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Abstract
Background Repeated-sprint training (RST) involves maximal-effort, short-duration sprints (≤ 10 s) interspersed with brief 
recovery periods (≤ 60 s). Knowledge about the acute demands of RST and the influence of programming variables has 
implications for training prescription.
Objectives To investigate the physiological, neuromuscular, perceptual and performance demands of RST, while also examin-
ing the moderating effects of programming variables (sprint modality, number of repetitions per set, sprint repetition distance, 
inter-repetition rest modality and inter-repetition rest duration) on these outcomes.
Methods The databases Pubmed, SPORTDiscus, MEDLINE and Scopus were searched for original research articles investi-
gating overground running RST in team sport athletes ≥ 16 years. Eligible data were analysed using multi-level mixed effects 
meta-analysis, with meta-regression performed on outcomes with ~ 50 samples (10 per moderator) to examine the influence 
of programming factors. Effects were evaluated based on coverage of their confidence (compatibility) limits (CL) against 
elected thresholds of practical importance.
Results From 908 data samples nested within 176 studies eligible for meta-analysis, the pooled effects (± 90% CL) of 
RST were as follows: average heart rate  (HRavg) of 163 ± 9 bpm, peak heart rate  (HRpeak) of 182 ± 3 bpm, average oxygen 
consumption of 42.4 ± 10.1 mL·kg−1·min−1, end-set blood lactate concentration (B[La]) of 10.7 ± 0.6 mmol·L−1, deciMax 
session ratings of perceived exertion (sRPE) of 6.5 ± 0.5 au, average sprint time (Savg) of 5.57 ± 0.26 s, best sprint time (Sbest) 
of 5.52 ± 0.27 s and percentage sprint decrement (Sdec) of 5.0 ± 0.3%. When compared with a reference protocol of 6 × 30 m 
straight-line sprints with 20 s passive inter-repetition rest, shuttle-based sprints were associated with a substantial increase 
in repetition time (Savg: 1.42 ± 0.11 s, Sbest: 1.55 ± 0.13 s), whereas the effect on sRPE was trivial (0.6 ± 0.9 au). Performing 
two more repetitions per set had a trivial effect on  HRpeak (0.8 ± 1.0 bpm), B[La] (0.3 ± 0.2 mmol·L−1), sRPE (0.2 ± 0.2 au), 
Savg (0.01 ± 0.03) and Sdec (0.4; ± 0.2%). Sprinting 10 m further per repetition was associated with a substantial increase in 
B[La] (2.7; ± 0.7 mmol·L−1) and Sdec (1.7 ± 0.4%), whereas the effect on sRPE was trivial (0.7 ± 0.6). Resting for 10 s longer 
between repetitions was associated with a substantial reduction in B[La] (−1.1 ± 0.5 mmol·L−1), Savg (−0.09 ± 0.06 s) and 
Sdec (−1.4 ± 0.4%), while the effects on  HRpeak (−0.7 ± 1.8 bpm) and sRPE (−0.5 ± 0.5 au) were trivial. All other moderating 
effects were compatible with both trivial and substantial effects [i.e. equal coverage of the confidence interval (CI) across 
a trivial and a substantial region in only one direction], or inconclusive (i.e. the CI spanned across substantial and trivial 
regions in both positive and negative directions).
Conclusions The physiological, neuromuscular, perceptual and performance demands of RST are substantial, with some of 
these outcomes moderated by the manipulation of programming variables. To amplify physiological demands and perfor-
mance decrement, longer sprint distances (> 30 m) and shorter, inter-repetition rest (≤ 20 s) are recommended. Alternatively, 
to mitigate fatigue and enhance acute sprint performance, shorter sprint distances (e.g. 15–25 m) with longer, passive inter-
repetition rest (≥ 30 s) are recommended.
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Key Points 

The most common RST set configuration is 6 × 30 m 
straight-line sprints with 20 s of passive inter-repetition 
rest.

The reference estimates for  HRavg (90%  HRmax), VO2avg 
(~ 70–80% VO2max) and B[La] (10.8 mmol·L−1) dem-
onstrate the substantial physiological demands of RST 
in team sport athletes. Associated prediction intervals 
for these estimates suggest that most of these demands 
are consistently substantial across many RST protocols, 
sports and athlete characteristics.

Shorter inter-repetition rest periods (≤ 20 s) and longer 
repetition distances (> 30 m) amplify physiological 
demands and cause greater inter-set reductions in sprint 
performance (i.e. performance fatigue). Inversely, longer 
inter-repetition rest periods (≥ 30 s) and shorter repeti-
tion distances (≤ 20 m) enhance acute sprint perfor-
mance and reduce the physiological demands.

Shuttle-based protocols are associated with slower rep-
etition times, likely due to the added change-of-direction 
component, but may reduce sprint decrement. The effect 
of shuttle versus straight-line RST protocols on physi-
ological and perceptual outcomes remains inconclusive.

Performing two less repetitions per set (e.g. four as 
opposed to six repetitions) maintains the perceptual, 
performance and physiological demands of RST.

The findings from our investigation provide practitioners 
with the expected demands of RST and can be used to 
help optimise training prescription through the manipu-
lation of programming variables.

1 Introduction

Repeated-sprint training (RST) involves maximal-effort, 
short-duration sprints (≤ 10  s), interspersed with brief 
(≤ 60 s) recovery times [1]. It appears an effective and 
time-efficient training modality for physical adaptations in 
team-sport athletes, with as few as six sessions over two 
weeks shown to enhance high-speed running abilities [2]. 
The implementation of RST can also provide athletes with 
exposure to maximal sprinting, acceleration and decel-
eration, which are important components of team sport 
[3–5]. Throughout an athlete’s training program, there is a 
range of opportunities for RST to be used, such as during a 

pre-season where a progressive reduction in running volume 
and an increase in intensity is often implemented [6]. Alter-
natively, it could be employed during the playing season to 
promote the maintenance of specific physical qualities (e.g. 
speed, aerobic fitness), used as part of late-stage rehabilita-
tion or implemented at a time when a training ‘shock-cycle’ 
is required. However, each training program requires differ-
ent outcomes, with these attained through the manipulation 
of programming variables.

The type of stimulus is an important driver of the chronic 
adaptive response to training [7]. Repeated-sprint train-
ing is low-volume and short in duration, typically lasting 
10–20 min per session, but due to the maximal intensity at 
which it is performed, it can generate adaptive events that 
ultimately result in the capacity for enhanced performance 
[8, 9]. This includes an improved aerobic and metabolic 
capacity [10–17]. However, there is considerable variation 
in RST prescription, with acute programming variables (e.g. 
sprint distance, rest duration, number of repetitions) regu-
larly manipulated in research and practice [8, 18]. These 
changes can influence the internal and external load experi-
enced by athletes during RST (i.e. the acute demands) and 
subsequently have the potential to cause diverse training 
adaptations [12]. For instance, in a study by Iaia et al. [19], 
higher within-set blood lactate concentration (~ 3 mmol⋅L−1 
B[La]) was recorded during RST with shorter rest times 
(15 s versus 30 s), which can indicate a greater anaerobic 
contribution to exercise [20]. Accordingly, after six-weeks 
of training, the 15 s rest group achieved greater improvement 
in 200 m sprint time and the Yo-Yo intermittent recovery test 
level 2 compared with the 30 s group [19], with anaerobic 
energy production central to performance in these events 
[21, 22]. Thus, it is important to understand how the manipu-
lation of programming variables affects the acute demands 
of RST, as this evidence can be useful to help explain how 
and why training adaptations may manifest.

There is conflicting evidence within and across studies 
regarding the effects of programming variables on the acute 
demands of RST. In a study by Alemdaroğlu et al. [23], 
B[La] and percentage sprint decrement (Sdec) were greater 
with 6 × 40 m shuttle repeated-sprints compared with the 
same straight-line protocol. Conversely, compared with 
shuttle-based sprints, straight-line sprints induced greater 
demands when more repetitions were performed over a 
shorter distance (8 × 30 m repeated-sprints) [23]. The pre-
scription of active inter-repetition rest has been shown to 
promote higher heart rate and oxygen consumption (VO2) 
compared with passive rest [24]. However, Keir et al. [25] 
found that demands were greater when passive rest, fewer 
repetitions, shorter rest time and a longer sprint distance 
were prescribed. Ultimately, there is an infinite combina-
tion of programming variables that can alter the training 
outcome, but the acute effects of these factors are not well 
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understood. Therefore, to guide training prescription and 
enhance the effectiveness of RST, it is important to gain a 
quantitative understanding of the acute effects of each pro-
gramming factor.

