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Abstract
Interval training is a simple concept that refers to repeated bouts of relatively hard work interspersed with recovery periods 
of easier work or rest. The method has been used by high-level athletes for over a century to improve performance in endur-
ance-type sports and events such as middle- and long-distance running. The concept of interval training to improve health, 
including in a rehabilitative context or when practiced by individuals who are relatively inactive or deconditioned, has also 
been advanced for decades. An important issue that affects the interpretation and application of interval training is the lack 
of standardized terminology. This particularly relates to the classification of intensity. There is no common definition of the 
term “high-intensity interval training” (HIIT) despite its widespread use. We contend that in a performance context, HIIT 
can be characterized as intermittent exercise bouts performed above the heavy-intensity domain. This categorization of HIIT 
is primarily encompassed by the severe-intensity domain. It is demarcated by indicators that principally include the criti-
cal power or critical speed, or other indices, including the second lactate threshold, maximal lactate steady state, or lactate 
turnpoint. In a health context, we contend that HIIT can be characterized as intermittent exercise bouts performed above 
moderate intensity. This categorization of HIIT is primarily encompassed by the classification of vigorous intensity. It is 
demarcated by various indicators related to perceived exertion, oxygen uptake, or heart rate as defined in authoritative public 
health and exercise prescription guidelines. A particularly intense variant of HIIT commonly termed “sprint interval train-
ing” can be distinguished as repeated bouts performed with near-maximal to “all out” effort. This characterization coincides 
with the highest intensity classification identified in training zone models or exercise prescription guidelines, including the 
extreme-intensity domain, anaerobic speed reserve, or near-maximal to maximal intensity classification. HIIT is considered an 
essential training component for the enhancement of athletic performance, but the optimal intensity distribution and specific 
HIIT prescription for endurance athletes is unclear. HIIT is also a viable method to improve cardiorespiratory fitness and 
other health-related indices in people who are insufficiently active, including those with cardiometabolic diseases. Research 
is needed to clarify responses to different HIIT strategies using robust study designs that employ best practices. We offer a 
perspective on the topic of HIIT for performance and health, including a conceptual framework that builds on the work of 
others and outlines how the method can be defined and operationalized within each context.

1 Introduction

Interval training is a simple concept that can be defined as 
repeated bouts of relatively hard work interspersed with 
recovery periods of easier work or rest [1]. The method is 
commonly viewed in the context of athletic performance and 
has been a staple of training programs for high-level endur-
ance athletes for over a century [2, 3]. It is deemed critical 
for success in sports and events such as middle- and long-
distance running [2, 4], cycling [5], swimming [6], rowing 
[7], and cross-country skiing [8]. A central tenet of interval 
training in an athletic context is to accumulate a greater vol-
ume of work at a higher intensity than could be achieved 
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Key Points 

Interval training is a simple concept that refers to 
repeated bouts of relatively hard work interspersed with 
recovery periods of easier work or rest.

There is no common definition of “high-intensity inter-
val training” (HIIT) despite its widespread use. In a per-
formance context, HIIT can be characterized as intermit-
tent bouts performed above the heavy-intensity domain. 
This characterization of HIIT is primarily encompassed 
by the severe-intensity domain. In a health context, HIIT 
can be characterized as intermittent bouts performed 
above moderate intensity. This characterization of HIIT 
is primarily encompassed by the classification of vigor-
ous intensity.

Sprint interval training (SIT) constitutes a particularly 
intense variant of HIIT that can be distinguished as 
repeated bouts performed with near-maximal to “all out” 
effort. This characterization coincides with the high-
est intensity classification identified in training zone 
models or exercise prescription guidelines, including the 
extreme-intensity domain, anaerobic speed reserve, or 
near-maximal to maximal intensity classification.

In an endurance-sport context, there is little question 
that HIIT is an essential component of a comprehensive 
training program, but the specific training intensity dis-
tribution and optimal types of interval training sessions 
to enhance performance are still unclear.

