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Abstract
Background Multiple factors influence substrate oxidation during exercise including exercise duration and intensity, sex, and 
dietary intake before and during exercise. However, the relative influence and interaction between these factors is unclear.
Objectives Our aim was to investigate factors influencing the respiratory exchange ratio (RER) during continuous exercise 
and formulate multivariable regression models to determine which factors best explain RER during exercise, as well as their 
relative influence.
Methods Data were extracted from 434 studies reporting RER during continuous cycling exercise. General linear mixed-
effect models were used to determine relationships between RER and factors purported to influence RER (e.g., exercise 
duration and intensity, muscle glycogen, dietary intake, age, and sex), and to examine which factors influenced RER, with 
standardized coefficients used to assess their relative influence.
Results The RER decreases with exercise duration, dietary fat intake, age,  VO2max, and percentage of type I muscle fibers, 
and increases with dietary carbohydrate intake, exercise intensity, male sex, and carbohydrate intake before and during exer-
cise. The modelling could explain up to 59% of the variation in RER, and a model using exclusively easily modified factors 
(exercise duration and intensity, and dietary intake before and during exercise) could only explain 36% of the variation in 
RER. Variables with the largest effect on RER were sex, dietary intake, and exercise duration. Among the diet-related factors, 
daily fat and carbohydrate intake have a larger influence than carbohydrate ingestion during exercise.
Conclusion Variability in RER during exercise cannot be fully accounted for by models incorporating a range of participant, 
diet, exercise, and physiological characteristics. To better understand what influences substrate oxidation during exercise fur-
ther research is required on older subjects and females, and on other factors that could explain additional variability in RER.
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1 Introduction

Energy production during continuous, submaximal exercise 
comes primarily from the oxidation of fat and carbohydrate. 
The respiratory exchange ratio (RER) represents an indirect 
measure of the skeletal muscle respiratory quotient (RQ)—
the quantity of  CO2 produced in relation to  O2 consumed 
[1]. The RER can be used to estimate the relative contri-
butions of fat and carbohydrate to energy production with 
higher values equating to increased carbohydrate reliance 
and lower values representing increased fat reliance [2]. Sev-
eral factors are known to influence the RER during exercise 

including exercise duration [3], exercise intensity [4], train-
ing status [5], sex [6], dietary intake [7–9], the pre-exercise 
meal [10, 11], and carbohydrate ingestion during exercise [3, 
12]. However, the relative influence and interaction between 
these factors is unclear. For example, RER decreases with 
exercise duration (i.e., increased reliance on fat oxidation), 
but increases with exercise intensity and carbohydrate intake 
[13], leaving the net effect on RER unclear when multiple 
factors are being manipulated. Therefore, a better under-
standing of the factors influencing RER during exercise is 
needed.

The ability to effectively oxidize fat for fuel, represented 
by a lower RER, is important for metabolic health [14] and 
long-duration exercise performance [15, 16], and many 
athletes attempt to manipulate substrate oxidation during 
exercise as part of a periodized nutrition and training plan 
[17, 18]. However, managing substrate oxidation during 
exercise is challenged by the influence of both modifiable 
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Key Points 

Several factors are known to influence substrate oxida-
tion during exercise, but the effect of simultaneously 
modulating multiple factors on the respiratory exchange 
ratio (RER) is unclear.

Factors known to influence substrate oxidation during 
exercise, such as exercise duration and intensity, age, 
sex, fitness level, muscle glycogen, and daily dietary 
intake, together explain ~ 59% of the variation in RER 
during exercise.

The easily measured and easily modifiable factors related 
to exercise such as exercise duration and intensity, daily 
macronutrient intake, and pre- and peri-exercise carbo-
hydrate intake, can only explain roughly one-third of the 
variation in RER during exercise. This suggests most 
of what dictates RER during exercise cannot be easily 
controlled on a daily basis.

found the most important factors influencing RER during 
endurance exercise were mitochondrial enzyme activity, 
muscle glycogen and triglyceride concentrations, dietary 
fat intake, training volume, and free fatty acid concentra-
tions, which collectively explained 42–56% of the variation 
in RER during exercise. Distinct from RER, others have 
studied the determinants of maximal fat oxidation rates 
and found 34–79% of the variance was related to factors 
such as maximal oxygen consumption (VO2max), sex, body 
composition, physical activity level, dietary macronutrient 
intake, resting fat oxidation, and fasting duration [20–24]. 
To our knowledge, the relative influence of the modifiable, 
easily measured factors influencing RER during exercise 
(e.g., dietary intake before and during exercise, exercise 
duration, and exercise intensity) has yet to be established. 
Using multivariable regression models, it would be possible 
to account for multiple factors influencing RER during exer-
cise and predict the response under various circumstances. 
Therefore, the purpose of this analysis was to investigate 
factors influencing the RER during cycling exercise and for-
mulate regression models to determine which factors best 
explain RER during exercise, their relative influence, and 
the result of multiple variables being modulated simultane-
ously. To this end, we performed the largest pooled analy-
ses to date (~ 3400 RER observations) of studies examin-
ing substrate oxidation during exercise and provide novel 
insight into the factors influencing fuel selection during 
endurance exercise.

