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Abstract
Background and Objective Exercise in hot environments impairs endurance performance. Cooling interventions can attenuate 
the impact of heat stress on performance, but the influence of an exercise protocol on the magnitude of performance benefit 
remains unknown. This meta-analytical review compared the effects of pre- and per-cooling interventions on performance 
during self-paced and constant workload exercise in the heat.
Methods The study protocol was preregistered at the Open Science Framework (https:// osf. io/ wqjb3). A systematic literature 
search was performed in PubMed, Web of Science, and MEDLINE from inception to 9 June, 2023. We included studies that 
examined the effects of pre- or per-cooling on exercise performance in male individuals under heat stress (> 30 °C) during 
self-paced or constant workload exercise in cross-over design studies. Risk of bias was assessed using the Cochrane Risk of 
Bias Tool for randomized trials.
Results Fifty-nine studies (n = 563 athletes) were identified from 3300 records, of which 40 (n = 370 athletes) used a self-
paced protocol and 19 (n = 193 athletes) used a constant workload protocol. Eighteen studies compared multiple cooling 
interventions and were included more than once (total n = 86 experiments and n = 832 paired measurements). Sixty-seven 
experiments used a pre-cooling intervention and 19 used a per-cooling intervention. Average ambient conditions were 34.0 
°C [32.3–35.0 °C] and 50.0% [40.0–55.3%] relative humidity. Cooling interventions attenuated the performance decline in 
hot conditions and were more effective during a constant workload (effect size [ES] = 0.62, 95% confidence interval [CI] 
0.44–0.81) compared with self-paced exercise (ES = 0.30, 95% CI 0.18–0.42, p = 0.004). A difference in performance out-
comes between protocols was only observed with pre-cooling (ES = 0.74, 95% CI 0.50–0.98 vs ES = 0.29, 95% CI 0.17–0.42, 
p = 0.001), but not per-cooling (ES = 0.45, 95% CI 0.16–0.74 vs ES = 0.35, 95% CI 0.01–0.70, p = 0.68).
Conclusions Cooling interventions attenuated the decline in performance during exercise in the heat, but the magnitude of 
the effect is dependent on exercise protocol (self-paced vs constant workload) and cooling type (pre- vs per-cooling). Pre-
cooling appears to be more effective in attenuating the decline in exercise performance during a constant workload compared 
with self-paced exercise protocols, whereas no differences were found in the effectiveness of per-cooling.
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Key Points 

Pre-cooling is more effective in constant workload exer-
cise compared with self-paced exercise in the heat.

Per-cooling provides comparable benefits for constant 
and self-paced exercise in the heat.

Substantial differences in the magnitude of performance 
benefits across different types of cooling interventions 
were observed, which emphasizes the need for more 
research to determine the most effective type of cooling 
under specific exercise conditions (e.g., type, duration).

1 Introduction

Exercise in the heat results in internal heat storage, impair-
ment of athletic performance [1], and an increased risk for 
heat-related illness [2, 3]. Heat mitigation strategies, such as 
cooling interventions and heat acclimation, have been shown 
to attenuate the development of thermal strain and improve 
exercise performance in the heat [4, 5]. Heat acclimation is 
regarded as the primary intervention to undertake prior to 
exercise in the heat [1], but requires a dedicated time frame 
to induce physiological adaptations. In contrast, cooling 
interventions can provide an immediate reduction in ther-
mal strain by increasing heat storage capacity directly prior 
to exercise (pre-cooling) or attenuating the increase in core 
temperature during exercise (per-cooling). Cooling interven-
tions can be applied externally (i.e., cooling garments, cold 
water immersion, or fanning) and internally (i.e., cold fluid 
or ice ingestion). Over the past decade, several reviews and 
meta-analyses have demonstrated that both pre-cooling and 
per-cooling can effectively attenuate the decline in exercise 
performance in the heat [6–9]. However, a limitation of pre-
vious work is that all available evidence was pooled and 
the type of exercise protocol (i.e., self-paced and constant 
workload exercise) was not factored in when evaluating the 
performance benefits of cooling. This may have led to over- 
or under-estimation of the cooling-induced performance 
benefits as the pooled outcomes may not be representative 
of exercise in a sport-specific setting (e.g., marathon run-
ning, individual time trial cycling, team sports).