While excessive training loads can contribute to fatigue, 
an appropriate training dose may allow for greater improve-
ments in fitness and performance [26]. Knowledge of the 
acute demands of RST can help practitioners manage fatigue 
and target specific training outcomes. Therefore, our system-
atic review and meta-analysis aims to (1) identify the most 
common RST set configuration, (2) evaluate and summa-
rise the acute physiological, neuromuscular, perceptual and 
performance demands of RST, and (3) examine the meta-
analytic effects of sprint modality, number of repetitions per 
set, sprint repetition distance, inter-repetition rest modality 
and inter-repetition rest duration on the acute RST demands.

2  Methods

2.1  Search Strategy

This study was conducted in accordance with the ‘Preferred 
Reporting Items for Systematic Reviews and Meta-analyses’ 
(PRISMA) guidelines [27] and registered on Open Science 
Framework (Registration https:// doi. org/ 10. 17605/ OSF. 
IO/ 2XQ3A). A systematic search of the literature was con-
ducted to find original research articles investigating the 
acute demands of RST in team sport athletes. The latest 
search was performed on 10 January 2022, using the elec-
tronic databases Pubmed, SPORTDiscus, MEDLINE and 
Scopus. No restrictions were imposed on the publication 
date. Relevant keywords for each search term were identified 
through pilot searching of titles/abstracts/full-texts of previ-
ously known articles. Key search terms were grouped and 
searched within the article title, abstract and keywords using 
the search phrase (‘repeat* sprint*’ OR ‘intermittent sprint*’ 
OR ‘multiple sprint*’) AND (‘exercise’ OR ‘ability’ OR 
‘training’) AND (‘team sport’ OR ‘players’ OR ‘athletes’) 
AND (‘physiological’ OR ‘perceptual’ OR ‘neuromuscular’ 
OR ‘metabolic’ OR ‘fatigue’) NOT (‘cycling’ OR ‘swim-
ming’). No medical subject headings were applied to the 
search phrase.

Following the initial search of the literature, results were 
exported to EndNote library (Endnote X9, Clarivate Ana-
lytics, USA) and duplicates were removed. The remaining 
articles were then uploaded to Covidence (http:// www. covid 
ence. org, Melbourne, Australia), with the titles and abstracts 
independently screened by two authors (F.T., M.M.). Full-
texts of the remaining articles were then accessed to deter-
mine their final inclusion–exclusion status. Articles selected 
for inclusion were agreed upon by both authors, with any 

disagreements resolved by discussion or a third author 
(J.W.). Furthermore, Google Scholar, as well as reference 
lists of all eligible articles and reviews [1, 8, 9, 28], were 
searched to retrieve any additional studies. Figure 1 dis-
plays the strategy for the study selection process used in 
this review.

2.2  Inclusion–Exclusion Criteria

The inclusion and exclusion criteria can be found in Table 1. 
We chose to omit any studies in which the mean athlete 
age was ≤ 16 years, as children may respond differently 
to RST [29, 30]. Studies were excluded if RST was per-
formed in ≥ 30 °C because larger performance decrements 
may occur in hot compared with cool conditions [31]. We 
acknowledge that the residual effects of intense exercise may 
last up to 72 h [32], but acute demands measured up to 24 h 
following RST was selected because: (a) it is common for 
RST and other team sport activity to be interspersed with 
minimal recovery time (i.e. < 72 h), (b) pilot scoping of the 
literature only identified five studies [33–37] that recorded 
measurements on athletes > 24 h. Several studies/protocols 
were excluded from this investigation that implemented 
repeated-sprint sequences with sport skill elements [38–42] 
or involved a reactive component in response to an external 
stimulus (e.g. light sensor) [43–46]. Evidence from studies 
involving both single-set and multi-set repeated sprints was 
recorded, including the acute demands from repeated-sprint 
ability tests. For studies that involved pre-post testing of 
RST, separated by an intervention period (e.g. training, sup-
plementation), only the RST baseline results were reported 
to ensure that the intervention period did not bias the 
results. Where observational time-series studies measured 
RST across a season, results were included for each phase 
(e.g. pre-season, mid-season, post-season), providing that 
no intervention was implemented outside of usual practice.

2.3  Classification of Study Design

To provide information on study design (Supplementary 
Table S2), studies were categorised under four designs as 
follows: (1) observational – non-experimental, (2) single 
group pre-test post-test – experimental treatment applied to 
a single group of participants, with the dependent variable/s 
measured before and after treatment, (3) crossover – two 
or more experimental conditions applied to the same par-
ticipants, with or without a control condition, (4) parallel 
groups – two or more experimental conditions applied to two 
groups of different participants, with or without a control 
condition. Additionally, single-group time-series designs 
were categorised under observational and denoted.

https://doi.org/10.17605/OSF.IO/2XQ3A
https://doi.org/10.17605/OSF.IO/2XQ3A
http://www.covidence.org
http://www.covidence.org
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2.4  Selection of Outcome Measures 
and Programming Variables

The outcome measures (Table 2) were selected on the basis 
of pilot scoping of the literature that identified commonly 
used indicators of internal responses to exercise and per-
formance capacity in team sport settings [28, 47, 48]. Per-
centage sprint decrement, as defined by Fitzsimons et al. 
[49] and Glaister et al. [50], was chosen as it is the most 
ecologically valid index to quantify fatigue during RST 
[50]. However, caution should be taken when interpreting 
Sdec as weak relative and absolute reliability exists between 

repeated-sprint ability tests [51]. Blood lactate is sensitive 
to changes in exercise intensity and duration and is one of 
the preferred methods used to assess the anaerobic glycolytic 
contribution to exercise [20]. Sprint force–velocity–power 
parameters, as defined by Samozino et al. [52], and spring-
mass model parameters, as defined by Morin et al. [53], were 
chosen as they represent field-based methods used to assess 
the mechanical effectiveness of sprinting and the neuromus-
cular manifestation of fatigue during over-ground running 
[54].

Programming variables recorded were: sprint modality 
(i.e. straight-line, 180° shuttle or multi-directional), number 

Fig. 1  Flow diagram of the 
study selection process
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of repetitions per set, number of sets per session, sprint dis-
tance or duration per repetition, inter-repetition rest dura-
tion, inter-repetition rest modality, inter-set rest duration and 
inter-set rest modality.

2.5  Extraction of Study Information

Mean and standard deviation data were extracted directly 
from tables and within the text of the included studies. To 
obtain data from studies where information was provided in 
figures, graph digitising software (WebPlotDigitizer, ver-
sion 4.3, USA) was used. For studies where rest duration 
was given as an exercise to rest ratio or on a time cycle 
that included sprint time, an estimated ‘actual’ rest time was 
also established. This was determined by extracting aver-
age sprint time (Savg) data from studies, where provided. 
For example, if Savg was 3.2 s and the recovery duration 
was given as 1:5 exercise to rest ratio, then the estimated 
recovery duration was 16 s, or if the recovery duration was 
given on a 30 s cycle, then the estimated recovery duration 
was 27 s, with recovery durations rounded to the nearest 
whole number.

With regards to sprint modality, shuttle repeated-sprints 
were defined as RST where one or more 180° changes of 
direction were performed. Multi-directional repeated-sprints 
involved RST where changes of direction were performed 
with angles other than 180°, but due to the large variety of 

designs (e.g. different angles and courses), this format was 
excluded from the meta-analysis. For rest modality, ‘passive’ 
included protocols where participants were required to walk 
back to a two-way start line (sprints alternating from both 
ends) in preparation for the next sprint. Where information 
relating to exercise protocols (e.g. sprint distance) could 
not be found within the study or clarification was required, 
authors were contacted. If authors did not respond, samples 
were removed from the meta-analysis. The Participant Clas-
sification Framework [55] was used to define training and 
performance calibre of the athletes included in our investiga-
tion (Supplementary Table S2).