From a health perspective and given the strong inverse 
relationship between cardiorespiratory fitness and mor-
bidity and mortality, research is warranted to identify 
optimal HIIT strategies in different populations using 
robust study designs.

through continuous work at a fixed intensity [9]. This in turn 
is believed to potentiate physiological responses and facili-
tate the capacity to maintain a higher work rate and enhance 
fatigue resistance during competition [3, 10]. While inter-
val training is widely regarded as an essential component to 
optimize performance, the high overall volume of training 
that is typically practiced by endurance athletes requires that 
the total time spent at a high intensity be managed to reduce 
the risk of overreaching, injury, and illness [11, 12].

The concept of interval training to improve health has 
also been advanced for decades. This includes application 
of the method in relatively inactive individuals, older adults, 
or a rehabilitative context in patients with specific condi-
tions [13–15]. Early proponents saw value in the approach 

as compared to traditional continuous training. It was noted 
that intervals allowed “the beginner (to) complete more 
work with less fatigue” [15], and even in very decondi-
tioned patients, the “appropriate choice of exercise and 
recovery intervals [means] substantial cardiac training can 
be achieved” [14]. Research on the physiological basis of 
interval training to improve health, including so-called “low-
volume” approaches that do not require substantial time 
commitment [16, 17], has increased significantly over the 
last two decades. This has coincided with considerable inter-
est in the topic from an applied perspective, as evidenced by 
annual worldwide surveys of fitness trends [18, 19].

This article offers a brief a perspective on the topic of 
interval training for performance and health. The term “per-
formance” is used primarily in the context of exercise train-
ing for athletic competition. The term “health” is used in the 
context of habitual exercise intended to maintain or enhance 
physical fitness and reduce disease risk. Our focus is on 
endurance-type sports and events, as commonly considered 
in training models for endurance athletes [20–23], and aero-
bic/cardiorespiratory physical activity as defined in authori-
tative public health and exercise prescription guidelines 
[24–26]. While the intermittent work bouts characteristic of 
interval training are relatively short and discontinuous, with 
each typically lasting from a few seconds to several minutes, 
the method is often performed with the goal of enhancing 
endurance-type performance or aerobic/cardiorespiratory 
capacity. Most of the energy during intermittent exercise is 
derived from aerobic metabolism, including during repeated 
“all out” sprints [27], and even brief, intense interval training 
is associated with an enhanced capacity for aerobic energy 
provision [28, 29]. Building on the work of others [20–26], 
we present a conceptual framework that outlines how “high-
intensity interval training” (HIIT), and a particularly intense 
variant called “sprint interval training” (SIT), can be defined 
and operationalized within each context. Specific issues that 
are considered include the optimal intensity distribution and 
type of interval training in highly trained athletes [30] and 
interval training strategies to increase cardiorespiratory fit-
ness with a focus on individuals who are apparently healthy.

2  Framing the Issue: What 
is “High‑Intensity” Interval Training?

An important issue that impacts the discussion of interval 
training in both a performance and health context is the 
lack of standardized terminology. This particularly relates 
to the classification of intensity. Various stakeholders do not 
“speak the same language,” and definitions of absolute and 
relative intensity vary across public health agencies, exercise 
scientists, clinicians, practitioners, coaches, and athletes [20, 
21, 23, 25, 26].
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A fundamental three-domain classification scheme is 
common in a performance context (Fig. 1). This charac-
terization is based on indicators that mark the transitions 
between moderate, heavy, and severe exercise intensity 
[22, 31, 32]. The first lactate threshold or gas exchange 
threshold (GET) commonly denotes the boundary between 
moderate and heavy domains. This marks the point where 
blood lactate begins to accumulate above baseline values 
and the oxygen uptake ( V̇O2 ) slow component is elicited 
[33]. The determination of critical power or critical speed 
(sometimes called the critical V̇O2 ) marks the boundary 
between the heavy and severe domains [32, 33]. This 
reflects the highest “sustainable” intensity, above which 
there is a marked increase in non-oxidative metabolism 
associated with rapid exercise intolerance [32]. Other 
indicators that denote the boundary between the heavy 
and severe domains include the second lactate threshold, 
maximal lactate steady state (MLSS) or the lactate turn-
point [33, 34]. In some models, there is a fourth extreme-
intensity domain that involves an effort level of such 
intensity that maximal oxygen uptake ( V̇O2max ) cannot be 
achieved if V̇O2 is measured during exercise, and the bouts 
are necessarily of short duration, typically less than 2 min 
[22, 35].

