 
responses as the lower intensity resistance [108]. Similar 
findings were reported by Schoenfeld et al. [109], who 

reported higher quadriceps and hamstrings activation 
with a leg press exercise at 75% 1RM versus 30% 1RM. In 
conclusion, the findings of a meta-analysis by Schoenfeld 
et al. [110] seem to summarize the overall findings. Whereas 
training with loads below 50% 1RM induces substantial 
strength and hypertrophy, improvements with untrained 
individuals, higher intensity or heavier loads tend to provide 
superior results. The evidence indicates that lower intensity 
RT programs can still provide substantial positive training 
adaptations in reluctant RT exercise participants.

5 � Type of Resistance Training

5.1 � Multi‑Joint Versus Single‑Joint Exercises

During multi-joint exercises such as cleans, snatches 
(Olympic type lifts), squats, deadlifts, or bench press, 
more muscles are involved [111–113] compared to 
single-joint exercises such as a biceps brachii curl [114]. 
Consequently, to train the main muscles involved in a 
deadlift (e.g., hamstrings, gluteal muscles, quadriceps, 
erector spinae) [112], four single-joint exercises would 
have to be performed to achieve similar results. One multi-
joint exercise compared to various single-joint exercises 
(with the same set and repetition range compared to the 
multi-joint exercise) can increase muscle strength and 
power to an even greater extent [38, 115–117]. With 
total work volume equated, a multi-joint RT group 
demonstrated greater gains than a single-joint RT program 
group in bench press, knee extension, and squat 1RMs, 
suggesting multi-joint exercises were more efficient for 
improving muscle strength [115]. Hoffman et al. [118] 
noted an 18% greater improvement in squat 1RM and 
a twofold better improvement in 40-yard sprint time 
with the more complex multi-joint Olympic lifts versus 
powerlifting. Similarly, Channel and Barfield [119] 
reported that multi-joint Olympic lifts provided a modest 
advantage over powerlifting for vertical jump height 
improvement in high school athletes.

Consequently, it is suggested that multi-joint exercises 
can be considered as more time efficient by reducing the 
overall number of exercises (i.e., less training time with 
similar results) [38, 120]. In addition, multi-joint exercises 
stimulate interlimb coordination, which is not the case 
with single-joint exercises. Furthermore, activities of 
daily living are typically performed in a standing position 
requiring some level of core strength and stability and 
thus these multi-articular exercises (i.e., squats, deadlifts 
and others) that mimic everyday tasks [115] should be 
incorporated [121, 122]. Accordingly, there is no need to 
add single-joint exercises to multi-joint exercises within 
a RT session, since the additional effects are negligible 
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[123, 124] and the inclusion of specific exercises to 
activate individual stabilizer muscles (e.g., transversus 
abdominis, internal obliques) has not been adequately 
justified [125]. Similar principles apply to older adults for 
whom multimodal or combined exercise interventions that 
include balance, perturbation, and dual-task exercises are 
recommended [126].

Both similar [127] and higher [128–130] muscle 
activation have been reported with free weight multi-
joint exercises compared to machines while injury 
prevalence seems to be higher with free weights compared 
to machines, especially for inexperienced individuals 
[131]. This increased injury incidence is likely due to 
improper technique and the higher degrees of uncontrolled 
movements (i.e., stabilizing the trajectory of the external 
load). Consequently, guided machines (e.g., Smith 
machine) can minimize the prevalence of such injuries 
[131]. Hence, it can be suggested that if the technique 
of the multi-joint exercises is not yet fully developed or 
coordinated, training with guided machines can be an 
initial suitable substitute for such a peer group. Training 
with free weights under the supervision of a certified 
trainer would also be an appropriate recommendation to 
avoid injuries and optimize performance gains.

A multi-joint exercise approach is not only valid for an 
untrained or sedentary person but also for time-limited 
endurance athletes, such as triathletes who have such high 
endurance training loads, in terms of recovery, as these 
athletes may not perform additional comprehensive RT. 
Beneficial effects of RT for endurance performance as 
well as endurance economy as an addition to the typical 
endurance training were reported [132–134]. Thus, multi-
joint exercises such as squats, deadlifts, bench press 
twice a week [133] may be enough to enhance endurance 
performance/economy with RT.

5.2 � Functional Training

La Scala Teixeira et al. [117] defined functionality as an 
approach to stimulate different physical abilities in an inte-
grative manner to improve performance in daily activities. 
Despite individual differences, some actions apply to almost 
everyone, such as walking, pushing, and pulling. In most of 
these everyday activities, we concomitantly use physical fit-
ness in the form of muscle strength, flexibility, coordination, 
and others, as shown in the physical activity recommenda-
tions [30, 135]. A suitable option for the functional approach 
is to explore the complexity of the exercises (e.g., biome-
chanical variations) to modify the stimulus intensity [116]. 
Thus, if the primary purpose of the training program is to 
improve function, it will be necessary to integrate different 

physical abilities and apply the specificity principle [136] to 
get the maximum benefit.