Twenty-four estimates nested within 13 studies collected 
session ratings of perceived exertion (sRPE) via Borg’s 
6–20 scale. For consistency with other included studies and 
to comply with more standard practice, 6–20 values were 
converted to Category–Ratio 10  (CR10®) units (deciMax) 
using the appropriate table conversion [56]. Standard devia-
tions were converted by a factor that was proportionate to the 
mean value of each estimate, which ranged between 13–19 
(conversion factors = 0.27–0.53). Where VO2 was expressed 
in absolute terms (L·min−1) [25], it was converted to relative 
terms (mL⋅min−1⋅kg−1) by extracting the mean body mass 
of the participants from the study. Where Sdec of 5% was set 
as the termination criteria [57], the mean number of repeti-
tions was used for meta-analysis. Heart rates were inclusive 
of both the sprint component and inter-repetition rest peri-
ods, but samples were excluded [58] which continuously 

Table 2  Summary of the 
outcome measures of interest

sRPE session ratings of perceived exertion, CR10 Category-Ratio 10, CMJ counter movement jump, JH 
jump height, FVP force–velocity–power, V0 theoretical maximal velocity, F0 theoretical maximal force, P0 
theoretical maximal power, RFpeak maximal ratio of force, DRF slope/rate of decrease in ratio of force with 
increasing velocity, SMM spring-mass model, Kvert vertical stiffness, Kleg leg stiffness, ΔL leg compression, 
Δz centre of mass vertical displacement, Fzmax maximal vertical force, HR heart rate, HRavg average heart 
rate, HRpeak peak heart rate, HRpost heart rate recorded immediately post exercise, % HRmax percentage of 
maximal heart rate, CK serum creatine kinase, CK 24h serum creatine kinase measured 24 h post exercise, 
B[La] blood lactate, VO2avg average oxygen consumption, % VO2peak percentage of peak oxygen consump-
tion, % VO2max percentage of max oxygen consumption, Sbest best sprint time, Savg average sprint time, Stotal 
total sprint time, Sdec percentage sprint decrement

Category Measure Metric

Physiological HR HRavg,  HRpeak,  HRpost and/or %  HRmax

CK CK 24 h
B[La] Post (0–10 min)
VO2 VO2avg, VO2peak and/or % VO2max

Neuromuscular CMJ JH
Sprint FVP parameters as defined 

by Samozino et al. [43]
V0, F0, P0,  RFpeak, DRF

SMM parameters as defined by 
Morin et al. [44]

Kvert, Kleg, ΔL, Δz, Fzmax

Perceptual sRPE CR10® and 6–20 sRPE scales [46]
Performance Sprint times Sbest, Savg, Stotal

Sdec As defined by Fitzsimons [40] and 
Glaister et al. [41]
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recorded heart rate during the inter-set rest periods. Due to a 
lack of studies reporting the effect of RST on peak heart rate 
 (HRpeak) as a percentage of maximal heart rate  (HRmax), this 
data was unable to be meta-analysed. However, these results 
[2, 59–62] are summarised in section 3.4.3. Post-exercise 
B[La] samples were meta-analysed together, irrespective of 
the exact time point that they were measured (i.e. 0–10 min). 
Although, for context, specific timepoints of each sample are 
given in Supplementary Table S3. Where studies provided 
multiple timepoints of B[La] collection, the highest value 
was used for meta-analysis. The considerable variation in 
measurement error between different jump systems makes 
it difficult to compare counter-movement jump (CMJ) height 
between different studies [63] and as such, CMJ height 
results were recorded, but not meta-analysed. For context, 
the type of jump measurement systems used in each study 
are noted alongside the results in Supplementary Table S3.

2.6  Assessment of Reporting Quality and Risk 
of Bias

To assess the reporting quality and risk of bias within the 
studies included in this review, two authors (F.T. and M.M.) 
independently evaluated the literature using a modified ver-
sion of the Downs and Black index. This scale includes 14 
original items and ranks each item as 0 or 1, with higher 
total scores (out of 14) indicating higher quality studies. The 
original Downs and Black scale was reported to have accept-
able test–retest (r = 0.88) and inter-rater reliability (r = 0.75) 
[64]. If there was an absence of clear information to assess 
an item on either scale, it was scored as 0. Any disagree-
ments between the two authors were resolved by discussion 
or a third author (J.W.).

2.7  Data Analysis

All analyses were performed in the statistical computing 
software R (Version 4.0.0; R Core Team, 2020). Studies eli-
gible for meta-analysis often reported RST outcomes from 
several subgroups (e.g. elite versus non-elite, males versus 
females, etc.), from repeated measures taken on the same 
group of athletes (e.g. set 1 and set 2, warm-up A versus 
warm-up B, etc.), or a combination of both. To appropri-
ately account for this hierarchical structure, in particular, 
the within-study correlation arising from repeated measures 
[65] and on the assumption that the true acute demand of 
RST varies between studies [66], data were analysed using 
multi-level mixed-effects meta-analysis via the metafor 
package [67]. Initial (baseline) models were run for each 
outcome measure with 10 or more estimates and fit using 
restricted maximum-likelihood. These models included only 
random effects, which were specified in a nested structure 
as studies (i.e. individual research papers; outer factor) and 

groups within studies (inner factor, [65]). Units of analy-
sis were therefore individual estimates from groups within 
studies, given as the mean value of the outcome measure 
following RST. Both the associated standard deviation 
(SD) and sample size were used to calculate the variance 
of each estimate. When a study involved repeated measures 
(i.e. multiple rows of data for the same group of athletes), 
dependency was accounted for by replacing variance with 
the entire ‘V’ matrix; that is, the variance–covariance matrix 
of the estimates [65]. Block-diagonal covariance matrices 
were estimated with an assumed correlation of r = 0.5 using 
the clubSandwich package [68]. Since it is uncommon for 
studies to report the correlation coefficient between repeated 
measures [69], our assumption was informed by re-analysis 
of our previous (unpublished) work in team-sport RST.

Uncertainty in meta-analysed estimates was expressed 
using 90% compatibility (confidence) intervals (CI), calcu-
lated based on a t-distribution with denominator degrees of 
freedom given from the unique number of ‘group’ levels 
(i.e. the inner level of the random effects structure). Pooled 
estimates were also presented with 90% prediction intervals, 
which convey the likely range of the true demand of RST 
in similar future studies [70]. Between-study and between-
group heterogeneity in each meta-analysed estimate was 
quantified as a SD [Sigma (σ)] [71]), with 90% CI calculated 
using the Q-profile method [72].

To examine the effect of programming variables on 
acute RST outcomes, candidate factors were added to the 
aforementioned baseline models as fixed effects for out-
comes with sufficient estimates available (approximately 
10 per moderator [73]). The five moderator variables were: 
sprint modality (categorical: straight-line or 180° shuttle), 
number of repetitions per set (continuous, linear), total dis-
tance covered in each repetition (continuous, linear), inter-
repetition rest modality (categorical: active or passive) and 
inter-repetition rest duration (continuous, linear). Factors 
were re-scaled so that the reference (intercept) effect repre-
sented the performance or response to 6 m × 30 m straight-
line sprints with 20 s passive rest between repetitions. The 
effects of each moderator were then estimated (along with 
90% CI and 90% prediction intervals, where appropriate), 
with all other factors being held constant. Categorical 
moderators were given as the difference between levels 
(shuttle compared with straight-line sprints and active 
compared with passive inter-repetition rest). Continuous 
moderators were evaluated at a magnitude deemed to be 
practically relevant for training prescription: performing 
two more repetitions, sprinting 10 m further per repetition 
and resting for 10 s longer between repetitions. The effects 
of repetition distance on repetition time (average and fast-
est sprint) were not shown (but were still offset to a dis-
tance of 30 m), because the time taken to complete a sprint 
repetition is almost entirely dependent on the distance to 
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be covered. The total amount of variance explained by 
the combination of moderators was given as a pseudo-R2 
value, calculated by subtracting the total (pooled) variance 
from final models ( �2

mods
 ) as a fraction of baseline models 

( �2

base
 ) from 1 (1 − [�2

mods
∕�2

base
]).