Beyond the well-accepted three-domain framework, 
greater nuance is often sought for exercise prescription 
in high-level or elite sport. Many such models have been 
proposed for endurance training, including those com-
prised of five [23, 36], six [21], or seven [37] distinct 
zones. These zones are typically distinguished by vari-
ous metrics, including those related to rating of perceived 
exertion (RPE), percentage of maximal heart rate  (HRmax) 
or V̇O2max , or blood lactate levels [21, 36, 37]. We have 
included six zones by way of example in Fig. 1, such that 
each of the three main domains are broken into two zones 
that are demarcated by RPE. Additional descriptors related 
to  HRmax, V̇O2max , or blood lactate could be applied on an 
individual basis derived from sport-specific testing [20].

In a health context, the basic intensity classifications of 
aerobic physical activity by authoritative agencies, including 
the World Health Organization (WHO), are light, moder-
ate, and vigorous [25]. These three categories are typically 
distinguished by indicators based on metabolic equivalents 
(METs) or RPE on a 10-point scale. Exercise testing and pre-
scription guidelines from other authoritative agencies typi-
cally incorporate additional categories or levels, with bound-
aries anchored to percentages of  HRmax, heart rate reserve, 
or V̇O2max , in addition to RPE and METs. For example, the 
American College of Sports Medicine (ACSM) defines light, 
moderate, and vigorous intensity based on percentages of 
heart rate reserve, V̇O2max , METs, or RPE on a 20-point 
scale [26]. The ACSM includes the additional categories of 
very light and near-maximal to maximal, with corresponding 

relative and absolute thresholds that fall below and above, 
respectively, the other three categories (Fig. 1).

There is no common definition of the term HIIT despite 
its widespread use. As recently highlighted and discussed 
by others [38], this creates confusion and interpretational 
challenges. We contend that in a performance context, HIIT 
can be characterized as intermittent bouts performed above 
the heavy-intensity domain. As noted, this is demarcated 
by indicators that primarily include the critical power or 
critical speed, or other indices, including the second lactate 
threshold, MLSS, or lactate turnpoint. This characterization 
of HIIT is primarily encompassed by the severe-intensity 
domain. The relatively high work rate required precludes 
sustained efforts and thus an intermittent approach permits 
greater time to be accumulated at the desired work rate [35]. 
This is conceptually consistent with how previous research-
ers have generally defined “high-intensity” training in a 
performance context [10, 20, 21]. A particularly intense 
variant of HIIT, SIT, can be distinguished as repeated 
bouts performed with near-maximal to “all out” effort. This 
characterization coincides with the highest intensity clas-
sification included in some training zone models, including 
the extreme-intensity domain [22, 35] or anaerobic speed 
reserve, which constitutes work rates between maximal aero-
bic speed or power and maximal sprint speed/power [39].

HIIT is even less well defined in a health context. Our 
own work has regrettably contributed to the nebulous 
depiction; for example, an early review of the physiological 
responses to “HIIT” [40] was based mainly on studies that 
used “SIT” interventions. This contributed in part to foster-
ing the erroneous notion that HIIT is mainly characterized 
by activities that involve very high intensity, near-maximal, 
or “all out” efforts. As the field has evolved, so too has the 
terminology, and efforts have been made to distinguish 
responses to different types of interval training. Weston and 
colleagues [41] defined HIIT as a “target intensity between 
80% [and] 100% peak heart rate” and differentiated SIT as 
a “target intensity ≥ 100% V̇O2max .” We and others have 
employed similar terminology to characterize responses to 
these two broad types of interval training, as distinguished 
from traditional moderate-intensity continuous training 
(MICT) [42]. Building on this framework and broadening it 
to include multiple indicators as opposed to a single metric, 
we contend that HIIT can be characterized as intermittent 
bouts performed above moderate intensity. This characteri-
zation primarily encompasses the classification of vigorous 
intensity demarcated by indicators related to perceived exer-
tion, V̇O2 , or heart rate as defined in authoritative public 
health and exercise prescription guidelines [24–26]. Analo-
gous to a performance context, SIT can be considered an 
intense variant of HIIT and distinguished as repeated bouts 
performed with near-maximal to “all out” effort that fall 
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within the highest intensity classification included in some 
guidelines [24–26] (Fig. 2).