Table 1  Factors influencing 
respiratory exchange ratio 
(RER) during exercise and ease 
of day-to-day modification and 
measurement

CHO carbohydrate, VO2max maximal oxygen consumption

Easily measured Not easily measured

Easily modified Exercise duration [3, 12]
Exercise intensity [5]
Dietary CHO and fat intake [25]
Pre-exercise CHO intake [26]
CHO during exercise [3, 12]
Type of CHO consumed [27]
Energy balance [28]
Pre-exercise meal timing [29]
Cycling cadence [30]

Muscle glycogen [19, 25]
Muscle triglycerides [19]
Hydration status [31]
Glycemic index [32]

Not easily modified Age [33]
Training age [34]
Training volume [19]
Sex [6]
Menstrual phase [35] and status [36]
Fitness level/VO2max [5, 37]
Ventilatory/lactate thresholds [34]
Plasma lactate [19]
Fasting/resting RER [19]
Body composition [38]
Environmental temperature [39]
Altitude [40]

Type I muscle fiber per-
centage [19, 30]

Mitochondrial enzymes/
proteins [19]

Plasma free fatty acids 
[19]

Genetic variation [41]
Habitual physical activity 

levels [22]
Catecholamines [42]

and non-modifiable factors, which may or may not be eas-
ily measured (Table 1). Previous studies have investigated 
factors influencing substrate oxidation, but none have con-
sidered variables often manipulated by athletes such as the 
duration or intensity of exercise, the pre-exercise meal, or 
carbohydrate ingestion during exercise. Goedecke et al. [19] 
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2  Methods

2.1  Eligibility Criteria

2.1.1  Inclusion Criteria

Studies of healthy adult (> 18 years of age) humans were 
included for analysis. Only studies using two-legged cycling 
exercise were included, due to differences in substrate utiliza-
tion between cycling and running [43, 44]. Cycling had to be 
continuous, for at least 5 min in duration and performed at 
a single exercise intensity. If there were changes in exercise 
intensity, only the first intensity was included [45–49]. Studies 
must have been performed in a normoxic, temperate environ-
ment (15–25 °C), and subjects must not have performed any 
exercise within 12 h of the trial due to the influence of prior 
exercise on substrate oxidation [50, 51].

2.1.2  Exclusion Criteria

Participants could have any physical activity level, but peo-
ple with metabolic disorders were excluded. Children and 
teenagers were excluded due to differences in substrate uti-
lization compared with adults [52]. Studies using a pre-exer-
cise fasting period > 15 h were excluded to maximize gen-
eralizability and practical application. Both fixed-duration 
and time-to-exhaustion trials were included, but time trials 
were excluded due to the variability of pacing and intensity.

2.2  Search Strategy

A PubMed search was performed on 30 April 2021 and 
included all publication years up to and including the date the 
search was conducted, using the following terms: (cycling OR 
endurance OR exercise OR "prolonged exercise") AND (car-
bohydrate) AND ("fat oxidation" OR metabolism OR "muscle 
glycogen" OR "oxygen uptake" OR "substrate oxidation" OR 
"substrate utilization" OR "carbohydrate oxidation" OR "energy 
expenditure" OR "skeletal muscle" OR "substrate metabolism” 
OR “respiratory exchange ratio”) AND (clinical trial [Filter] 
OR randomized controlled trial [Filter] NOT (diabetes) NOT 
(running) NOT (treadmill) NOT (resistance). In addition, the 
reference sections of studies included in this analysis were 
searched. The titles, abstracts, and full-text articles were inde-
pendently screened by the lead author (JR). A second author 
(DJP) was consulted if there was uncertainty about article eli-
gibility. The rationale for excluding articles was documented.

2.3  Data Extraction

The following data were extracted from papers meeting 
the above criteria: RER, duration (min), exercise intensity 

(%VO2max), sex (% female subjects), daily carbohydrate and 
fat intake (as percentage of energy intake, and as grams 
ingested in total and relative to body mass), carbohydrate 
and fat intake 4 h pre-exercise (g), number of minutes before 
exercise food was consumed, carbohydrate ingestion during 
exercise (hourly intake rate as well as the drink composi-
tion as percentage glucose, fructose, and other carbohy-
drate sources), starting and ending muscle glycogen levels 
(mmol·kg−1 dry mass), age (y), training age (y), percentage 
of type I muscle fibers, body mass index (BMI), VO2max 
(mL·kg·min−1), glycemic index of the pre-exercise meal, 
sample size, and study ID.

The RER had to be reported at multiple time points for 
exercise lasting longer than 30 min, and/or consist of no 
more than a 30-min average value. When reported at multi-
ple time points each value was recorded as a separate data 
point. Substrate oxidation reported in grams per minute was 
converted to an RER value using equations from Jeukendrup 
and Wallis [1]. Exercise intensity had to be reported or be 
able to be calculated as a percentage of VO2max. Sex was 
analyzed as a categorical variable, with the study population 
considered “male” or “female” if ≥ 70% of subjects were of 
one sex, and “mixed” if the split was 30–70%. A categorical 
variable was created for type of ingestion during exercise 
and included carbohydrate, fat, protein, water, carbohydrate 
and protein, and carbohydrate and fat.

Muscle glycogen concentrations before, during, and after 
exercise were recorded when determined using whole mus-
cle (not fiber-type specific), from muscle biopsies (excluding 
non-invasive measures such as magnetic resonance spec-
troscopy). Biopsies must have been performed before and 
within 30-min post exercise. For studies that took a resting 
biopsy before providing pre-exercise carbohydrate, starting 
glycogen concentrations were only recorded for the placebo/
control group but ending glycogen levels were recorded for 
all groups [53, 54]. Studies that depleted glycogen in only 
one leg prior to an exercise trial were excluded. The con-
version factors of Areta and Hopkins [55] were used when 
glycogen values were reported in units other than mmol·kg−1 
dry mass.