Endurance performance can be assessed in laboratory 
settings using different protocols. The objective of self-
paced exercise protocols is to complete a known distance 
or amount of work as quickly as possible, or maintain the 
highest workload for a given time, with the ability to adjust 
the workload based on maintaining an optimal performance 

intensity [1]. In contrast, constant workload protocols adopt 
a set work rate and individual pacing cannot occur beyond 
adjusting cadence or ceasing exercise. These are typically 
used to isolate independent variables (e.g., cooling interven-
tion) in a well-controlled environment to examine their effect 
on dependent variables (e.g., volitional fatigue). Although 
both types of exercise protocols can reliably assess changes 
in exercise performance (i.e., sensitivity) [10, 11] and have 
external validity (i.e., representative for race conditions), 
the magnitude of performance change may differ markedly, 
with changes in time to volitional fatigue stemming from 
an acute intervention (e.g., heat or hypoxia) typically being 
much larger than those of self-paced exercise [10, 12, 13].

The aim of this systematic review and meta-analysis was 
to compare the effects of cooling interventions on perfor-
mance outcomes during self-paced and constant workload 
exercise in the heat by standardizing the impact of cooling 
on performance and presenting effect sizes (ESs). Second, 
we evaluated the impact of the type of cooling (i.e., pre-
cooling vs per-cooling) on exercise performance between 
exercise protocols. We hypothesized that cooling strategies 
would be equally effective between self-paced and constant 
workload exercise.

2  Methods

2.1  Search Strategy

This review was performed according to the Preferred 
Items for Systematic Reviews and Meta-Analysis—Protocol 
(PRISMA-P) statement [14] and was pre-registered with the 
Open Science Framework Registries (https:// osf. io/ wqjb3). 
A systematic literature search was conducted in PubMed, 
Web of Science, and MEDLINE. Three main search themes 
were used, which included exercise, cooling interventions, 
and an exercise performance outcome measure. Titles and 
abstracts were searched in addition to using Medical Subject 
Heading terms in PubMed. Words within the themes were 
combined using the Boolean operator “OR”, while the three 
themes were connected by “AND” (Table 1 of the Electronic 
Supplementary Material [ESM]). The final search was per-
formed from inception up to 9 June, 2023. Search results 
from these databases were combined and duplicates removed 
using Mendeley Reference Management Software (Else-
vier, London, UK). Two reviewers (T.M.K and C.C.W.G.B) 
screened the article titles and abstracts for inclusion; in 
the case of disagreement between those reviewers, a third 
reviewer (T.M.H.E) was consulted and decided on inclu-
sion or exclusion. The reference list of included articles was 
screened for any additional articles that were missed by the 
literature search.

https://osf.io/wqjb3
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2.2  Inclusion Criteria

Studies were included if they (1) applied a pre-cooling or 
a per-cooling strategy and adopted a crossover design; (2) 
used a self-paced or a constant workload exercise protocol; 
(3) were performed in hot ambient conditions (≥ 30 °C); (4) 
included data reported separately for male and female indi-
viduals; and (5) reported at least one outcome parameter 
related to exercise performance. Studies were excluded if 
they (1) adopted a combination of pre- and per-cooling inter-
ventions and (2) were scored with a high risk of bias [15].

2.3  Study Classification

All included studies were classified into two groups based on 
the exercise protocol: self-paced or constant workload exer-
cise. Self-paced exercise protocols were defined as exercise 
protocols that consisted of a fixed distance, time, or work to 
be completed and allowed participants to change the speed 
or workload during the trial. Constant workload protocols 
were defined as exercise protocols that were performed 
at a workload equivalent to a percent of maximal aerobic 
power (e.g., 60% of maximal oxygen consumption [VO2max]) 
or peak workload (e.g., 70% of peak power output), or a 
specified rating of perceived exertion (RPE) (e.g., RPE of 
15) until volitional fatigue/exhaustion. Studies adopting a 
warm-up and those where a pre-loaded exercise trial was 
performed at a different exercise protocol than the actual 
performance trial were classified based on the characteris-
tics of the performance trial. For example, if a pre-loaded 
constant workload trial preceded a self-paced exercise trial, 
only the data from the self-paced trial were included in the 
meta-analysis.