In recommending an operational framework for HIIT in 
a health context that is based on “traditional” indicators, it 
is recognized that expressing intensity in this manner (and 
particularly related to percentages of  HRmax or V̇O

2max
 ) may 

not be optimal. This point has been made by others [43], 
and recent studies have shown that variability in exercise 
tolerance may be reduced, and exercise training responses 
be more homogenous or strongly associated, when intensity 
is expressed relative to “physiological” thresholds such as 
critical power or speed rather than anchors such as V̇O2max 
[44, 45]. RPE is a particularly useful indicator of HIIT 
intensity, including for its convenience and wide applica-
bility, although this marker also has limitations, especially 
when interval work bouts are quite brief and performed at 
very high intensities. The conceptual framework proposed 
here also does not preclude the application of physiological 
thresholds or performance-based indicators of HIIT in other 
contexts such as training studies that are focused on health-
related responses.

3  High‑Intensity Interval Training 
for Performance

Current-day, high-level endurance athletes typically employ 
a training intensity distribution that involves ~ 70–90% 
of training volume in the moderate-intensity domain 
and ~ 10–30% of the training volume at higher intensities 
in the heavy- or severe-intensity domains [4, 46, 47]. It is 
contested as to whether the ~ 20% of higher intensity train-
ing should be distributed in a pyramidal fashion where there 
is decreasing training volume accrued from the heavy to 
severe domains, or in a polarized fashion where the remain-
ing ~ 20% is performed primarily in the severe domain [4, 
11, 48]. So-called “threshold training” is a third potential 
approach in which > 35% of the training volume falls in 
the heavy-intensity domain [49]; however, this distribution 
has occasionally been shown to be inferior to polarized or 
pyramidal intensity distributions for improving endurance 
performance [47, 50, 51]. Despite this, the best Kenyan mar-
athon runners in the world are reported to follow a threshold 
training distribution during the specific preparatory phase 
leading into marathon competition [51, 52], which may be 
particular to the physiological demands of marathon racing 
[37, 51]. Elite swimmers may also follow threshold training 
distributions as interval training makes up most daily ses-
sions. A greater amount of interval training is likely used in 

Fig. 1  A conceptual framework for application of interval training in 
performance and health contexts. 1Authors’ example modeled after 
common frameworks including elements from Seiler [20]; Casado 
et  al. [21]; and Jamnick et  al. [23]. 2Common three-domain classi-
fication based on work rate or physiological indicators [22, 31, 32]. 
3World Health Organization 2020 guidelines on physical activity 
[25]. 4American College of Sports Medicine’s guidelines for exercise 
testing and prescription, 11th ed. [26]. 5Anaerobic speed reserve [39]. 
6Extreme-intensity domain [22, 35]. ASR anaerobic speed reserve, 

CP/CS critical power/critical speed, GET gas exchange threshold, 
HIIT high-intensity interval training, HRmax maximal heart rate, HRR 
heart rate reserve, LT1 first lactate threshold, LT2 second lactate 
threshold, MAS maximal aerobic speed, MET metabolic equivalent of 
task, MLSS maximal lactate steady state, MSS maximal sprint speed, 
RPE rating of perceived exertion (out of either 10 or 20 depending 
on the scale), SIT sprint interval training, V̇O

2max
 maximal oxygen 

uptake
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swimming because most training sessions are supervised, it 
allows more athletes to be accommodated in a limited pool 
space, and the orthopedic stress associated with swimming 
is less than with running [6, 53]. There is likely no single 
optimal training intensity distribution for all endurance 
sports and events, but rather determination of the optimal 
individualized and sport-specific periodization of intensity 
distribution may be the next step in this field. A systematic 
review of highly trained/elite distance runners found most 
training phases involved a pyramidal training intensity dis-
tribution; however, a shift towards a polarized approach was 
often employed during the competition phase [4]. Future 
work should examine this periodization of training intensity 
distribution as it relates to highly trained or elite endurance 
performance across different events.