When studies included multiple groups, data were used 
if the interventions included factors that were accounted 
for in the analysis (e.g., differences in carbohydrate inges-
tion, exercise intensity, or sex) but only the control/placebo 
groups were used if the intervention arm included a variable 
not analyzed such as the use of heparin [56, 57], estrogen 
[58, 59], glucose infusion [60, 61], caffeine [57], alcohol 
[62], or various dietary supplements [47, 63–74]. Studies 
that provided protein or fat during exercise were included 
due to the minimal influence of protein [75–78] or fat [11, 
79–84] ingestion on RER, although it is possible that RER 
values may be less reliable under conditions of increased 
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gluconeogenesis, lipogenesis, or ketogenesis [1, 85]. Inter-
ventions that used 5–6 days of a high-fat diet followed by 
24-h carbohydrate restoration were excluded due to persist-
ing effects of the high-fat diet on RER [86–91].

2.4  Statistical Approach

To find the factors that best explain RER as well as focus on 
the influence of modifiable and easily measured variables, 
multiple mixed-effect models were created. All available 
variables were initially modelled, before focusing specifi-
cally on easily measured variables (i.e., excluding glycogen 
concentration and muscle fiber type but including age, sex, 
and VO2max), and those that are both easily measured and 
easily modified, due to the strong emphasis placed by ath-
letes and coaches on the influence of carbohydrate consump-
tion on fat oxidation [18, 92].

Univariable regression analysis was first performed 
between variables of interest and RER, and the best-fit 
regression line (linear or polynomial) was established using 
the likelihood ratio test. Because data points were collected 
at multiple time points during exercise in each study, the 
assumption of independence of residuals is violated. There-
fore, we built general linear mixed-effect models to examine 
how each individual factor was related to RER, specifying 
study ID as a random intercept using the lme4 R package 
[93], and report the marginal  R2, which describes the pro-
portion of variance explained by only the fixed effect.

We then built general linear mixed-effect models to 
examine which factors were related to RER, with study ID 
again specified as a random intercept. The following fixed 
effects were tested: starting muscle glycogen, end-exercise 
muscle glycogen, exercise duration (min), exercise intensity 
(%VO2max), daily carbohydrate and fat intake (as percentage 
of energy intake, total g, and g per kg body mass), carbohy-
drate and fat intake within 4 h of exercise (g), minutes before 
exercise carbohydrate was consumed, carbohydrate intake 
during exercise (g  h−1), percentage of glucose and fructose 
in drinks ingested during exercise, ingestion type during 
exercise (as a categorical variable), fitness level (VO2max), 
age, sex, and percentage of type I muscle fibers. Interactions 
between RER and other fixed effects were explored, and the 
optimal, best-fitting model was decided based on the likeli-
hood ratio test. The fit of each model was checked by visual-
izing the Q–Q and other residual plots to ensure approximate 
residual normality and heteroscedasticity, and outliers were 
removed based on a composite outlier score using the per-
formance R package. Multicollinearity was assessed using 
the variance inflation factor (VIF), with values > 5 used to 
indicate excessive collinearity [94]. Model fit is reported 
as marginal R2 as well as conditional  R2, which describes 
the proportion of variance explained by both the fixed and 
random effects [95], and root mean square error (RMSE). 

Estimated means were calculated using the emmeans pack-
age [96]. Descriptive statistics are provided as mean ± SD. 
All analyses were carried out with R version 4.0.3 (The R 
foundation for Statistical Computing, Vienna, Austria), with 
the level of significance set at p < 0.05.

3  Results

3.1  Included Studies

The database search yielded a total of 8052 results. Following 
the removal of 63 duplicates, 7989 titles and abstracts were 
screened. A total of 784 full-text articles were screened for eli-
gibility, and data were extracted from 434 studies that met the 
inclusion criteria. Due to the large influence of daily macro-
nutrient intake on RER, all multivariable models included 
daily dietary intake as a variable. Consequently, studies not 
reporting dietary intake during the 24 h prior to exercise were 
excluded from all multivariable models. Therefore, the uni-
variable analysis includes data from 434 studies (3498 RER 
observations) whereas the multivariable models contained 
data from 106 studies, which included 1,221 participants 
(21.2% female, mean age 26.5 ± 5.5 years, range 19–52 years, 
BMI 23.2 ± 1.3 kg/m2, VO2max 53.6 ± 9.6 mL  kg−1  min−1) and 
1104 RER observations, noted fully in the Online Supplemen-
tal Material (OSM).

3.2  Correlations

Relationships between RER and the primary factors influ-
encing it are shown in Fig. 1. Regression lines and  R2 
values are shown, with the best-fit lines for daily carbo-
hydrate intake, starting glycogen, pre-exercise carbohy-
drate intake, carbohydrate ingestion during exercise, age, 
percentage of type I muscle fibers, and exercise intensity 
being curvilinear. For age, the available data shows a nega-
tive relationship with RER below age 50 years and positive 
relationship above age 50 years (Fig. 1g). However, data 
points above age 52 years could not be used in the multi-
variable modelling due to unreported dietary intake, there-
fore the models only reflect a negative relationship. A sig-
nificant positive relationship was also found between RER 
and the glycemic index of the pre-exercise meal (R2 = 0.08, 
p < 0.001), but the small number of studies reporting this 
measure (n = 10) precluded its use in the models and thus 
is not shown. The relationship between exercise duration 
and RER is shown in Fig. 2, stratified by the type of inges-
tion during exercise. Limited comparisons can be made 
relating to the effect of each type of nutrient ingestion due 
to the limited number of data points for some of the varia-
tions, but are shown to demonstrate the available data and 
observable trends.
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3.3  Models