Muscle power and strength are essential to preserve 
physical function  [137]; however, muscle power shows 
larger declines with ageing compared with muscle strength 
[138]. Hence, power training (i.e., maximum intended 
velocity during the shortening of the muscle) [139], which 
typically utilize lower loads (e.g., 60–80% of 1RM) [140], 
could be a helpful approach to maintain or even improve 
physical function [136], especially in older adults. As 
mentioned previously for strength training (see Sect. 5.1), 
these power movements may be initially safer (decreased 
chance of injuries) with machine resistance or supervised 
free-weight exercises.

Principal movement pattern exercises can be combined 
in a circuit format or supersets (performing two exercises 
consecutively without rest or very short rest) to make 
the training more dynamic, reduce the session duration, 
maintain the benefits with lighter loads as well as improve 
cardiorespiratory fitness [17]. Individual preference and 
tolerance to exercise will define whether circuit training, 
supersets, high-intensity interval training (HIIT), or other 
advanced techniques are incorporated into the training.

6 � Stretch Training as an Alternative 
to Resistance Training

Although RT is the most common method to increase muscle 
strength and hypertrophy [46, 141, 142], the reluctant 
exerciser may not be inclined to participate in exercises 
they perceive to be too intense, painful, and uncomfortable 
or they may not have access to the required equipment or 
fitness facility. Although not time efficient, recent research 
illustrates that prolonged static stretching can produce 
muscle strength and hypertrophy benefits [143–145] with 
minimal intensity of effort (vs. minimal time concerns).

Boppart and Mahmassani [146] and Aguillar-Agon et al. 
[147] pointed out that mechanical tension was a sufficient 
stimulus to induce physiological adaptations such as 
increased protein turnover [148–152]. Animal model stretch-
training studies reported significant large magnitude muscle 
mass increases [153] using comparatively high stretching 
durations of 30 min [154, 155] to 24 h daily [153, 156, 
157]. However, since stretching induced mechanical tension 
without the need for active movement or even innervation 
of the muscle [158, 159], the question arises about the 
transferability to humans.

With stretching, there is little required equipment and 
thus it can easily be integrated into human daily activity. 
However, Nunes et al. [160] reviewed the current literature 
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showing no significant stretch-mediated hypertrophy in 
humans. It is noteworthy that stretching duration did not 
extend past 2 min per session and was mostly performed 
2–3 days per week. Other studies were also not able to 
induce significant hypertrophy in response to 4–6 weeks 
of stretching, using stretching durations of 360 s (1 × 360 s 
vs. 3 × 120 s per week) [161], 4 × 30 s [162] to 6 × 5 min 
[163] 2–3 days per week. In contrast, the participants in the 
study by Simpson et al. [164] stretched the plantar flexors 
for 3 min, five days per week for 6 weeks, demonstrating a 
significant 5.6% increase in muscle thickness.

Warneke et al. [165] conducted long duration stretching 
studies in humans, stretching the plantar flexors for up to two 
continuous hours per day using an orthotic stretching device 
[166, 167], and found significant, large magnitude increases 
in muscle strength (22.9%, d = 0.91) and hypertrophy (15.2%, 
d = 0.84). The authors highlighted the possibility of using 
the stretching device while watching television, playing 
computer games or doing work in a sitting position [166, 
167]. However, there seems to be substantial limitations 
of this training method, since stretching durations of up 
to 120 continuous minutes per day per muscle would be 
difficult to sustain [168] and it can be assumed that most 
people would not be able or willing to perform a weekly 
stretching volume of 420–840 min per week per muscle 
group [166]. Subsequently, this research group then 
compared daily 1-h plantar flexors stretching versus a 
commonly used RT exercise using calf raises 3 days per 
week with 5 × 12 repetitions per session. Both the stretching 
and RT interventions significantly increased maximum 
strength, flexibility, and muscle thickness to similar extents. 
Furthermore, the authors tested the effectiveness of 10 
minutes’ daily stretching using a stretching board, and were 
still able to induce significant increases in muscle strength 
[165]. The literature investigating stretch-mediated (≥ 30 min 
per session) hypertrophy is very scarce and has exclusively 
tested the plantar flexors [163, 166, 167, 169, 170]. More 
research is necessary to address the optimal dose–response 
relationship with more muscles and diverse participants. 
Recently, a meta-analysis of 41 chronic stretching studies 
by Arntz et al. [145] calculated trivial to small magnitude 
increases in muscle strength and power (median weekly 
session frequency was three (range 2–14), with a median 
intervention period of 6 weeks (range 2–24)). Subgroup 
analyses showed larger strength gains in female, older, and 
sedentary individuals. A greater number of stretch repetitions 
(mean stretching time per exercise was 30 s with a range of 
2–300 s) provided larger muscle strength improvements.