Pre-cooling was defined as any cooling intervention 
applied either prior to the performance trial (i.e., at rest, 
warm-up, or pre-loaded trial) or during exercise breaks (e.g., 
15-min half-time break). If cooling was applied both prior 
to the trial and during the half-time break, all data from 
the performance trial were used. However, if cooling was 
only applied during half-time, data from the second half 
were extracted, given that the first half was similar in both 
the control and intervention trials (i.e., randomized design 
and comparable environmental conditions). Per-cooling was 
defined as any cooling intervention that was applied dur-
ing exercise as part of the performance trial. Studies that 
investigated more than one cooling intervention in sepa-
rate trials were included more than once. Studies adopt-
ing multiple cooling interventions at the same time (e.g., 
cooling vest and cold/ice water ingestion) were classified as 
mixed-method cooling. We did not distinguish between or 
exclude non-thermal cooling methods as it has been shown 
to improve exercise performance [16]. We therefore also 

included menthol-based cooling interventions in our sys-
tematic review and meta-analysis.

2.4  Risk of Bias Analysis

Risk of bias was assessed independently by two researchers 
(T.M.K and C.C.W.G.B) according to the Cochrane Risk of 
Bias Tool for randomized trials to assess the methodological 
quality of the included studies. After the initial assessment, 
the risk of bias of both researchers was compared and in 
cases where a consensus was not reached, the evaluation of 
a third researcher (T.M.H.E) was decisive.

2.5  Data Extraction

Data were extracted from each study to a predefined Excel 
sheet (Microsoft Excel, version 16.73). This included: (1) 
article information (author name, year, title, study design); 
(2) participant characteristics (age, sex, and VO2max); (3) 
study characteristics (number of participants, ambient condi-
tions [ambient temperature, relative humidity, and air flow], 
exercise characteristics [running, cycling], exercise protocol, 
exercise duration, type of cooling intervention, timing of 
cooling,); and (4) exercise performance data (mean ± stand-
ard deviation). For self-paced exercise, relevant outcome 
parameters included finish time (in seconds), total distance 
covered (in meters), mean power output (in Watts), total 
work done (in kilojoules), or peak power output (in Watts). 
A single measure was selected when multiple power output 
outcome measures were reported, prioritized as mean power 
output, total work done, and peak power output. For con-
stant workload exercise, outcome measures included time to 
exhaustion (in seconds), mean power output (in Watts), total 
work done (in kilojoules), or peak power output (in Watts). 
A single measure was selected when multiple power output 
outcome measures were reported, prioritized as mean power 
output, total work done and peak power output. In the case of 
missing data, only the available data were analyzed and pre-
sented. In case data were not explicitly provided in the text, 
but only in a figure, data were extracted using a validated 
graphical software program (WebPlotDigitizer version 4.5; 
Automeris LLC, Pacifica, CA, USA) by a single experienced 
researcher [17, 18].

2.6  Data Synthesis and Analysis

Data analysis was performed on raw data (means, standard 
deviation, and sample size) using Review Manager (ver-
sion 5.4), in line with the Cochrane guidelines. For all 
included studies, the standardized mean difference was 
calculated as the Hedges’ ES (ES = difference in outcome 
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between conditions/standard deviation of outcome among 
participants) with a corresponding 95% confidence inter-
val (CI) [19]. The magnitude of Hedges’ g was interpreted 
as: < 0.2, trivial; 0.2–0.49, small effect; 0.5–0.79, mod-
erate effect; ≥ 0.8, large effect [20]. Heterogeneity was 
assessed using  I2 statistics with < 25% being considered 
low heterogeneity and > 75% high heterogeneity [21]. 
A fixed-effects model was used to calculate the pooled 
weighted average ES to correct for differences in the sam-
ple size between studies by using the inverse-variance 
weighted average method [22]. Stratified analyses were 
also performed to compare the effect of cooling type (pre- 
vs per-cooling) between self-paced and constant workload 
exercise protocols. Exploratory analyses were additionally 
performed to assess the impact of exercise duration on 
the ES. Potential publication bias was assessed by visual 
inspection of funnel plot asymmetry. All data were pre-
sented as mean ± standard deviation. To assess between-
study normality of data, a Kolmogorov–Smirnov test was 
performed; in the case of non-normality, the median with 
interquartile range was reported. The significance level for 
all statistical tests was set at p < 0.05. Data analyses on the 
ESs were conducted using Review Manager, whereas pub-
lication bias was assessed using Rstudio (version 1.4.1106; 
packages: tidyverse, meta, metafor).