The best fitting models are shown in Table 2, with the 
fixed effects explaining up to 59% of the variation in RER. 
The models show RER decreases with exercise duration, 
dietary fat intake, age, and VO2max, and increases with 
dietary carbohydrate intake, exercise intensity, male sex, 
and carbohydrate intake before and during exercise. Model 
I, which explains the greatest amount of variance in RER, 
includes 322 RER observations. Models II (easily meas-
ured factors) and III (easily modified factors, for males and 
females separately) contain more observations but explain 
a lower proportion of the variation in RER. To visualize 
the relative influence of each variable, standardized model 
coefficients are shown in Fig. 3. Additionally, a model that 
included the percentage of type I muscle fibers was also 

made, which explained 56% of the variation in RER, and 
included daily carbohydrate intake, carbohydrate inges-
tion during exercise, and exercise intensity (not shown). 
However, other factors such as sex could not be included in 
the model with muscle fiber type due to the completeness 
of available data. Overall, variables with the largest influ-
ence on RER are sex and exercise duration, and among 
the diet-related factors, daily fat and carbohydrate intake 
has a larger influence than carbohydrate ingestion during 
exercise.

3.4  Predictions

To visualize the interaction and convergence of multiple 
factors influencing RER during exercise, estimated mar-
ginal means from Model I are shown in Fig. 4 in various 
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Fig. 1  Relationships between respiratory exchange ratio (RER) and 
factors influencing RER. Best-fit regression lines based on univari-
able mixed effect models are shown, with fit indicated as R2. Best-fit 
lines using linear regression are shown in green, best-fit lines using 

polynomial regression and are shown in red. Panel (g) is separated by 
the natural gap in the data of mean age > or < 50 years. Shaded areas 
represent 95% confidence intervals. CHO carbohydrate, DM dry mass
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combinations. The standard error of the estimated means, 
across the range of values for each fixed effect in Model 
I, are shown in Fig. 5. This represents the confidence 
in the predicted values shown in Fig. 4, and how this 

confidence changes depending on the value of the fixed 
effect. When more data points are involved in the calcu-
lation of the mean, it tends to lead to smaller standard 
errors. Therefore, this provides an indication of where the 
most research has been performed, for each of the vari-
ables studied. The value with the lowest standard error is 
shown in each panel. For the interested reader, an online 
app has been created to allow exploration of the data and 
predict RER based on the data used in this analysis [97].

4  Discussion

The purpose of this analysis was to investigate factors influ-
encing the RER during cycling exercise, understand their 
relative influence, and determine how RER is affected 
when multiple variables are modulated simultaneously. 
This knowledge is important for athletes and coaches/prac-
titioners who wish to manipulate substrate oxidation dur-
ing exercise. The key findings are that exercise duration and 
intensity, age, sex, fitness level, muscle glycogen, and daily 
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Fig. 2  Relationship between respiratory exchange ratio (RER) and 
exercise duration separated by type of ingestion during exercise. Best-
fit regression lines based on univariable mixed effects models are 
shown for each ingestion type during exercise, with fit indicated as R2 
and p value. CHO carbohydrate

Table 2  Models to explain variation in respiratory exchange ratio (RER) during submaximal cycling

Linear coefficients, their corresponding p values (in parentheses), marginal R2 (variance explained by the fixed factors alone), conditional R2 
(variance explained by both the fixed and random effects), root mean square error (RMSE), number of studies (k), and number of observations 
included in the best-fitting linear mixed models to explain RER during exercise using different factors
a (1) and (2) refer to the polynomial terms for starting glycogen

Variable Model I Model II (easily 
measured factors 
only)

Model III (easily modified 
factors only—males)

Model III (easily 
modified factors only—
females)

Starting glycogen (mmol  kg−1 dry mass) 0.0001 (< 0.001)
Daily CHO intake (g  kg−1  day−1) 0.0058 (< 0.001) 0.0038 (< 0.001) 0.0105 (< 0.001)
Daily fat intake (g  kg−1  day−1) − 0.0179 (< 0.001) − 0.0129 (< 0.001) − 0.0172 (< 0.001) 0.0004 (0.962)
Pre− exercise (< 4 h) CHO intake (g) 0.0004 (< 0.001) 0.0002 (< 0.001) 0.0002 (< 0.001) 1.3e−05 (0.852)
CHO during exercise (g  h−1) 0.0003 (< 0.001) 0.0007 (< 0.001) 0.0002 (< 0.001) − 0.0003 (0.043)
Duration (min) − 0.0006 (< 0.001) − 0.0004 (< 0.001) − 0.0004 (< 0.001) − 0.0005 (< 0.001)
Intensity (%VO2max) 0.0015 (< 0.001) 0.0008 (< 0.001) 0.001 (< 0.001) − 0.0014 (0.030)
Sex (male) 0.0158 (0.104) 0.0328 (< 0.001)
Age (y) − 0.0039 (0.037) − 0.0012 (0.030)
Fitness level (VO2max) − 0.0013 (< 0.001)
Duration × starting glycogen (1)a − 0.0003 (0.757)
Duration × starting glycogen (2)a − 0.0021 (< 0.001)
Duration × CHO during exercise 6.0e−07 (0.191) 4.5e−07 (0.119) 1.4e−05 (< 0.001)
Sex × CHO during exercise − 0.0004 (< 0.001)
Duration × sex 0.0003 (0.024)
Intercept 0.859 0.912 0.843 0.924
 Marginal R2 0.59 0.39 0.36 0.29
 Conditional R2 0.90 0.85 0.86 0.95
 RMSE 0.018 0.018 0.018 0.013
 k 30 99 92 18
 Observations 322 1039 903 163
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dietary intake together explain ~ 60% of the variation in RER 
during exercise, indicating a large influence of additional 
factors, and that daily dietary intake has a larger influence 
on RER than carbohydrate ingested during exercise. Addi-
tionally, the biggest relative determinants of RER during 
exercise are sex and exercise duration, with pre-exercise 
carbohydrate intake and daily fat intake also identified as 
main determinants.