To provide an interpretation of programming modera-
tors, we (subjectively) considered the entire range of the 
CI representative of values compatible with our models 
and assumptions [74], relying mostly on the point esti-
mate. To further contextualise the practical relevance of 
moderators, we visually scaled effects against regions of 
practical significance. That is, reference values for each 
outcome measure that have been empirically or theoreti-
cally anchored to some real-world importance in the con-
text of team-sport athletes and/or RST. These thresholds 
were: 2 bpm (~ 1%) in  HRpeak [75], 1 au in CR10-scaled 
sRPE [76], a 1% faster or slower sprint time [77] based on 
the reference performance given as the intercept: 0.05 s 
for Savg, 0.04 s for best sprint time (Sbest) and 1% for Sdec 
across a set [77]. In absence of a recognised practical 
reference value for a change in B[La] above the anaero-
bic threshold, we used the value of a small, standardized 
effect. Between-athlete standard deviations from included 
estimates (n = 120) were meta-analysed on the log scale, 
as previously described (SD = 1.9  mmol·L−1, 90% CI 
1.7–2.22), before being multiplied by 0.2. The threshold 
for a moderate standardised effect (0.6 × 1.9 mmol·L−1) 
was also calculated and shown for visual purposes. When 
a CI fell entirely inside the region of practical significance 
or predominantly inside one region, we declared an effect 
as trivial. When a CI fell entirely outside the region of 
practical significance or predominantly outside the region, 
we declared an effect substantial. If there was equal cover-
age of the CI across the trivial region and the substantial 
region in only one direction (i.e. positive or negative), 
the effect was deemed compatible with both trivial and 
substantial effects. Finally, when the CI spanned across 
substantial regions in both positive and negative direc-
tions, including the trivial region, an effect was deemed 
inconclusive.

3  Results

Following the screening process (Fig. 1), 215 publications 
were included in our investigation, with data from 908 sam-
ples nested within 176 studies eligible for meta-analysis. 
Across all studies, there were 4818 athlete inclusions from 
282 repeated-sprint protocols reported.

3.1  Study Characteristics

The most common study design for investigations of acute 
demands of RST was single group, cross sectional observa-
tional (n = 87 studies, 40%). Soccer was the most investi-
gated sport (n = 104, 48%), followed by basketball (n = 33, 
15%), rugby (league, union and sevens) (n = 15, 7%), futsal 
(n = 14, 7%), handball (n = 12, 6%), field hockey (n = 10, 
5%), Australian rules football (n = 5, 2%), volleyball (n = 3, 
1%), netball (n = 2, 1%) and a mixture of team sports (n = 17, 
8%). Of these sports, 21 (10%) studies involved elite/inter-
national level athletes, 125 (58%) studies involved highly 
trained/national level athletes and 58 (27%) studies involved 
trained/development level athletes, with 11 (5%) studies not 
reporting the training and performance calibre of the ath-
letes. Female athletes were represented in 31 (14%) stud-
ies. A summary of the participants and study characteristics 
of included publications are provided in Supplementary 
Table S2.

3.2  Outcomes for the Assessment of Reporting 
Quality and Risk of Bias

Supplementary Table S1 summarises the outcomes of the 
modified Downs and Black scale for the assessment of 
reporting quality and risk of bias. Results ranged from 7 to 
12, with a mean score of 9.6 ± 0.9.

3.3  Study Outcomes

A summary of the training protocols and study outcomes 
of included publications are provided in Supplementary 
Table S3.

Performance outcomes were represented in 198 (92%) 
of studies and the most common outcome measure was Sdec 
(n = 127 studies, 59%) (Fig. 2). The most common prescrip-
tion of each programming variable were straight-line sprints 
(n = 153 protocols, 54%), performed over 30 m (n = 107, 
38%), with a passive recovery (n = 186, 66%) lasting 20 s 
(n = 83, 29%), prescribed as one set of six repetitions 
(n = 122, 43%; Fig. 3). The majority of protocols (n = 263, 
93%) employed one set of repeated-sprints, with two sets, 
three sets and four sets used in five (2%), ten (4%) and four 
(1%) protocols, respectively. The most common inter-set 
rest times for all multi-set protocols were 4 (six protocols) 
and 5 mins (five protocols). The number of 180° changes of 
direction prescribed for shuttle repeated-sprints ranged from 
one to two. The most prescribed mode of active recovery 
was a slow jog back to a one-way start line (n = 32 protocols, 
33%, i.e. sprints start from one end only). There was one 
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study [33] that strictly enforced a 5 m deceleration zone and 
one other study [78] that enforced a 6 m deceleration zone. 

3.3.1  Meta‑analysed Acute Demands of Repeated‑Sprint 
Training

The acute physiological, perceptual and performance 
demands of RST in team sport athletes are presented in 
Table 3. Also presented are the 90% CI and PI for each 
estimate, as well as the between sample and between study 
variation (σ).

3.3.2  Moderating Effects of Programming Variables 
on the Acute Demands of Repeated‑Sprint Training

The moderating effects of programming variables on the 
acute physiological, perceptual and performance demands 
of RST are presented in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15. All effects were evaluated as the change in 
each outcome measure when compared with a reference 
protocol of 6 m × 30 m straight-line sprints with 20 s pas-
sive inter-repetition rest. Unless noted in the subsequent 
sections, moderating effects were deemed inconclusive 

[i.e. a confidence level (CL) spanning across substantial 
regions in both positive and negative directions, including 
the trivial region].           

3.3.2.1 Shuttle‑Based Sprints Shuttle-based sprints were 
associated with a substantial increase in Savg and Sbest (i.e. 
slower times; Figs. 10, 11, 12, 13), whereas the effect on 
sRPE was trivial (Figs.  6, 7). Performing shuttle-based 
sprints was compatible with both a trivial and substantial 
reduction in Sdec [i.e. a less pronounced decline in sprint 
times (faster) throughout the set; Figs. 14 and 15].

3.3.2.2 Performing Two More Repetitions Per Set Per-
forming two more repetitions per set had a trivial effect on 
 HRpeak (Figs. 4 and 5), sRPE (Figs. 6 and 7), Savg (Figs. 12 
and 13), Sdec (Figs. 14 and 15) and B[La] (Figs. 8 and 9). 
Additionally, performing two more repetitions per set was 
compatible with both a trivial and substantial increase in 
Sbest (i.e. slower time; Figs. 10 and 11).

3.3.2.3 Sprinting 10  m Further Per Repetition Sprinting 
10 m further per repetition was associated with a substan-
tial increase in B[La] (Figs. 6 and 7) and Sdec [i.e. a more 
pronounced decline in sprint times (slower) throughout 

Fig. 2  The distribution of outcome measures. Data given as the total 
number of studies represented (out of 215). Sbest best sprint time, 
Savg average sprint time, Stotal total sprint time, Sdec percentage sprint 
decrement, CMJ counter-movement jump, SMM spring-mass model 

characteristics, FVP sprint force–velocity–power profiling, sRPE rat-
ings of perceived exertion, HR heart rate, B[La] blood lactate, CK 
serum creatine kinase, VO2 oxygen consumption
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the set; Figs. 14 and 15], whereas the effect on sRPE was 
trivial (Figs. 6 and 7). Additionally, sprinting 10 m further 
per repetition was compatible with both a trivial and sub-
stantial increase in  HRpeak (Figs. 4 and 5). The effects on 
Sbest and Savg were not evaluated.

3.3.2.4 Resting for  10  s Longer Resting for 10  s longer 
between repetitions was associated with a substantial 
reduction in B[La] (Figs. 8 and 9), Savg (Figs. 12 and 13), 

and Sdec (Figs.  14 and 15), while the effects on  HRpeak 
(Figs. 4 and 5) and sRPE (Figs. 6 and 7) were trivial. Rest-
ing for 10  s longer between repetitions was compatible 
with both a  trivial and substantial reduction in Sbest (i.e. 
faster time; Figs. 10 and 11).

3.3.2.5 Performing Active Inter‑Repetition Rest Using an 
active inter-repetition rest modality was compatible with 
both a trivial and substantial increase in  HRpeak (Figs. 4 and 
5), sRPE (Figs. 6 and 7) and Sdec (Figs. 14 and 15).

Fig. 3  The distribution of RST prescription across all 282 protocols. Data are given as the total number of protocols represented (percentage) 
[range]
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3.3.3  Acute Demands of Repeated‑Sprint Training 
on Non‑Meta‑Analysed Outcomes

The acute demands of straight-line and shuttle RST on 
non-meta-analysed outcomes are as follows: total sprint 
time ranged from 7.82 to 86.09 s (number of studies = 102, 
number of samples = 185), end-set heart rate  (HRpost) ranged 
from 139 to 191 bpm (n = 4 and 12),  HRpeak as %  HRmax 
ranged from 85% to 97% (n = 4 and 12), average VO2 as 
a percentage of maximal oxygen consumption (VO2max) 
ranged from 73% to 83% (n = 3 and 6) and creatine kinase 
measured 24 h post-session ranged from 354 to 1120 µ·L−1 
(n = 6 and 8). The absolute change in CMJ height ranged 
from 2.4 to −8.6 cm (n = 9 and 20) and the percent change 
ranged from 8% to −27% (n = 10 and 21). Results from 

studies that investigated spring-mass model parameters 
(n = 2 and 2) and sprint force–velocity–power parameters 
(n = 1 and 1) are provided in Supplementary Table S3.