3  Results

3.1  Participants and Included Studies

The literature search identified 3300 articles after the 
removal of duplicates. After the initial title and abstract 
screening and subsequent full-text screening, 61 studies 
complied with our inclusion criteria, of which two [23, 
24] were excluded owing to a high risk of bias because 
of missing data (Fig. 1). In total, 59 studies (n = 563 ath-
letes, age: 24.0 [21.0–26.0] years, VO2peak: 55.8 ± 6.0 mL 
 kg−1  min−1) were included in the meta-analysis, of which 
40 studies (n = 370 athletes) comprised a self-paced exer-
cise protocol [25–64] (Table 1) and 19 studies (n = 193 
athletes) comprised a constant workload protocol [65–83] 
(Table 2). A total of 18 studies compared multiple cool-
ing interventions and were therefore included more than 
once. This resulted in 86 experiments (n = 832 paired 
measurements) in which exercise performance was com-
pared between the control and cooling conditions. Almost 
all studies were conducted in an indoor laboratory setting 
(n = 56; 95%). Average ambient conditions were 34.0 °C 
[32.3–35.0 °C] and 50.0% [40.0–55.3%] relative humid-
ity and did not differ between self-paced and constant 
workload studies (p = 0.11 and p = 0.49, respectively). 

Furthermore, 22 out of 59 studies (37%) reported informa-
tion on airflow, which was 2.1 ± 1.5 m  s−1 on average and 
did not differ between study protocols (p = 0.40).

3.2  Risk of Bias Analysis

A few outliers and little asymmetry were observed in the 
funnel plots for the self-paced and constant workload exer-
cise protocol studies (Fig.  2). The risk of bias analysis 
revealed that 98% of included studies had “some concerns” 
(Tables 3, 4). This mainly related to missing information on 
the concealment of the allocation sequence until participants 
were assigned to an intervention (i.e., Domain 1) as well 
as missing information on whether a pre-specified analysis 
plan was used or not (i.e., Domain 5). The risk of bias was 
comparable between the self-paced and constant workload 
exercise protocol studies.

3.3  Self‑Paced Exercise Studies

Fifty-nine experiments (exercise duration: 40.0 [27.0–60.0] 
minutes) were available for self-paced exercise performance 
analysis, of which 51 used a pre-cooling intervention and 
eight used a per-cooling intervention. Mixed-method cooling 
(25.0%), cooling vests (18.7%), and cold/ice water ingestion 
(14.9%) were most frequently adopted as cooling strategies 
(Fig. 1 of the ESM). The median weighted improvement 
in self-paced exercise performance corresponded to an 
ES = 0.30, 95% CI 0.18–0.42.

Pre-cooling was applied prior to a time trial (19 out of 51 
experiments) or an intermittent sprint protocol (32 out of 51 
experiments), whereas per-cooling was predominantly used 
during a time trial (seven out of eight experiments). The 
improvement in self-paced exercise performance was similar 
for pre-cooling (ES = 0.29, 95% CI 0.17–0.42, Fig. 3) and 
per-cooling (ES = 0.35, 95% CI 0.01–0.70, Fig. 4, p = 0.74). 
We also observed a large variability in the magnitude of the 
ES across cooling strategies, with no benefits from a cooling 
collar (ES = 0.00, 95% CI − 0.92 to 0.92) or small benefits 
from cold water immersion (ES = 0.47, 95% CI 0.15–0.80) 
for pre-cooling studies (Fig. 3), to large effects using limb 
cooling (ES = 1.63, 95% CI 0.45–2.81) as a per-cooling 
intervention (Fig. 4). Finally, no statistical heterogeneity 
was observed for pre- and per-cooling subgroups (I2 = 0%, 
p = 1.00 and I2 = 0%, p = 0.55, respectively).