To our knowledge, this is the first large-scale attempt 
to analyze the determinants of substrate oxidation during 
exercise using modifiable factors such as exercise inten-
sity, exercise duration, and dietary intake before and during 
exercise. Goedecke et al. [19] found mitochondrial enzyme 
activity, muscle glycogen and triglyceride concentrations, 
dietary fat intake, training volume, and free fatty acid con-
centrations collectively explained 42–56% of the variation in 
RER during exercise. Others have studied the determinants 
of maximal fat oxidation rates and found 34–79% of the 
variance was related to factors such as VO2max, sex, body 

composition, physical activity level, 4-day dietary intake, 
resting fat oxidation, and fasting duration [20–24]. However, 
these studies did not consider aspects that are routinely mod-
ulated by athletes such as the exercise duration or intensity, 
or pre- and peri-exercise carbohydrate intake.

4.1  Modifiable Factors

4.1.1  Diet and Starting Glycogen

Our analysis highlights the influence of daily macronutri-
ent intake on RER during exercise, particularly dietary fat 
intake. It is challenging to distinguish between the influ-
ence of dietary carbohydrate and dietary fat intake, as they 
are often manipulated together. However, there are several 
reasons why it can be speculated from our findings that 
daily dietary fat intake may have a greater influence than 
dietary carbohydrate intake on RER during exercise. The 
best-fitting model for RER (Model I) included dietary fat 
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Fig. 3  Standardized coefficients for model parameters. These fig-
ures depict the relative influence each variable has on respiratory 
exchange ratio (RER) during exercise. For clarity, interaction effects 
are not shown. Intensity is exercise intensity as %VO2max. Marginal R2 

denotes the variance explained by the fixed factors alone. CHO car-
bohydrate, k number of studies included. Green bars represent factors 
that increase RER, red bars indicate factors that decrease RER, lines 
indicate 95% confidence intervals
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intake and was not significantly improved by the inclusion 
of dietary carbohydrate intake. Furthermore, RER during 
exercise was decreased more following 5 days of a high-
fat diet, compared with a high-protein diet, when dietary 
carbohydrate was clamped below 20% of energy intake for 
both groups [91]. Although a portion of the increased dietary 
protein intake in that study was likely converted to glucose 
via gluconeogenesis [98], a short-term increase in dietary 
fat can decrease the amount of the active form of pyru-
vate dehydrogenase (PDH) [99], which is the rate-limiting 
enzyme in carbohydrate metabolism. The rate of glycolysis 
appears to play a central role in the regulation of fatty acid 
oxidation [100], and the downregulation of PDH observed 
following 5 days of a high-fat diet is not offset by 1 day of 
high-carbohydrate intake [90]. Taken together, both dietary 

fat and dietary carbohydrate influence RER during exercise, 
but daily dietary fat intake may have a stronger influence.

Bivariate correlations between daily carbohydrate intake 
and RER suggest a curvilinear relationship (Fig. 1b), which 
could imply a diminishing influence of dietary carbohydrate 
on RER past a certain threshold (~ 4 g  kg−1). This is a find-
ing that could be explored in future research to determine if 
there is a threshold for carbohydrate oxidation to occur based 
on demand, without being influenced by limitations from an 
undersupply of carbohydrate, and to investigate the shape of 
the relationship (i.e., linear or curvilinear) between dietary 
carbohydrate intake and PDH activity. However, this could 
also simply reflect fewer data points in the upper ranges of 
daily carbohydrate intake, particularly because the multivari-
able regression models were not improved when including 
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the polynomial term (implying other variables could suf-
ficiently explain the differences in RER).

A non-linear relationship was also found between starting 
muscle glycogen and RER (Fig. 1c), suggesting the influence 
of glycogen on RER could differ based on concentration, or 
could again simply reflect fewer data points at the lower and 
upper ranges. However, unlike daily carbohydrate intake, 
there was significant model improvement when using the 
polynomial term and a significant duration*glycogen inter-
action, which makes sense mechanistically because the rate 
of glycogen breakdown varies with initial concentration 
and is reduced with exercise duration [55]. The correlations 
shown in Fig. 1c and the model predictions shown in Fig. 4c 
and 4d both suggest a leveling off of the influence of starting 
muscle glycogen on RER; however, the precise breakpoint 
where this occurs should be investigated in future research.