If time efficiency is the major issue limiting training 
participation, then the aforementioned static stretch training 
programs would certainly not be favourable. However, for 
those individuals with abundant time, but who are not 
enthusiastic about moderate- to high-intensity RT, prolonged 

passive static stretching while seated at work or watching 
television or the computer at home might be another 
alternative for improving muscle strength and hypertrophy 
(minimal intensity rather than minimal time).

7 � Conclusion and Recommendations

There are volumes of research on optimal RT programs to 
achieve maximal strength, power, and hypertrophy. A meta-
analysis by Peterson et al. [79] identified the optimal training 
parameters for three distinct groups. Maximal strength gains 
for untrained individuals are elicited at a mean training 
intensity of 60% of 1RM, 3 days per week, and with four 
sets per muscle group. Recreationally trained individuals can 
achieve maximal strength gains with 80% 1RM, 2 days per 
week, with a volume of four sets. For athletes, 85% of 1RM, 
2 days per week, and with eight sets per muscle group, would 
be optimal to achieve maximal strength gains. While this 
research highlights the optimal prescriptions for maximal 
strength gains for the more motivated, or aspiring fitness 
enthusiasts or athletes, there is a significant portion of the 
population that are resistant or averse to RT and uninterested 
in “maximal” strength gains. Since RT can promote positive 
health adaptations for a myriad of health conditions, it is 
imperative to find a means to motivate those unwilling or 
challenged to begin RT.

It is not presently known whether such minimalist RT 
programs can positively impact the overall health of an 
individual. However, 2–3 months of a minimalist program 
has the potential to improve muscle strength in individuals 
with little RT experience. These recommendations are in 
accord with a systematic review by Androulakis-Korakakis 
et al. [85], who suggested that just a single set of 6–12 
repetitions at approximately 70–85% 1RM, 2–3 times 
per week with high intensity of effort for 8–12 weeks can 
produce significant increases in squat and bench press 
1RM strength in resistance-trained men. Consequently, 
these positive adaptations with lower volumes of RT 
could introduce and motivate the individual to continue 
with greater training dosages (RT frequencies, volumes, 
and intensities) that have been associated with many health 
benefits.

An advantage for those individuals who previously 
performed RT and were now detrained is that the initial 
return to training may provide more rapid training 
adaptations (i.e., muscle or neuromuscular memory). A 
foundation of prior RT would have established neural 
adaptations (e.g., increased motoneuron recruitment, rate 
coding, and synchronization) that would be more easily 
retained than with individuals who had never previously 
trained [3, 171]. Furthermore, due to the prior activation 
of satellite cells and the infusion of myonuclei, previous 
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RT individuals would have a greater capacity for protein 
synthesis facilitating more rapid training adaptations [172, 
173]. One would expect that the combination of more 
rapid neural and morphological adaptations contributing 
to increased muscle strength and hypertrophy would help 
to maintain the motivation to continue RT.

Furthermore, RT adaptations are reported to be global 
with unilateral training of one limb promoting strength 
adaptations in contralateral homologous and heterologous 
muscle groups (cross-education) [174–177]. These global 
responses are also evident with stretching [178, 179] and 
foam rolling [180]. Thus, it is not necessary to spend an 
inordinate amount of time resistance training or stretching 
all individual muscle groups as there will be global effects 
on non-exercised muscles.

RT-hesitant individuals who are only interested in 
a minimalist program should begin with a single RT 
session per week for at least 8–12 weeks. This weekly 
session should consist of at least one set of 6–15 
repetitions ranging from 30 to 80% of 1RM using multi-
joint movements/exercises that emphasize functional 
movements of daily living (i.e., pushing, pulling, and 
walking). It is also recommended to perform the concentric 
action as fast as possible to promote power. Progression in 
terms of exercise volume and intensity should be realized 
over the training period. For those who seek even lower 
intensity strength and hypertrophy enhancing exercises, 
prolonged static stretching may be an alternative for 
some muscle groups. While much of this research is 
based on RT programs of 8–12 weeks, it is not known if 
these parameters would still be effective for substantially 
longer durations. It may be necessary after three or more 
months of training to provide greater training stimuli 
with increases in weekly frequency of training (e.g., two 
or more session per week), volumes (e.g., multiple sets), 
intensities, and exercise types (add power training such as 
plyometrics or metastable/unstable environments).
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