3.3.4  Acute Demands of Multi‑directional Repeated‑sprint 
Training

The acute demands of multi-directional RST are as follows: 
Sdec ranged from 1% to 7% (number of studies = 13, number 
of samples = 24), Sbest ranged from 4.36 to 8.21 s (n = 11 
and 19), Savg ranged from 4.14 to 8.39 s (n = 12 and 22), 
total sprint time ranged from 32.22 to 83.99 s (n = 9 and 11), 
end-set B[La] ranged from 5.4 to 15.4 mmol·L−1 (n = 6 and 
8), sRPE ranged from 5.5 to 9.1 au (n = 6 and 10) and  HRpeak 
ranged from 178 to 195 b·min−1 (n = 6 and 10).

Table 3  Meta-analysed acute physiological, perceptual and performance demands of repeated-sprint training in team sport athletes

Multi-directional protocols are excluded. Heart rate results are independent of each other (HRpeak ≠ HRmax)
CI confidence interval, PI prediction interval, HRavg average heart rate, % HRmax percentage of maximal heart rate, HRpeak peak heart rate, 
VO2avg average oxygen consumption, B[La] blood lactate, sRPE session ratings of perceived exertion, Sbest best sprint time, Savg average 
sprint time, Sdec percentage sprint decrement

Outcome measure Number of… Pooled effect Variation (σ, 90% CI) between…

Studies Samples Estimate 90% CI 90% PI Studies (σ1) Samples (σ2)

HRavg bpm 12 24 163 154 to 171 131 to 194 16 (11 to 24) 6 (4 to 9)
%  HRmax 10 21 90 87 to 92 82 to 97 3 (2 to 6) 2 (1 to 3)

HRpeak bpm 29 54 182 179 to 184 168 to 195 7 (6 to 10) 2 (1 to 3)
VO2avg mL·kg−1·min−1 6 6 42.4 32.3 to 52.4 16.0 to 68.7 9.2 (0.0 to 20.6) 2.4 (0.8 to 9.4)
B[La] mmol·L−1 64 120 10.7 10.1 to 11.3 5.6 to 15.8 2.6 (2.1 to 3.1) 1.7 (1.4 to 2.0)
sRPE au (deciMax) 40 68 6.5 6.0 to 6.9 3.5 to 9.5 1.2 (0.7 to 1.6) 1.3 (1.1 to 1.6)
Sbest s 103 191 5.52 5.26 to 5.79 2.79 to 8.25 1.57 (1.40 to 1.79) 0.45 (0.40 to 0.51)
Savg s 112 200 5.57 5.31 to 5.82 2.83 to 8.3 1.54 (1.37 to 1.74) 0.57 (0.51 to 0.65)
Sdec % 125 224 5.0 4.7 to 5.3 1.4 to 8.7 2.0 (1.8 to 2.3) 0.9 (0.8 to 1.1)

Fig. 4  The moderating effects of programming variables on peak heart rate during repeated-sprint training with team sport athletes
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Fig. 5  The moderating effects of a sprint modality, b inter-repetition rest mode, c repetitions per set, d total repetition distance and e inter-repeti-
tion rest time on peak heart rate during repeated-sprint training with team sport athletes. Larger circles, greater study size

Fig. 6  The moderating effects of programming variables on session ratings of perceived exertion following repeated-sprint training with team 
sport athletes
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Fig. 7  The moderating effects of a sprint modality, b inter-repetition 
rest modality, c repetitions per set, d total repetition distance and e 
inter-repetition rest time on session ratings of perceived exertion fol-

lowing repeated-sprint training with team sport athletes. Larger cir-
cles, greater study size

Fig. 8  The moderating effects of programming variables on end-set blood lactate following repeated-sprint training with team sport athletes
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Fig. 9  The moderating effects of a sprint modality, b inter-repetition rest modality, c total number of repetitions, d total repetition distance and e 
inter-repetition rest time on end-set blood following repeated-sprint training with team sport athletes. Larger circles, greater study size

Fig. 10  The moderating effects of programming variables on best sprint time during repeated-sprint training with team sport athletes
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4  Discussion

This systematic review and meta-analysis provides the first 
comprehensive synthesis of the acute demands of RST in 
team sport athletes. It contains data from 215 studies, 282 
repeated-sprint protocols and 4818 athlete inclusions. We 
demonstrate that physiological, neuromuscular, perceptual 
and performance demands incurred during RST are con-
sistently substantial; a finding supported by both the meta-
analysed point estimates and their 90% prediction intervals 
(Table 3). Moreover, the magnitude of these acute demands 

can be influenced by the manipulation of programming vari-
ables (Table 4). Prescribing longer sprint distances (> 30 m) 
and/or shorter (≤ 20 s) inter-repetition rest can increase 
physiological demands and performance decrement. Con-
versely, the most effective strategy to mitigate the acute 
decline in sprint performance is the prescription of longer 
inter-repetition rest times (≥ 30 s) and shorter sprint dis-
tances (15–25 m). The effects of performing two more rep-
etitions per set on our outcomes was trivial, which suggests 
that prescribing a lower number of successive sprints (e.g. 
four as opposed to six) may be a useful strategy to reduce 

Fig. 11  The moderating effects of a sprint modality, b inter-repetition rest modality, c repetitions per set and d inter-repetition rest time on best 
sprint time during repeated-sprint training with team sport athletes. Larger circles,  greater study size
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sprint volume, while maintaining the desired physiologi-
cal demands. The influence of shuttle-based protocols and 
inter-repetition rest modality remain largely inconclusive. 
These findings from our review and meta-analysis can be 
used to inform RST prescription and progression in team 
sport athletes.

Repeated-sprint training is one method among an array 
of training options that practitioners can use to enhance the 
physical performance of team sport athletes. The meta-ana-
lytic estimate of sRPE (Table 3) indicates that RST is per-
ceived to be ‘very hard’ (90% PI: ‘moderate’ to ‘extremely 
hard’), which agrees with the intended prescription of this 
training modality [18, 79]. Taking into account that a typical 
RST session lasts for between 10–20 min, the sRPE-training 
load (sRPE × training duration) is a fraction of that observed 
during team sport practice [80–82], being approximately 
65–130 au (deciMax units). However, this should be consid-
ered alongside the physiological and neuromuscular stresses 
imposed by the RST session. The 10.1–11.3 mmol·L−1 ref-
erence estimate of B[La] is well above the second lactate 
threshold (~ 4 mmol·L−1) and therefore indicates that there is 
an immediate and intensive demand placed on the anaerobic 
glycolytic system during RST [83]. A high rate of anaero-
bic energy production, accompanied by a B[La] response 
exceeding 10 mmol·L−1, may be an important stimulus to 
elicit positive long-term changes in enzymes central for 
anaerobic glycolysis [28, 84]. Therefore, to potentially opti-
mise the anaerobic adaptations to RST for team sport ath-
letes, sessions that cause a B[La] demand of > 10 mmol·L−1 
should be prescribed. Practitioners should also be conscious 
of the neuromuscular demands (i.e. impairment in the mus-
cles ability to produce force) imposed by RST, with con-
siderable decrements in CMJ height observed immediately 
after its implementation. However, while fatigue may be 
detrimental to acute performance, it also can be important 
for adaptation [85].