Dietary carbohydrate intake increases muscle glycogen 
concentration. Undertaking exercise with higher levels of 
muscle glycogen can increase RER by increasing muscle 
glycogenolysis, but does not influence exogenous carbo-
hydrate oxidation rates [25, 101]. Although it could be 
assumed the influence of the daily carbohydrate intake is 
solely due to changes in starting muscle glycogen concen-
trations, other factors are likely involved such as changes 
in enzyme activity and/or gene expression related to car-
bohydrate and lipid metabolism seen following short-term 
high- and low-carbohydrate diets [102–104]. This notion is 
supported by the persisting effects on RER from 5 to 6 days 
of a high-fat diet followed by 24-h carbohydrate restora-
tion, despite similar starting muscle glycogen concentrations 
[86, 87, 90]. Changes in substrate utilization following two 
weeks of a high-fat diet have also persisted through 3 days 
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of a high-carbohydrate diet [105], but 1 week of a high-
carbohydrate diet abolished the increases in fat oxidation 
observed following a 7-wk high-fat diet [9], indicating the 
approximate time-decay for changes in enzyme activity.

Studies in this analysis reported dietary intake for an aver-
age of 4.5 ± 7.4 (range 1–49) days, but the number of days 
reported did not influence the models. It seems unlikely that 
including only longer-term (habitual) dietary intake would 
have significantly changed the findings, as the decreased 
RER observed on a low-carbohydrate diet was not different 
when tested after 2 days or 2 weeks [106], or after 5 days 
and 15 days [107]. However, diets with extreme short-term 
variation (e.g., 5–6 days of a high-fat diet followed by 24-h 
carbohydrate restoration [86–91]) are known to have lin-
gering effects on RER and were therefore excluded from 
the analysis. Accuracy of dietary reporting is a notewor-
thy concern when participants are in a free-living situation 
[108], and likely varies based on the method of dietary con-
trol. Some studies simply measured participants’ habitual 
dietary intake [62, 109], whereas others provided short-term 
[12, 91, 110] or longer-term [9] standardized diets to study 
participants. Data were extracted from 400+ studies but the 
majority were not included in the models because they did 
not report dietary intake, instead reporting that participants 
were instructed to note and repeat their 24-h dietary intake 
before each study visit. It would be beneficial for future stud-
ies analyzing substrate oxidation during exercise to report 
daily macronutrient intake.

4.1.2  Pre‑Exercise Meal

Ingesting carbohydrate before exercise increases plasma 
glucose and insulin levels, reduces hepatic glucose output, 
and increases skeletal muscle glucose uptake during exercise 
[111]. This can lower fat oxidation by decreasing plasma 
free fatty acid availability via insulin-mediated inhibition of 
lipolysis [112], and also by inhibiting fat oxidation within 
the muscle due to an increased glycolytic flux [113]. Accord-
ingly, our models highlight the strong influence of pre-exer-
cise carbohydrate on RER during exercise (Figs. 3, 4). In an 
attempt to increase fat utilization (i.e., decrease RER) during 
exercise, many endurance athletes train in the overnight-
fasted state [18], although evidence on whether the repeated 
practice of fasted-state training translates to longer-term 
increases in fat oxidation capacity remains equivocal [13]. 
More research, using endurance-trained subjects, is needed 
to determine whether longer-term fasted training increases 
fat oxidation during continuous exercise, particularly when 
tested in the carbohydrate-fed state.

There are several aspects related to the pre-exercise meal 
that may exert influence on RER but were not influential in 
the final models, likely because of not enough data points. 

The effect of glycemic index on RER has been equivocal, 
with lower-index meals resulting in lower [32], higher [114], 
or similar [115, 116] RER values during exercise, but only 
three studies meeting the inclusion criteria for our analy-
sis also reported daily dietary intake. The size and timing 
of the pre-exercise meal may also influence RER, with a 
higher RER observed following larger meals eaten farther in 
advance of exercise [13, 29]. Pre-exercise protein ingestion 
has resulted in similar RER values to those in fasted-state 
exercise [117], although this may be influenced by the type 
of protein and degree of hydrolyzation [118], and we found 
no influence of dietary fat in the pre-exercise meal on RER. 
Therefore, in our analysis the pre-exercise meal was quanti-
fied only by carbohydrate intake, meaning pre-exercise pro-
tein and/or fat ingestion, in the absence of carbohydrate, was 
analyzed in the same way as fasted-state training. However, 
there is opportunity for future research to further explore 
pre-exercise protein and its effects on substrate oxidation, 
including the type of protein, its effects on gluconeogen-
esis and urea formation [119], and if its influence may be 
intensity-dependent [10].

4.1.3  Peri‑Exercise Intake

Our analysis revealed a small yet significant influence of 
carbohydrate intake during exercise on RER. Carbohydrate 
ingestion during exercise maintains blood glucose levels, 
carbohydrate oxidation, and RER, and prevents the deple-
tion of liver, but not muscle, glycogen [120–123]. Increasing 
the rate of carbohydrate ingestion during exercise decreases 
hepatic glucose output and increases the contribution of 
exogenous carbohydrate oxidation to total energy contri-
bution in a dose–response manner [124], at least up to the 
point where gastrointestinal transport of sugars becomes 
saturated [125]. However, differences in ingestion rate are 
not always reflected as differences in RER [12, 124, 126]. 
The RER is most likely to be influenced after ~ 1.5 to 2 h of 
exercise as endogenous carbohydrate availability declines 
[3], but differences in RER between carbohydrate and pla-
cebo ingestion can be seen earlier in exercise, particularly 
with very high carbohydrate ingestion [127]. The type of 
carbohydrate ingested may influence rates of endogenous 
and exogenous carbohydrate oxidation, but total carbohy-
drate oxidation (and RER) appears less affected [128–131]. 
However, future research should examine the differences in 
carbohydrate type in the context of high (> 100 g  h−1) inges-
tion rates, as contrasting findings have been reported [123, 
131]. Carbohydrate ingestion may fail to influence RER 
when exercise intensity is high [132], and/or in untrained 
participants [133], as RER may already be elevated in these 
circumstances. However, our models were not significantly 
improved by interaction effects between carbohydrate 
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ingestion during exercise and either exercise intensity 
(p = 0.119) or VO2max (p = 0.179).