3.4  Constant Workload Exercise Studies

Twenty-seven experiments (exercise duration: 33.6 ± 22.8 
min) were available for a constant workload exercise per-
formance analysis, of which 16 experiments used a pre-
cooling intervention and 11 experiments used a per-cooling 
intervention. Cold/ice water ingestion (20.0%), cooling vests 
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(19.6%), and menthol use (17.7%) were most frequently 
adopted as cooling strategies (Fig. 1 of the ESM). The 
median weighted improvement in constant workload exercise 

performance was ES = 0.62, 95% CI 0.44–0.81. Pre-cooling 
was applied prior to time to exhaustion (13 out of 16 experi-
ments), an intermittent exercise (1 out of 16 experiments), 

Fig. 1  Flow chart of the systematic search and study selection process
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or a fixed RPE (2 out of 16 experiments) protocol. Per-cool-
ing was only used during one time-to-exhaustion protocol. 
Constant workload exercise performance improvements did 
not differ for pre-cooling (ES = 0.74, 95% CI 0.50–0.98) 
(Fig. 5) versus per-cooling (ES = 0.45, 95% CI 0.16–0.74 
(Fig. 6), p = 0.13). Nevertheless, the magnitude of the ES 
differed across cooling strategies, with no benefits of limb 
per-cooling (ES =  − 0.18, 95% CI − 0.98 to 0.74) to large 
benefits of a cooling vest during pre-cooling (ES = 0.81, 95% 
CI 0.27–1.35) or per-cooling interventions (ES = 1.15, 95% 
CI 0.30–2.01) (Figs. 5, 6). Statistical heterogeneity was only 
observed for pre-cooling (I2 = 62%, p < 0.001) studies and 
not for per-cooling (I2 = 36%, p = 0.11).

3.5  Self‑Paced Versus Constant Workload Exercise 
Studies

The type of exercise protocol impacted the magnitude of 
performance benefits following cooling interventions, with 
a smaller improvement following self-paced versus con-
stant workload exercise (ES = 0.30, 95% CI 0.18–0.42 vs 
ES = 0.62, 95% CI 0.44–0.81, p = 0.004). Interestingly, the 
difference in performance improvement between self-paced 
and constant workload exercise was only observed with 
pre-cooling interventions (ES = 0.29, 95% CI 0.17–0.42 vs 
ES = 0.74, 95% CI 0.50–0.98, p = 0.001, Fig. 2 of the ESM), 
but not with per-cooling interventions (ES = 0.35, 95% CI 
0.01–0.70 vs ES = 0.45, 95% CI 0.16–0.74, p = 0.68, Fig. 3 
of the ESM). Figure 7 provides a graphical summary of the 
results. Further stratification for exercise duration revealed 
that differences in the effectiveness of pre-cooling between 
self-paced and constant workload studies were larger for 
exercise protocols with a short-to-medium duration (< 40 
min) [ES = 0.26, 95% CI 0.09–0.43 vs ES = 0.90, 95% CI 
0.62–1.19, p < 0.001, Fig. 4 of the ESM). However, this 
effect was not present for protocols with a medium-to-
long duration (> 20 min) [ES = 0.30, 95% CI 0.16–0.43 vs 
ES = 0.43, 95% CI 0.13–0.73, p = 0.44, Fig. 5 of the ESM) 
or medium duration only (20–40 min) [ES = 0.25, 95% CI 
0.05–0.45 vs ES = 0.47, 95% CI 0.04–0.91, p = 0.36, Fig. 6 
of the ESM).