Athletes can reach VO2max during RST [86] and the aver-
age VO2 demand is considerable (Table 3), corresponding 
to approximately 70%–80% of VO2max for the normal team 
sport athlete [87–90]. This also agrees with studies reporting 
the average VO2 demands of RST as a percentage of the ath-
letes measured VO2max [24, 59, 60]. Training sessions spent 
with longer periods of time at a high percentage of VO2max 
have been suggested to be an optimal stimulus for enhanc-
ing aerobic fitness, particularly in well-trained athletes [79, 
91–93]. If the objective is to maximise aerobic adaptations, 
practitioners should therefore prescribe RST sessions that 
induce an average VO2 demand of > 90% max (or > 95% 
maximal heart rate) [79, 94], which could be achieved by 
manipulating certain programming variables in isolation 
and/or combination. Although moderator analysis of VO2 
was not feasible due to a low number of samples, qualitative 
synthesis indicates that longer sprint distances [86], active 
rest periods [24] and shuttle-based RST [59, 60] can amplify 
the VO2 demands. While RST is a time-efficient training 
method that can induce small to large improvements across 
a range of physical parameters [8, 9], practitioners should, 
however, consider that RST is unlikely to be the best tool for 
eliciting time at or near VO2max and ultimately, for enhancing 
aerobic fitness [9, 79]. Pursuing utmost change in this area 
by implementing excessively demanding protocols could 
mitigate the improvement of other physical qualities (e.g. 
speed). Manipulating programming variables based on the 
goals of the training program is therefore crucial to regulate 
the acute demands of RST and optimise specific adaptations.

4.1  Sprint Modality

There were a greater number of RST protocols that pre-
scribed straight-line sprints (n = 153, 54%) compared 
with shuttle RST (n = 105, 37%) and multi-directional 
RST (n = 24, 9%). Across the 24 protocols that prescribed 

Fig. 12  The moderating effects of programming variables on average sprint time during repeated-sprint training with team-sport athletes



1625Acute Demands of Repeated-Sprint Training

multi-directional repeated-sprints [46, 95–111], there were 
a variety of different designs and angles implemented, rang-
ing from 45° to 135°, for 2–5 changes of direction. Given 
the multitude of programming variables to consider, meta-
analysis of multi-directional RST was not feasible. None-
theless, we found that consistently high  HRpeak (178–195 
bpm and 92%–100%  HRmax), sRPE (5.5–9.1 au) and post-
session B[La] (5.4–15.4 mmol·L−1) were reported across 
all multi-directional protocols. Multi-directional sequences 
were designed to replicate specific movement demands of 

team sports, where rapid changes of direction are common 
[5, 112, 113]. Moreover, previous research has identified that 
straight-line speed and change of direction ability are differ-
ent physical qualities because of their distinct biomechanical 
determinants [112, 113]. Greater application of multi-direc-
tional and shuttle-based RST may therefore be used to help 
develop change of direction ability, but practitioners should 
be aware of the acute demands of each modality.

Compared to straight-line RST, our meta-analysis shows 
that sprint times are clearly slower during shuttle-based RST 

Fig. 13  The moderating effects of a sprint modality, b inter-repetition rest modality, c repetitions per set and d inter-repetition rest time on aver-
age sprint time during repeated-sprint training with team sport athletes. Larger circles, greater study size
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Fig. 14  The moderating effects of programming variables on sprint time decrement during repeated-sprint training with team sport athletes

Fig. 15  The moderating effects of a sprint modality, b inter-repetition rest modality, c repetitions per set, d total repetition distance and e inter-
repetition rest time on sprint time decrement during repeated-sprint training with team sport athletes. Larger circles, greater study size
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(Figs. 10 and 12), but Sdec is less (Fig. 14). Practitioners 
can therefore expect slower sprint velocity when changes of 
direction are implemented, but athletes may be able to better 
sustain their initial sprint performance. The effects on  HRpeak 
and B[La] were inconclusive (Figs. 4 and 8), while the effect 
on sRPE was mostly trivial (Fig. 6), which may suggest that 
these physiological and perceptual demands of RST are 
independent of sprint modality. It should be noted, however, 
that the acute demands of RST performed with changes of 
direction are conditional to the number and angle of direc-
tion changes, the distance between each direction change and 
the duration of the sequence [60, 99, 106, 114, 115]. These 
factors affect the absolute speeds that are attained and the 
muscular work performed during the sprint, propulsive and 
braking components. Additionally, by integrating changes of 
direction into RST, there is accumulation of acceleration and 
deceleration which can increase the neuromuscular demand 
[99]. This seems evident by greater reductions in CMJ height 
following shuttle-based RST [104, 116, 117].

Shuttle-based sprints can be applied during a RST pro-
gram to emphasise change of direction, limit absolute run-
ning speeds and induce a similar physiological demand to 
straight-line RST. There may be instances, such as towards 
the end of season, where practitioners want to limit the phys-
iological stress on the athlete during shuttle or multi-direc-
tional RST. In these cases, it has been demonstrated that 
decreasing the sprint duration through time-matched proto-
cols is an effective strategy [99]. Therefore, when design-
ing RST, practitioners need to consider the influence of the 
direction changes on the duration of the sprint, rather than 
just the overall distance, as this can have a marked effect on 
the internal demands [99]. Of course, straight-line sprints 
should be implemented if the goal is to expose athletes to 
higher speeds.

4.2  Number of Sprint Repetitions and Sets

Repeated-sprint training is implemented in research and 
practice to target a broad range of outcomes, which is 
reflected by considerable variation in the number of sprint 
repetitions prescribed across studies (range 2–40 repeti-
tions per set). The vast majority of protocols (n = 257, 94%) 
implemented just one set, with six repetitions the most 
prescribed number of sprints per set (n = 122 protocols, 
43%). Protocols that prescribed ≥ 12-repetitions per set 
[19, 33–35, 61, 62, 86, 118–128] were often designed to 
induce a high degree of fatigue. Accordingly, high creatine 
kinase responses (542–1127 µ·L−1) were reported in studies 
prescribing high repetition protocols [33–35, 123], despite 
longer inter-repetition rest times (≥ 30 s). These long-series 
of exhaustive efforts are counterintuitive to the movement 
demands of team sports, where sprint efforts are more likely 
to occur in small clusters [129, 130]. While the moderating 
effects of the number of sets per session was not meta-ana-
lysed due to the low number of samples, it is worth noting 
that with an increasing number of sets, sprint times decayed 
and heart rate was increased, but changes in B[La] seem 
negligible [58, 122, 131]. Further investigation is required 
to better understand the impact of the number of sets per-
formed per session, as well as the overall session volume, 
on the acute demands of RST.

A substantial physiological demand is induced with the 
prescription of just six sprint repetitions, as demonstrated by 
the estimates and PI’s for  HRpeak and B[La] (Figs. 4 and 8). 
A large cardiac demand, inferred by the 182 bpm reference 
estimate of  HRpeak, coupled with a B[La] response exceed-
ing 10 mmol·L−1, provide a strong aerobic and anaerobic 
stimulus, which may underpin the improvements in high-
speed running abilities observed after RST interventions [2, 
8]. With the reference estimate of B[La] above 10 mmol·L−1 

Table 4  Summary of the effects 
of programming variables on 
the acute demands of repeated-
sprint training in team sport 
athletes

HRpeak B[La] sRPE Sbest Savg Sdec

Shuttle RST ? ? = ↑ ↑ = ↓
Two more repetitions = = = = ↑ = =
10 m longer distance = ↑ ↑ = * * ↑
Active rest = ↑ ? = ↑ = ↓ ↓ = ↑
10 s longer rest = ↓ = ↓ ↓ ↓
Acute demands based on meta-analytic inferences and compared with the reference protocol of 

6 m × 30 m straight-line sprints with 20 s passive inter-repetition rest
Symbols: ‘=’ indicates ‘trivial’, ‘↑’ substantial increase’, ‘↓’ indicates a ‘substantial decrease’, ‘= ↓’ 

indicates ‘compatibility with both a trivial and substantial decrease’, ‘= ↑’ indicates ‘compatibility with 
both a trivial and substantial increase’, ‘?’ indicates ‘inconclusive’ and ‘*’ indicates that the effects 
were not evaluated. Note: a decrease in Sbest and Savg indicates that sprint times are faster

RST repeated-sprint training, HRpeak peak heart rate, B[La] blood lactate, sRPE session ratings of per-
ceived exertion, Sbest best sprint time, Savg average sprint time, Sdec percentage sprint decrement
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and  HRpeak close to maximal after six repetitions, further 
pursuing small increases in these acute physiological out-
comes by performing more repetitions does not seem worth-
while. Our meta-analytic estimates show that the effects 
of performing two more repetitions per set was trivial on 
all outcome measures except Sbest, which was compatible 
with both trivial and substantial effects (Fig. 10). There-
fore, other programming factors appear to have a greater 
effect on physiological, perceptual and performance out-
comes. Crude estimation of the number of additional sprints 
required for the point estimate of each outcome measure to 
equal the minimum practically important difference reveals 
an unrealistic and impractical expectation. For example, the 
number of additional repetitions needed to increase sRPE 
by a one-unit scale change in our data is ten (i.e. 16-repeti-
tions per set in total). This increase in volume and the neu-
romuscular demands of high repetition sets (greater than ten 
repetitions) may induce excessive muscle damage [33–35, 
123]. Moreover, large numbers of repetitions can result in 
‘pacing’ strategies that influence the maximal nature of RST 
and accumulated fatigue reduces the effectiveness of later 
sprints [132]. This is supported by our findings that show a 
Sdec of 1.2% would be expected to occur in studies (groups) 
performing 6 more repetitions (i.e. 12-repetitions per set in 
total) [77]. Therefore, excessive numbers of sprint repeti-
tions can exacerbate fatigue and cause sub-optimal perfor-
mance during RST.