All training intensities, ranging from prolonged, con-
tinuous sessions in the moderate domain to repeated “all 
out” sprint interval sessions, can improve endurance per-
formance, provided the training is balanced within a wider 
program specific to the demands of the sport [2, 21]. The 
optimal type of HIIT to enhance endurance performance in 
highly trained athletes who have little room for additional 
physiological improvement is still unclear. It has been sug-
gested that a greater accumulated training time close to 
V̇O2max (typically ≥ 90% of V̇O2max ) is ideal for maximizing 
aerobic adaptations, particularly in highly trained individu-
als [2, 54–57]. A seminal study by Billat et al. demonstrated 
that 30-s intervals performed until exhaustion at the mini-
mal velocity to elicit V̇O2max ( vV̇O2max ), with 30 s of active 
recovery at 50% of vV̇O2max , accumulated more than double 
the time spent at V̇O2max when compared to continuous run-
ning to exhaustion above critical speed in trained runners 

[9]. Other studies have since examined variations of interval 
length [58–61], intensities [62], work-to-rest ratios [61, 63], 
and pacing strategies [64–68] to optimize the accumulated 
time ≥ 90% of V̇O2max . However, these investigations were 
rarely performed in highly trained or elite athletes, who 
have faster V̇O2 kinetics [69], a reduced V̇O2 slow compo-
nent in the severe-intensity exercise domain [70], and faster 
recovery rates between intervals [71, 72] compared to lesser 
trained individuals. Further, many of these studies exam-
ined the time accumulated ≥ 90% of V̇O2max in workouts 
performed to exhaustion [9, 62, 64, 65, 67, 68], which is 
not practical for high-performance athletes who rarely train 
to failure. Nevertheless, Rønnestad et al. demonstrated that 
when training programs were matched for total volume and 
intensity, 3 weeks of repeated sprint interval sessions [3 sets 
(13 × 30-s intervals at maximal sustainable intensity, with 
15 s recovery) with 3 min between sets] improved V̇O2max , 
maximal aerobic power, and 20-min cycling power in elite 
male cyclists (mean V̇O2max of 73 ± 4 mL  kg−1  min−1), and 
this did not occur with RPE-matched longer interval ses-
sions (4 × 5-min intervals at maximal sustainable intensity 
with 2.5 min recovery) [73]. While this type of high-volume 
repeated, short-interval training has been used for decades 
[2], it may not be commonly employed in endurance training 
programs [4, 7, 37, 74], and thus might represent a stimulus 
for further performance enhancement in this population.

When prescribing longer (~ 5-min) intervals in highly 
trained athletes, “fast-start” and/or variable-speed intervals 
may allow for greater accumulated time ≥ 90% of V̇O2max 
compared to constant-speed intervals [75, 76]. One investi-
gation in cross-country skiers demonstrated that 5 × 5-min 
intervals above the second lactate threshold with 3 min of 

Fig. 2  Simplified depiction of sample high-intensity interval train-
ing (HIIT) and sprint interval training (SIT) protocols with reference 
to thresholds demarcated in common domain-based training models 
and physical activity and exercise intensity classifications [22, 24–26, 

31, 32]. Icons made by Prosymbols Premium (top left) and Freepik 
(middle and bottom left) from Flatiron (www. flati con. com/ free- icons/ 
trail- runni ng; www. flati con. com/ free- icons/ run; www. flati con. com/ 
free- icons/ chase)

http://www.flaticon.com/free-icons/trail-running
http://www.flaticon.com/free-icons/trail-running
http://www.flaticon.com/free-icons/run
http://www.flaticon.com/free-icons/chase
http://www.flaticon.com/free-icons/chase
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recovery performed with either a fast start (2 min at maximal 
aerobic speed) or variable speed (3 × 40-s surges at maxi-
mal aerobic speed) elicited greater time ≥ 90% of V̇O2max 
compared to constant-speed intervals of similar mean 
interval speeds [76]. Of interest, the sessional RPE was 
similar across conditions, demonstrating the feasibility of 
this approach for elevating the metabolic stimulus of these 
longer-interval sessions [76].