The influence of protein and fat ingestion during exer-
cise was explored, but the models were not improved by 
inclusion of the type of peri-exercise nutrition. Although 
most studies have reported a minimal influence of protein 
[75–78] or fat [11, 79–84] ingestion on RER, the RER is 
typically interpreted based on the assumption of negligible 
protein oxidation. This assumption could be invalidated in 
the context of protein ingestion before or during exercise due 
to increased gluconeogenesis, which could decrease RER 
irrespective of any change in fat oxidation rate via transfer 
of the amino group to the urea cycle [1], or by stimulating 
glucagon secretion, which promotes gluconeogenesis and 
increases fat oxidation [134]. Some evidence suggests high 
dietary protein intake [98] or protein ingestion during fasted 
exercise [135] may have a notable effect on gluconeogenesis, 
and could explain why protein ingestion before or during 
exercise has been reported to increase fat oxidation in run-
ners [109, 118].

It is also possible that fat intake during exercise, often 
provided in the form of medium chain triglycerides (MCT), 
can influence substrate oxidation via an increase in ketogen-
esis [80, 83]. Unlike long-chain fatty acids, MCTs are rap-
idly absorbed into the hepatic portal system and transported 
into the mitochondria independent of transporter proteins 
[136]. Although the studies included in this analysis have 
not found an effect of MCT when ingested with carbohy-
drate, this may be related to the amount provided and the 
specific exercise context. Reduced carbohydrate oxidation 
with combined MCT and carbohydrate ingestion compared 
with carbohydrate ingestion alone during exercise has been 
observed in one study, but dietary intake was not reported 
(and thus not included in the modelling) [137].

A broad look at the influence of various peri-exercise 
nutrition options can be seen in Fig. 2, but due to the dras-
tically different number of data points for each condition, 
limited conclusions can be drawn from comparison. Future 
studies could further explore the influence of these macronu-
trient combinations on substrate oxidation during exercise, 
particularly related to protein and/or ketone oxidation.

4.1.4  Exercise Duration and Intensity

It is well established that the RER increases with exercise 
intensity and decreases with exercise duration [4, 5, 138]. A 
novel finding of this analysis is that the duration of exercise 
likely exerts a larger influence on RER than the intensity 
of exercise, shown by the standardized model coefficients 
(Fig. 3). However, the influence of exercise duration can 
only be predicted using these models for activities less 
than ~ 3 h, as the longest time point reported for the studies 
included in Model I was 180 min. The longest study that was 

included in Model III was 360 min [139], but because not all 
modeled variables were reported, it could not be included in 
Models I–II. Based on Fig. 2, which includes all extracted 
data, it appears RER may level off around 180 min and 
remain higher when fed carbohydrate compared with water, 
but further research is needed to confirm this.

Exercise intensity was analyzed as a percentage of VO2max 
because that is the most widely reported unit in exercise 
science. This can be problematic because substrate use can 
vary greatly at a given percentage of  VO2max depending on 
whether someone has a high or low lactate threshold [34, 
140]. Therefore, the use of lactate or ventilatory thresh-
olds could be a better reference for exercise intensity [141], 
and/or could also be included as a model variable in future 
regression analysis. Although RER should not be used as 
an index of substrate utilization above 75% VO2max [1], we 
included all available data points in the models because we 
modelled RER and not substrate oxidation in absolute values 
(grams per minute, etc.). This means inferences pertaining 
to absolute values of substrate oxidation should not be made 
using this data for exercise intensities > 75% VO2max.

4.1.5  Additional Modifiable Factors

Total daily energy intake can also play a role in the RER 
response during exercise, particularly in the context of 
low energy availability. Low energy availability describes 
a mismatch between an athlete’s energy intake (diet) and 
the energy expended in exercise, leaving inadequate energy 
to support the functions required by the body to maintain 
optimal health and performance [142]. Endurance athletes 
with high training volumes are at risk of chronically low 
energy availability, which can reduce resting metabolic rate 
and influence the normal metabolic hormonal milieu that 
may alter the RER response to exercise, as well as influence 
RER via changes in muscle glycogen concentration [143]. 
The majority of studies in this analysis standardized dietary 
intake and had study participants rest before exercise trials, 
reducing the ability to investigate low energy intake in the 
models. Future studies investigating variability in RER, as 
well as for practical application of these findings, should 
consider the influence of energy availability as a factor that 
could reduce RER during exercise.

4.2  Non‑Modifiable Factors

4.2.1  Sex

Sex is known to influence substrate oxidation and was 
among the strongest influences on RER in our models. 
Along with hormonal differences, sex-based differences in 
lipid storage within the muscle and liver, and in the percent-
age of type I muscle fibers, can help explain differences in 
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substrate oxidation during exercise [144]. The RER is gener-
ally lower for women during submaximal exercise [6], how-
ever, this is not a universal finding [19, 145–148]. Divergent 
findings may be related to carbohydrate intake before and 
during exercise, and/or the duration of exercise. In several 
studies that did not find sex differences in substrate oxida-
tion the dietary carbohydrate intake was lower in males [19, 
146], whereas studies controlling dietary intake have often 
[149, 150], although not always [147], found a lower RER 
in females compared with males. Carbohydrate ingestion 
during exercise can also attenuate sex differences in RER 
[151, 152].