Lower numbers of repetitions per set (e.g. greater than six 
repetitions) may be a more effective programming approach 
during competition periods to reduce training volume while 
still providing a potent physiological stimulus and allow-
ing for the quality of each repetition to be maintained. In 
this regard, the trivial reduction expected in each outcome 
measure when performing four versus six repetitions may 
be beneficial, when viewing from a risk-reward perspective. 
However, a one-size-fits-all approach regarding the RST pre-
scription for team sport athletes can lead to some athletes 
being under-stimulated, while others can be overloaded, 
depending on the athletes’ speed and fitness profile [133, 
134]. When the number of repetitions performed is fixed, 
there is considerable inter-individual variation in the degree 
of fatigue experienced across the same group of athletes 
[48]. This can be incurred despite two athletes having simi-
lar maximal aerobic speeds but different maximal sprinting 
speeds (i.e. differences in anaerobic speed reserve) [134, 
135]. In our review, all studies, except one [57], prescribed a 
fixed number of repetitions. However, in the study by Aken-
head et al. [57] the level of relative sprint decrement (5%) 
was prescribed with a ‘flexible’ repetition scheme, which 
allowed more control over the magnitude of fatigue accrued 
by all participants. By prescribing a level of relative sprint 
decrement or relative performance threshold, instead of a 
fixed number of repetitions, practitioners can individualise 

RST prescription. This could provide practitioners with the 
ability to autoregulate training load based on differences in 
physical capacities and fluctuations in prior fatigue.

4.3  Sprint Distance

A sprint distance of 30 m was most implemented (n = 107 
protocols, 38%), which is longer than the average sprint 
distance typically observed during field-based team-sports 
competitions (15–25 m) [136]. Additionally, 40 m was the 
longest sprint distance prescribed (n = 74, 26%). This dis-
tance is commonly used as a proxy measure of maximal 
speed in team sport athletes [137, 138], as it can allow maxi-
mal velocity to be reached when it is applied in a straight-
line format. Furthermore, both 30 m and 40 m were often 
implemented as a shuttle format, with one to two changes 
of direction. A distance of 14 m was the shortest sprint 
effort prescribed, represented in two protocols [139], while 
15 m was prescribed in 11 (4%) protocols. Compared with 
longer sprints (> 30 m), these shorter distances emphasise 
the acceleration phase of sprinting and were often applied 
with court-based athletes (i.e. basketball and handball) [122, 
139–141]. Shorter distances may better reflect the competi-
tive environment of court-based team sports where players 
are engaged in sprint efforts of 15 m and less [119, 142, 
143].

Despite the prevalence of studies implementing a sprint 
distance of 30 m, altering the distance of each sprint effort 
by 10 m had the largest moderating effect on B[La] (substan-
tial increase), Sdec (substantial increase [more pronounced 
decline in sprint times]) and  HRpeak (compatible with a triv-
ial and substantial increase). Longer sprints increase phos-
phocreatine (PCr) depletion and glycolytic activity, while 
also resulting in an increased accumulation of metabolic 
by-products (e.g. hydrogen ions, inorganic phosphate) [1, 
136]. Furthermore, longer sprints provide exposure to faster 
absolute running speeds and higher vertical ground reaction 
forces that are attained via upright running mechanics [144, 
145]. This is compared with shorter distances, where the 
athlete spends a high proportion of time in the acceleration 
phase, resulting in a greater horizontal propulsive force, but 
smaller braking force [144, 145]. Consequently, there can 
be a greater strain on the musculoskeletal system during 
longer sprints [146–148]. This is evident through greater 
declines in sprint kinematics (i.e. vertical stiffness and centre 
of mass vertical displacement) when longer sprint distance 
(35 m versus 20 m) was prescribed in two studies that inves-
tigated spring-mass model characteristics [54, 149]. Despite 
a greater physiological and neuromuscular demand imposed 
by longer sprints, the effect of a 10 m longer sprint on sRPE 
was trivial (Fig. 6). This suggests that greater distances can 
be prescribed without inducing a practically substantial 
increase in perceived exertion.
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When beginning a RST program, shorter distances 
(15–25 m) are a more conservative option that can be used 
to limit metabolic stress and neuromuscular strain. It may 
also be beneficial to prescribe shorter distances during 
maintenance/taper sessions or for athletes who may never 
be exposed to longer sprints during competition (e.g. court-
based athletes, goalkeepers). Training progression and over-
load can then be achieved by gradually increasing distance 
(> 30 m) with a view to expose athletes to faster absolute 
running speeds, greater fatigue and a high physiological 
demand. This could be implemented during preparation 
phases before commencing high-intensity training drills 
and match-play, or during late-stage return to play follow-
ing injury.

4.4  Inter‑repetition Rest Duration

There was considerable heterogeneity in the distribution 
of inter-repetition rest duration across the protocols, which 
ranged from 10 to 60 s. This was partly due to differences in 
the approach to rest prescription, whereby pre-determined 
times, time-cycles and work-to-rest ratios were all employed 
in different literature. A 10 s rest duration was prescribed 
in 11 (4%) protocols, but such short rest may make it dif-
ficult for athletes to safely decelerate and make it back to 
the start-line in time for the next sprint. The most common 
rest durations were 20 s and 30 s, represented in 83 (29%) 
and 67 (24%) protocols, respectively. These rest durations 
are similar to the amount of recovery time typically afforded 
between sprints during team sport competition [129, 130]. 
A 60 s rest duration was implemented in 9 (3%) protocols.

Shorter rest times (e.g. 10 s versus 20 s) are associated 
with slower sprint times, greater performance fatigue and 
an increased metabolic response. Additionally, shorter rest 
may lead to greater decrements in CMJ height following 
RST [150]. Inversely, longer inter-repetition rest times (e.g. 
30 s vs 20 s) have a substantial influence on the reduction of 
B[La] and allow for sprint performance to be better main-
tained across a set (i.e. faster Savg and lower Sdec). This is 
likely due to greater clearance of metabolic by-products and 
increased PCr resynthesis [1, 121]. An interesting finding 
of our study was that a 10-s longer inter-repetition rest had 
a trivial effect on  HRpeak and sRPE. Longer inter-repetition 
rest may allow athletes to perform each repetition with 
greater speed [151] and reduce the desire for pacing. Fur-
thermore, longer rest would be expected to increase set dura-
tion, thereby allowing both heart rate and VO2 to increase 
with time [86, 106, 122]. It is possible, however, that the 
cardiorespiratory demand could be blunted if prolonged rest 
times (e.g. 60 s) are implemented. This was demonstrated 
in a group of well-trained university students where VO2 
was 9% less when 60-s rest times were used during RST, 
compared with 30 s rest [151].

Collectively, our findings support the use of longer rest 
durations (≥ 30 s) to reduce within session fatigue and main-
tain repetition quality. Longer rest times could therefore be 
implemented during periods of fixture congestion to reduce 
player fatigue during RST, or used during the intensifica-
tion stage of a pre-season to maximise sprint performance 
[19]. Additionally, longer rest times are recommended 
when longer sprint distances are prescribed, which can help 
account for the extended work duration of these sequences. 
However, longer rest durations reduce the metabolic demand 
of RST, which could limit certain physiological adaptations 
(e.g. maximal accumulated oxygen deficit, changes in glyco-
lytic enzymes) [28, 152] and performance in activities that 
require a substantial anaerobic component [19]. Therefore, 
shorter rest durations (≤ 20 s) can be prescribed to induce 
greater levels of fatigue, which could help prepare team-
sport athletes for peak periods of a match, where sprint 
efforts can be interspersed with minimal rest [129, 130].