Finally, SIT is a relatively understudied technique that 
may improve endurance performance in athletes with little 
room for further adaptation [77–79]. Runners often use short 
sprints or strides following warm-up or at the end of work-
outs with the intention of training high-velocity movement 
patterns but not accumulating fatigue [37]. The addition of 
short 30-s sprint intervals to long rides has been demon-
strated to be well-tolerated by elite cyclists and may enhance 
fatigue-resistance/durability [79]. Importantly, durability, or 
the time of onset and magnitude of deterioration in physi-
ological performance characteristics during prolonged exer-
cise, may be a critical predictor of performance in endur-
ance sport [80–82]. Almquist et al. [79] demonstrated that 
the addition of maximal sprint intervals during a 2-week 
high-volume cycling training camp allowed for the mainte-
nance of gross economy in a semi-fatigued state compared 
to reductions in gross economy in the non-sprint group, sug-
gesting durability was improved with the sprint training [79]. 
However, as the addition of maximal-intensity intervals with 
the maintenance of typical training load is a technique used 
to drive underperformance (overreaching) [83], this type of 
training should be considered in the context of the desired 
training-intensity distribution and overall training load, and 
not simply prescribed in addition to regular training.

Another method of SIT prescription uses a percentage of 
the anaerobic speed reserve to dictate intensity, rather than 
a percentage of maximal aerobic speed or maximal aerobic 
power, V̇O2max , or v V̇O2max . In this model, the anaerobic 
speed reserve represents the difference between maximal 
sprint speed/power and maximal aerobic speed/power [39], 
and can differ greatly between athletes of similar caliber 
within the same event [84]. While the use of a percentage 
of anaerobic speed reserve to prescribe SIT intensities has 
not been investigated in highly trained endurance athletes, 
there is evidence that this method reduces interindividual 
variability in the physiological response to the workout 
and may increase time spent ≥ 90% of V̇O2max [85–87]. As 
such, with appropriate programming, all-out sprint intervals 
may represent an effective method for further performance 
enhancement in highly trained and elite athletes [88].

Interventional training studies involving highly trained 
athletes are limited, and as such, our understanding of opti-
mal HIIT (or SIT) prescription for endurance performance 
is based largely on what is commonly practiced. Recent 
studies by Rønnestad et al. are a reminder of the feasibility 

and utility of performing randomized controlled training 
studies in elite participants [73, 76]. Further experimental 
investigations are required to determine ideal interval types 
for performance enhancement in this population. There are 
very few studies on highly trained or elite female athletes, 
and given that sex differences could affect the response to 
interval training [89], it is also imperative that more female 
athletes be included in future research of this kind.

4  High‑Intensity Interval Training for Health

A major emphasis of research on interval training for health, 
which will be the primary focus of this section, is cardiores-
piratory fitness as best objectively determined by a V̇O2max 
test. This is owing to both the routine assessment of V̇O2max , 
making it arguably the most measured variable in HIIT stud-
ies, and the importance of cardiorespiratory fitness in terms 
of mortality and morbidity risk [90, 91]. A recent meta-
analysis, based on 37 studies with objective measures of 
cardiorespiratory fitness in over 2 million adults, found the 
relative risk for all-cause mortality was reduced by 11% for 
every 1 MET increase in cardiorespiratory fitness independ-
ent of age, biological sex, and duration of follow-up [92]. 
As recently reviewed by Ross and Myers [91], heritability 
may account for up to ~ 50% of the individual variation in 
the response of cardiorespiratory fitness to exercise train-
ing, but it is firmly established that cardiorespiratory fit-
ness increases in response to regular physical activity in 
most adults. Randomized controlled trials considering the 
interaction between exercise intensity and exercise amount 
(typically determined by estimated energy expended) have 
suggested that intensity is the strongest driver of the increase 
in cardiorespiratory fitness [93–95], but such trials have 
involved continuous exercise interventions.