4  Discussion

The purpose of this meta-analytical review was to compare 
the magnitude of the performance effect from pre- and per-
cooling on self-paced and constant workload exercise per-
formance. For this purpose, data from 40 self-paced and 19 
constant workload studies were pooled, representing perfor-
mance outcomes of 832 paired measurements. We found that 
pre-cooling provided less performance enhancement dur-
ing self-paced compared with constant workload exercise Ta
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in the heat (ES = 0.29, 95% CI 0.17, 0.42 vs ES = 0.74, 95% 
CI 0.50–0.98), whereas no difference in performance was 
noted for per-cooling across exercise protocols (ES = 0.35, 
95% CI 0.01–0.70 vs ES = 0.45, 95% CI 0.16–0.74). We 
also observed a large heterogeneity in the benefits of cool-
ing interventions within exercise protocols. These findings 
have important implications for competitive athletes as the 
performance benefits of pre-cooling during self-paced exer-
cise may be less than previously assumed.

Cooling interventions did not produce similar perfor-
mance benefits for self-paced and constant workload exer-
cise in the heat. It was previously suggested that the type of 
exercise protocol may impact the magnitude of performance 

benefits [10, 11]. To account for these methodological dif-
ferences, we calculated Hedges’ g rather than a percent-
age improvement, so this could not explain our findings. 
Alternatively, the duration of the exercise protocol may have 
contributed to this finding as previous studies suggested 
that pre-cooling interventions are predominantly effec-
tive for an exercise duration of < 40 min [6, 84]. Indeed, 
longer protocols (i.e., > 40 min) were more common in 
self-paced compared with constant workload studies (47% 
vs 34% of included experiments), but exclusion of these 
studies did not alter the outcomes of our analysis (Fig. 4 
of the ESM). We also observed that the constant workload 
studies with the largest attenuation of decline in exercise 

Fig. 2  Funnel plot of included studies separated for self-paced (top 
figures; A and B) and constant workload (bottom figures; C and D) 
exercise performance; data are also separated for pre-cooling (left fig-
ures; A and C) and per-cooling (right figures; B and D). A few outli-

ers are observed within figures B, C, and D. The vertical dotted line 
represents the weighted average effect size of all included studies. SE 
standard error, SMD standardized mean difference
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Table 3  Risk of bias, self-paced studies
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Brade 2014 — + + + + —
Byrne 2011 — + + + + —
Castle 2006 — + + + + —
Chaen 2019 — + + + + —
Coelho 2021 — + + + + —
De Carvalho 2015 — + + + + —
Duffield 2003 — + + + + —
Duffield 2007 — + + + + —
Duffield 2009 — + + + + —
Duffield 2010 — + + + + —
Duffield 2013 — + + + + —
Faulkner 2015 — + + + + —
Faulkner 2019 — + + + + —
Fiol 2021 — + + + + —
Gerrett 2017 — + + + + —
Hsu 2005 — + + + + —
Ihsan 2010 — + + + + —
Katica 2018 — + + + + —
Kay 1999 — + + + + —
Maia-Lima 2017 — + + + + —
Maroni 2018 — + + + + —
Maroni 2020 — + + + + —
Mazalan 2022 — + + + + —
Minett 2011 — + + + + —
Minett 2012a — + + + + —
Minett 2012b — + + + + —
Minniti 2011 — + + + + —
Moss 2021 — + + + + —
Naito 2020 — + + + + —
Randall 2015 — + + x + —
Skein 2012 — + + + + —
Stevens 2016 — + + + + —
Stevens 2017b — + + + + —
Sunderland 2015 — + + + + —
Thomas 2019 — + + + + —
Tyler 2010 — + + + + —
Wen 2022 — + + x + —
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performance (i.e., > 50%) used the shortest exercise proto-
col (i.e., < 20 min) [65, 76, 78]. Stratified analyses without 
these studies resolved the statistical significance between 
self-paced and constant workload exercise protocols (Figs. 5 
and 6 of the ESM), but the ES of the effectiveness of pre-
cooling remained substantially higher for constant workload 
studies (ES = 0.25, 95% CI 0.05–0.45 vs ES = 0.47, 95% CI 
0.04–0.91). These findings indicate that the performance 
benefits following pre-cooling in self-paced versus constant 
workload protocols are mediated by exercise duration, with 
differences mainly present during shorter exercise protocols.