4.5  Inter‑repetition Rest Modality

There were a higher number of protocols that implemented 
passive inter-repetition rest (n = 186, 66%), as opposed to 
an active rest period (n = 96, 34%). Active recovery pro-
tocols were commonly combined with inter-repetition rest 
durations of ≥ 25 s. Most protocols that prescribed an active 
recovery involved a slow jog at pre-defined running speeds 
(e.g. 2 m⋅s−1) or self-selected speeds, which were often 
returning to a one-way start line. Other active recovery pro-
tocols implemented faster running speeds such as 8 km⋅h−1 
[23, 118] and 50% of maximal aerobic speed [24, 86, 153, 
154]. When these faster running speeds were prescribed, 
the physiological demands (i.e. heart rate, VO2, B[La]) were 
amplified and there was a greater Sdec compared with passive 
rest and active rest performed at a slow jog [24, 153–155]. 
Repeated jumps were performed during the inter-repetition 
rest period in two studies [59, 156], which increased the car-
diorespiratory and muscular demands [59, 156]. However, 
the internal demands are likely to be more varied compared 
with a precise running intensity.

The findings of our meta-analysis suggest that active rest 
may cause a substantial increase in  HRpeak (Fig. 4), sRPE 
(Fig. 6) and Sdec (Fig. 14), although we acknowledge that 
these effects are also compatible with trivial values (i.e. 
there could be no substantial influence). Active recovery 
limits the oxidative potential for PCr resynthesis before each 
sprint, which affects the maintenance of muscle power [24, 
133, 150]. This leads to greater declines in anaerobic work 
capacity and subsequently, repeated-sprint performance. On 
the contrary, passive recovery is associated with an enhanced 
PCr resynthesis and as our results confirm, a smaller Sdec 
[157, 158]. While there were no substantial differences 
in B[La] (Fig. 8), our meta-analysis does not consider the 
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intensity of the recovery period, which ultimately deter-
mines the extent of the acute demands [59, 153, 157].

The prescription of active recovery might amplify 
the physiological and perceptual demands to RST, as well 
as performance decrement, without increasing the sprint 
volume. This could be achieved, for example, by prescrib-
ing active recovery at an intensity of ≥ 50% maximal aero-
bic speed. It would be practical to implement this with a 
standardised recovery-run distance and rest durations of 
≥ 25 s to allow the athlete to gradually decelerate from the 
sprint component into the recovery running speed. Yet, once 
again, acknowledging that the influence of active recovery 
on  HRpeak, sRPE and Sdec were compatible with both trivial 
and substantial effects, we advise practitioners to place more 
emphasis on recovery duration for manipulating RST acute 
demands at present. For this reason, future research should 
examine the effects of specific active recovery intensities on 
RST physiological, perceptual, neuromuscular and perfor-
mance demands.

4.6  RST Protocols with Additional Modifications

The use of additional modifications to RST can be applied 
to augment or attenuate internal demands. Short enforced 
deceleration zones (< 10 m), which were prescribed in two 
studies [33, 78], reduce sprint performance and exacerbate 
the magnitude of muscle damage due to the large eccentric 
forces applied during rapid braking, which is further accen-
tuated when higher numbers of repetitions are performed. 
Gradual deceleration zones (> 10 m) are therefore recom-
mended to mitigate undue muscular damage. Performing 
repeated jumps within the inter-repetition rest period may be 
an effective strategy to induce a greater physiological stimu-
lus during RST, while exposing athletes to sport-specific 
actions, without an increase in the volume of high-intensity 
running [59, 156]. When jumps were prescribed in studies 
by Buchheit et al. [59] and Padulo et al. [156], very high 
B[La] (10.2–13.1 m⋅mol−1),  HRpeak (96%–97% heart rate 
max) and sRPE (7.9–8.0 au) were observed. The additional 
muscular work performed during the recovery period with 
jumps has previously been shown to increase muscle deoxy-
genation of the lower limbs, but it should be noted that these 
sequences are also likely to reduce acute sprint performance 
[59, 156]. Furthermore, with only two studies investigating 
the effects of jumps within the inter-repetition rest period, 
the optimal volume and intensity of these actions are yet to 
be established. There is potential for other modifications to 
be implemented during RST, such as sport-specific skills 
(e.g. passing, shooting), grappling, push-ups and tackling 
into contact bags. These types of explosive efforts typically 
precede or follow high-intensity runs/sprints during match 
play [159–161] and may help to better simulate the physi-
ological demands associated with competition. Furthermore, 

flying sprints that incorporate a submaximal acceleration 
zone may provide exposure to repeated bouts of maximal 
velocity sprinting, without the neuromuscular demands of 
rapid acceleration [162].

4.7  Limitations

There are several important issues to consider when inter-
preting our findings. Depending on the outcome measure, 
a proportion of the variation in the meta-analysed acute 
demands of RST can be explained by factors other than 
the programming variables investigated (Supplementary 
Table S4). Factors directly related to individual differences 
in human physiology have been shown to influence the acute 
demands to RST, such as age [36, 100, 101, 111, 163–166], 
fitness level [167], playing status [46, 168–174], gender 
[131, 139, 175, 176] and ethnicity [177]. Furthermore, a 
proportion of the variation in the acute demands may also 
be due to the impact of programming variables not inves-
tigated (e.g. number of sets), as well varied data collection 
methods, conditions and reporting. For example, there are 
inter- and intra-individual differences in B[La] accumulation 
depending on sampling procedures (time and site), hydration 
status, previous exercise and ambient temperature [18, 47, 
178]. Nevertheless, the influence of the latter factors on the 
present review are likely to be low considering that item ten 
in the inclusion–exclusion criteria ensures that RST must 
have been performed under normal conditions (e.g. hydrated 
state, ≤ 30 °C) and without fatiguing exercise occurring in 
the previous 24 h. We also appreciate the concerns of com-
paring CMJ height between different methods and devices 
[179], which is why CMJ outcomes were not meta-analysed.

When interpreting acute heart rate and VO2 responses to 
training, it is important to consider the starting value at the 
commencement of exercise, which will influence the magni-
tude of change. However, the majority of studies did not pre-
sent this information, and thus, we were unable to account 
for this in our analyses. Additionally, there was an insuffi-
cient number of samples to determine the moderating effects 
of programming variables on average heart rate and VO2. 
There was also a low number of samples for  HRpeak as % 
 HRmax, creatine kinase, spring mass-model parameters and 
sprint force–velocity–power parameters, which meant we 
were unable to meta-analyse these outcomes. Therefore, in 
future, researchers may wish to investigate the effects of RST 
on these outcomes. Finally, it should be noted that while our 
elected reference adjustments of 10 m and 10 s allow for 
comparison between sprint distance and inter-repetition rest 
time, respectively, this will not always represent the same 
relative change (i.e. an increased sprint distance from 10 m 
to 20 m represents a 100% change, while 30 m–40 m rep-
resents a 25% change). Therefore, this information should 
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be treated with caution and used within the context of the 
programmed session.

5  Conclusions

Our systematic review and meta-analysis is the first to sum-
marise the acute physiological, neuromuscular, perceptual 
and performance demands of RST in team sport athletes, 
while providing a quantitative synthesis of the effects of pro-
gramming variables. RST provides a potent physiological 
stimulus for the physical development of team sport ath-
letes, with the magnitude of the acute demands influenced 
by several programming variables (Table 4). Longer sprint 
distances and shorter inter-repetition rest periods are the 
most efficacious strategies to increase RST demands. When 
manipulated in combination, these factors are likely to have 
an even greater effect, from which the magnitude of within-
session fatigue and acute training response can be expected 
to follow. Reducing the number of repetitions per set (e.g. 
four as opposed to six) can maintain the physiological, per-
ceptual and performance demands of RST while reducing 
sprint volume. When combined with shorter sprint distances 
and increased inter-repetition rest periods, this might be a 
useful strategy during strenuous training and competition 
periods [26]. Additionally, straight-line, shuttle and multi-
directional repeated-sprints can be prescribed to target 
movement specific outcomes, depending on the aims of the 
training program. While there is a large quantity of evidence 
relating to acute performance outcomes of RST, there is a 
lack of literature on cardiorespiratory (e.g. VO2) and neuro-
muscular demands. The insights from our review and meta-
analysis provide practitioners with the expected demands of 
RST and can be used to help optimise training prescription 
through the manipulation of programming variables.
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