Many studies have compared the cardiorespiratory 
fitness response between MICT and HIIT of various 
types, employing both “matched” and “non-matched” 
approaches. Such comparisons are usually based on some 
measure or estimate of total energy expenditure (e.g., 
based on V̇O2 ), or less commonly on a measure of total 
work (e.g., mean power output). The most comprehensive 
study to date of the cardiorespiratory response to HIIT and 
MICT matched for estimated energy expenditure is Gen-
eration 100 [96]. This trial randomized over 1500 older 
participants (mean age ~ 73 years) to perform two sessions 
weekly of HIIT (~ 90% of peak heart rate), MICT (~ 70% 
of peak heart rate), or to follow national guidelines for 
physical activity (effectively combined HIIT and MICT) 
for 5 years. The increase in peak heart rate after 1, 3, and 
5 years of the interventions was higher in HIIT compared 
to MICT and the combined group. Unlike Generation 100, 
a general limitation of many comparative studies is that 
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they are relatively small and short term, with interventions 
often lasting ≤ 6–12 weeks [91]. Systematic reviews and 
meta-analyses based on these smaller, shorter studies have 
concluded that HIIT can elicit increases in cardiorespi-
ratory fitness comparable to MICT despite a lower total 
exercise volume [97, 98], and the increase in cardiores-
piratory fitness is greater after HIIT compared to MICT 
when exercise volume is matched [98, 99]. Our focus here 
is on people who are apparently healthy, but systematic 
reviews and meta-analyses including individuals with 
cardiovascular disease [41, 100], hypertension [101], and 
type 2 diabetes [102] have also concluded that the increase 
in cardiorespiratory fitness after HIIT is superior to MICT 
when total work is matched. Such findings are not uni-
versal [103, 104], and a recent review [105] highlighted 
methodological concerns with many comparative studies 
in this field. The main concerns are related to research 
design limitations and an unclear risk of bias owing to 
poor reporting quality in studies comparing interval and 
continuous training. These authors also noted that such 
shortcomings are not unique to the field of interval train-
ing, and they emphasized that the best practices outlined in 
their review [105] are applicable to all disciplines within 
exercise and sports medicine research.

Irrespective of how HIIT compares to MICT, and spe-
cific details on the most appropriate way to make such 
comparisons, an important question that warrants further 
investigation is whether simple, practical applications of 
interval training constitute a sufficient stimulus to increase 
cardiorespiratory fitness and in turn reduce the risk for 
morbidity and mortality. With respect to the physiological 
basis of responsiveness, there is good evidence that inter-
ventions requiring a total time commitment of ≤ 15 min, 
including warm-up and cooldown and performed at least 
thrice weekly for 6 weeks, increase V̇O2max by ~ 1 MET 
[29]. Many of these studies have employed SIT as com-
monly understood and defined here, but there are examples 
of less intense HIIT protocols that elicit similar responses 
over the short term [106, 107]. The precise mechanisms 
remain to be elucidated but seemingly include an enhanced 
capacity for skeletal muscle oxygen diffusing capacity and 
oxygen utilization, as well as potentially augmented cen-
tral delivery of oxygen [29]. Other practical and relatively 
time-efficient applications of the method that have been 
shown to increase V̇O2max include activities such as brief 
vigorous stair climbing [108], bodyweight style exercise 
that incorporates aerobic and resistance exercise (some-
times called “high-intensity functional training”) [109, 
110], and “exercise snacks” in which very short (≤ 1-min) 
bouts of vigorous-intensity activity are performed periodi-
cally throughout the day [111]. The methodological, risk 
of bias, and reporting quality concerns noted above apply 
similarly to this research, and studies to date involve a 

relatively small number of participants and may be under-
powered to assess meaningful differences in specific out-
comes. Additional work is warranted to advance this area.