Other explanations for the observed differences may 
relate to exercise and intervention characteristics. For 
example, thermal perception is known to impact exer-
cise performance in the heat [85], whereas the magnitude 
of this effect may be exercise and intervention depend-
ent. Furthermore, the absolute workload, and thus heat 

production, is likely higher during self-paced exercise com-
pared with constant workload exercise, which could lead 
to a greater heat storage and associated increments in core 
temperature, compared with constant workload exercise in 
comparable environmental conditions. The adopted cool-
ing interventions may not have been powerful enough to 
compensate for the high rate of metabolic heat production 
during self-paced protocols. However, mixed-method cool-
ing was more often applied to self-paced versus constant 
workload experiments (25.0% vs 5.8%, Fig. 1 of the ESM) 
and we have previously demonstrated that this type of cool-
ing exerts the strongest cooling and performance effects 
[1, 5]. The cooling strategy that was used does, therefore, 
not explain our findings. This also applies to airflow, as 
limited or no airflow could overestimate the benefits of 
cooling [86], but no differences in airflow characteristics 
were found between protocols.

Table 4  Risk of bias, constant workload studies
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Luomala 2012 — + + + + —
Mitchell 2003 — + + + + —
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Osakabe 2021 — + + + + —
Parton 2021 + + + + + —
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= low risk = some concerns = high risk
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The observation that pre-cooling has different benefits on 
self-paced compared with constant workload exercise per-
formance has important practical implications. The quantifi-
cation of pre-cooling specific performance benefits that were 
proposed in previous meta-analyses [8, 87] cannot be trans-
lated to self-paced exercise settings, as this overestimated 
the true effect due to the inclusion of constant-workload 
studies. Instead, exercise protocol and cooling intervention-
specific estimates, as presented in our meta-analysis, provide 
a more accurate quantification of cooling-induced perfor-
mance benefits. It is also important to emphasize that the 
lower effectiveness of pre-cooling in self-paced exercise tri-
als does not disqualify the intervention by itself. After all, a 
statistically significant performance benefit (ES = 0.29, 95% 
CI 0.17–0.42) was found for self-paced exercise protocols 
when using any pre-cooling intervention prior to exercis-
ing in the heat compared with a control condition without 
cooling. Hence, the use of pre-cooling strategies, such as 
a mixed-method intervention (ES = 0.33), a cooling vest 
(ES = 0.27), or ice slurry ingestion (ES = 0.11), does pro-
vide a performance benefit during self-paced exercise under 
heat stress. It is also important to highlight that the magni-
tude of performance benefits was highly context specific, 
depending on the exercise protocol and the type of cooling, 
given the large range in ES across different cooling interven-
tions (Fig. 3). Furthermore, in some sports (e.g., marathon 
running, long-distance cycling), a hybrid pacing strategy is 
adopted, with a near to constant-workload approach. For 
optimal laboratory-to-field translation of the ergogenic 
effects of cooling on performance, the characteristics of the 
sport and cooling type need both to be considered.

We also found that per-cooling provided comparable 
performance benefits for self-paced and constant workload 
exercise protocols. This finding further reinforces the use 
of per-cooling strategies during competition, as it remains 
less often applied compared with pre-cooling owing to chal-
lenges with practical implementation and the additional 
weight of a cooling garment [88, 89]. A recent study [90] 
described practical pre-, per-, and post-cooling methods 

for racewalking and rugby competition during the Tokyo 
2020 Olympics. In both sports, a combination of per-cooling 
methods was allowed and could be used by athletes during 
competition. Furthermore, the combination of pre- and per-
cooling interventions may be superior to the effectiveness of 
the cooling interventions in isolation [5], but this could not 
be addressed in the present analysis because of the limited 
number of studies that adopted a combination of pre- and 
per-cooling.

Participants in the included studies had a VO2max 
of ~ 56 mL  kg−1  min−1. A previous study [91] showed that 
the  VO2max of elite male athletes ranged between 59 and 
77 mL  kg−1  min−1. As higher aerobic fitness levels have 
been associated with better thermoregulatory control [92, 
93], elite athletes might experience smaller benefits from 
cooling interventions than we reported, given that they may 
better cope with heat. In contrast, it has been shown that 98% 
of elite athletes experience a performance decrement dur-
ing exercise in hot and humid versus temperate conditions 
[94]. These observations underline the potential of pre- and 
per-cooling as valuable heat mitigation strategies for both 
amateur and elite athletes.

A major strength of this study is the large number of 
included experiments (n = 86 with 832 paired measure-
ments), as well as the comparison of performance benefits 
between distinct exercise protocols and the impact of the 
different pre- and per-cooling interventions on this associa-
tion. However, some limitations should be considered. First, 
we excluded 11 studies that combined a constant workload 
and a self-paced exercise protocol because it was impos-
sible to distinguish the direct effect of cooling on either of 
the exercise protocols. Second, only data from male indi-
viduals were used within this review as very few studies 
report performance data in female participants. Caution must 
therefore be used when inferring results from these studies 
in male individuals directly to female individuals, as female 
individuals have a limited evaporative capacity at high levels 
of heat production due to sex-mediated differences in sweat 
gland output [95]. Given the under-representation of female 
individuals in exercise science, future studies and a meta-
analysis on the benefits of cooling interventions on perfor-
mance benefits of female athletes during exercise in the heat 
are warranted. Finally, insufficient data were available to 
perform stratified analyses for cooling type, cooling dose, 
exercise type, and training status, thus future meta-analyses 
should take this into account.

Fig. 3  Forest plot summarizing the effects of pre-cooling on self-
paced exercise performance (effect size [ES] in Hedges’ g), stratified 
for cooling interventions and sorted by effect size. The dots represent 
the ES; the diamonds represent the weighted average ES; the error 
bars indicate the 95% confidence interval (CI). Studies that used mul-
tiple cooling trials were included more than once. CWI cold water 
immersion, LCWI  lower limb  cold water immersion, WCWI whole-
body cold water immersion

◂
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Fig. 4  Forest plot summarizing the effects of per-cooling on self-
paced exercise performance (effect size [ES] in Hedges’ g), stratified 
for cooling interventions and sorted by ES. The dots represent the 

ES; the diamonds represent the weighted average ES; the error bars 
indicate the 95% confidence interval (CI). Studies that used multiple 
cooling trials were included more than once

Fig. 5  Forest plot summarizing the effects of pre-cooling on constant 
workload exercise performance (effect size [ES] in Hedges’ g), strati-
fied for cooling interventions and sorted by effect size. The dots rep-

resent the ES; the diamonds represent the weighted average ES; the 
error bars indicate the 95% confidence interval (CI). Studies that used 
multiple cooling trials were included more than once
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Fig. 6  Forest plot summarizing the effects of per-cooling on con-
stant workload exercise performance (effect size [ES] in Hedges’ g), 
stratified for cooling interventions and sorted by effect size. The dots 

represent the ES; the diamonds represent the weighted average ES; the 
error bars indicate the 95% confidence interval (CI). Studies that used 
multiple cooling trials were included more than once

Fig. 7  Graphical summary: effectiveness of pre- and per-cooling 
strategies on performance outcomes of self-paced versus constant 
workload exercise protocols. Pre-cooling was more effective for 
constant workload versus self-paced exercise, whereas no differ-
ences were found for per-cooling strategies. The effectiveness of dif-

ferent cooling techniques was also explored. The magnitude of the 
effect was classified as: < 0.0 = negative ( −), 0.0–0.19 = trivial ( ±), 
0.2–0.49 = small ( +), 0.5–0.79 = moderate (+ +), and > 0.8 = large 
(+ + +). ES effect size, NA not available. Created with BioRender.
com
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5  Conclusions

Cooling interventions attenuate the decline in performance 
during exercise in the heat, but the magnitude of the effect 
is dependent on the exercise protocol (self-paced vs con-
stant workload) and type of cooling (pre- vs per-cooling). 
Pre-cooling appears to be more effective during a constant 
workload compared with self-paced exercise protocols, 
whereas no differences were found in the effectiveness of 
per-cooling. We also observed substantial heterogeneity in 
the magnitude of performance benefits across different type 
of cooling interventions, thus additional studies regarding 
which type of cooling is most effective under specific exer-
cise conditions (e.g., type, duration) are warranted.
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