Another emerging area of interest is the potential to 
employ preoperative HIIT as a strategy to improve cardi-
orespiratory fitness and improve surgical outcomes. A recent 
systematic review and meta-analysis [112] considered ran-
domized clinical trials and prospective cohort studies with 
HIIT protocols in adult patients undergoing major surgery. 
Based on 12 included studies and a total of 832 patients, 
the analysis found several positive associations for HIIT 
when compared with standard care on cardiorespiratory 
fitness (measured directly from a V̇O2max test or estimated 
from surrogate measures such as a 6-min walk test or peak 
power output) and postoperative outcomes including com-
plications, length of stay in hospital, and quality of life. The 
analysis showed a high degree of heterogeneity in study 
outcomes and an overall low risk of bias. These findings 
suggest that preoperative HIIT may improve cardiorespira-
tory fitness and reduce postoperative complications. Another 
recent systematic review and meta-analysis provided further 
support for HIIT in the clinical management of important 
cardiometabolic health risk factors in addition to cardiores-
piratory fitness (e.g., systolic and diastolic blood pressure, 
resting heart rate, stroke volume, and left ventricular ejec-
tion fraction) [113]. Improvements were also observed in 
parameters of body composition, lipids, fasting insulin, and 
anti-inflammatory changes via reductions in high-sensitivity 
C-reactive protein.

Some have questioned whether HIIT is a feasible option 
to improve health [114]. There is a tendency in such cri-
tiques to position HIIT as requiring a level of effort that is 
unpalatable or potentially unsafe for most people [114]. Such 
criticisms are seemingly not an indictment of HIIT per se (or 
at least only of HIIT) but rather a general dismissal of the 
potential adoption of the upper intensity range of physical 
activity recommendations and exercise prescription guide-
lines from authoritative agencies, including the WHO and 
ACSM, that broadly advocate moderate and/or vigorous 
intensity for most adults [24–26].

The potential benefit of even small amounts of vigorous 
physical activity on health was recently shown by Stama-
takis et al. [115]. These authors examined the association 
between “vigorous intermittent lifestyle physical activity” 
(VILPA) and all-cause cardiovascular disease and cancer 
mortality over an average follow-up of almost 7 years in 
over 25,000 non-exercisers with a mean age of 62 years in 
the UK Biobank. VILPA refers to brief intermittent bursts 
of vigorous-intensity physical activity embedded into eve-
ryday life rather than performed as structured leisure time 
exercise, such as stair climbing or carrying children or gro-
ceries for short distances [116]. The median duration of 4.4 
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VILPA min/day was associated with a 26–30% reduction in 
all-cause and cancer mortality and 32–34% reduction in car-
diovascular disease mortality risk. These findings highlight 
the potential value of brief and sporadic bouts of physical 
activity of higher intensity, performed outside the struc-
tured exercise domain, for promoting health. The authors 
concluded that future trials and device-based cohort studies 
should investigate the potential of VILPA as a time-efficient 
and potentially effective intervention for physically inactive 
and unfit adults.

5  Conclusions

HIIT is a common component in the training prescription 
for high-level athletes. The potential application of HIIT for 
health in less trained individuals is also not novel but is 
becoming increasingly recognized. In an endurance sport 
context, there is little question that HIIT is an essential 
component of a comprehensive training program, but the 
specific training intensity distribution and optimal types of 
interval training sessions to enhance performance are still 
unclear. It is likely that the optimal training intensity distri-
bution will vary by sport and by the individual athlete, and 
this also needs to be periodized across a macrocycle. HIIT 
optimization is an area of research that may enhance cur-
rent endurance sport performance, with several emerging 
techniques showing promise for improving performance in 
highly trained and elite athletes. HIIT optimization is also 
required in a health context. Given the strong, inverse rela-
tionship between cardiorespiratory fitness and morbidity and 
mortality, research is warranted to identify the most effective 
HIIT strategies in various populations using robust study 
designs. The mechanistic basis of HIIT responses, and why 
the method may facilitate greater improvements specific to 
performance and health markers, is beyond the scope of this 
review but also warrants further investigation. This includes 
the fundamental question of whether differential responses 
between HIIT and MICT are related to the intrinsic alternat-
ing pattern of higher- and lower-intensity efforts or mainly 
the higher-intensity work per se. Some research shows that 
HIIT can elicit larger improvements in selected physiologi-
cal markers related to oxygen delivery and utilization as 
compared to a matched volume of MICT [117–119]. Most of 
this work has employed active but not well-trained individu-
als, and the physiological basis of responsiveness in highly 
trained individuals who already have a well-developed 
capacity for aerobic energy metabolism is likely different 
[120, 121].
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