Our modelling revealed significant interactions between 
sex and exercise duration (Model I) and between sex and 
carbohydrate ingestion during exercise (Model II). However, 
a sex × carbohydrate ingestion during exercise interaction 
could not be explored in Model I because there were no 
studies in the analysis that provided exogenous carbohy-
drate to female subjects while also reporting muscle gly-
cogen concentrations. Although women typically have a 
greater percentage of type I muscle fibers than men [144], 
sex could not be included in a model with fiber type percent-
age due to only one study reporting fiber-type percentage in 
females [153]. Sex differences in RER would more likely be 
observed at lower exercise intensities and diminish as the 
intensity increases and the RER approaches 1.0 [154], but a 
sex × intensity interaction was left out of the models due to 
excessive collinearity in the data.

A potential limitation in our analysis is not controlling 
for menstrual cycle. A lower RER has been reported in the 
luteal, compared with follicular, phase of the menstrual 
cycle [155]; however, these differences are obscured with 
carbohydrate ingestion during exercise [156]. Others have 
found no influence of menstrual phase during 60–75 min of 
cycling [157–159], or an effect of menstrual phase that only 
became apparent after 75–90 min of cycling [160]. Increased 
estrogen concentrations suppress gluconeogenesis [161] and 
promote increased lipid availability and increased fat oxida-
tion capacity [162], which could decrease RER in the late-
follicular phase and luteal phases, although this influence 
may be antagonized by progesterone making the net effect 
in the luteal phase dependent on the relative effects of both 
ovarian hormones [163]. These differences could also be 
related to muscle glycogen at the start of exercise, which 
may be lower in the mid-follicular, compared with mid-
luteal, phase when on a normal/mixed diet (~ 5 g/kg carbo-
hydrate), but is not different on a high-carbohydrate (8.4 g/
kg) diet [157]. However, muscle glycogen sparing during 
exercise has also been observed in the luteal compared with 
the follicular phase [164]. It is therefore possible that com-
bining all female cohorts together may be introducing some 
error in the models, but these effects are likely attenuated 

in the context of other factors such as daily carbohydrate 
intake, pre-exercise carbohydrate intake, and carbohydrate 
ingestion during exercise.

4.2.2  Fitness level/VO2max

It is well established that trained athletes have a lower RER 
than untrained subjects at a given exercise intensity [5, 37, 
165], due to training-induced increases in the ability to oxi-
dize fatty acids, thus sparing muscle glycogen and blood glu-
cose during exercise [166]. A significant negative relation-
ship between VO2max and RER was confirmed in our analysis 
when considering all 3,498 available data points (Fig. 1h), 
and the 1039 data points included in Model II (r = − 0.11, 
p = 0.001), but not among the 322 data points included in 
Model I (r = 0.02, p = 0.736). Because the only difference 
between studies included in a model was whether all factors 
were reported, and mean VO2max was similar across models, 
the lack of inclusion into Model I is likely related to the 
comparatively small number of observations.

As an indicator of fitness level/training status, VO2max 
has been used to distinguish between trained and untrained 
participants [147, 167], and is known to increase with endur-
ance training [168]. However, VO2max alone may insuffi-
ciently account for short-term training-induced adaptations. 
Despite negligible changes in VO2max, changes in RER dur-
ing exercise can be seen following just 7–10 days of train-
ing [169, 170]. Furthermore, testing protocols vary and may 
underestimate someone’s true VO2max [171], thus influenc-
ing both the relative exercise intensity and our assessment 
of fitness level. As an alternative measure of fitness status, 
training age (i.e., number of years performing regular endur-
ance training) could help to explain some of the variability 
in RER during exercise but was not included in the models 
due to the limited number of studies reporting this value. 
An increased training age could be expected to accompany 
longer-term training adaptations such as an increased lactate 
threshold and/or higher percentage of type I muscle fibers 
[34]. Taken together, fitness level, most easily quantified as 
 VO2max, likely has a small yet significant negative influence 
on RER, but other factors may be more predictive of RER 
during exercise.

4.2.3  Age

Despite the inclusion criteria being open to any studies using 
adults over the age of 18 years, the mean age of the study 
participants included in the models was 26.5 ± 5.5 (range 
19–52) years, with the oldest mean participant age in Model 
I just 33 years and the oldest group of females just 25 years. 
Older subjects have been studied [172–174] and are included 
in Fig. 1g, but those studies did not report pre-trial dietary 
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intake and were therefore excluded from the models. Analy-
sis of the relationship between age and RER suggests the 
potential for a U-shaped curve, with RER decreasing until 
middle age and increasing thereafter (Fig. 1g). It has been 
reported that the training-induced increases in maximal fat 
oxidation rate may be attenuated with aging [175]. This 
could be related to the decreased mitochondrial oxidative 
capacity observed in older humans [176–178], and along 
with an increased glycogen reliance [174] suggest an upward 
shift in RER during exercise in older individuals that could 
not be detected in the models. Studies reporting RER dur-
ing exercise at the same relative intensity between older and 
younger subjects have been equivocal, and the effects may 
differ with training status [33, 179, 180]. However, these 
studies did not control for diet, limiting the conclusions 
that can be drawn. Adding to the complexity, comparisons 
between younger and older subjects can be made based on 
either the same absolute or relative (%VO2max) intensity, 
yet the ventilatory thresholds occur at a higher percentage 
of VO2max in trained older cyclists [181]. Although women 
under 45 years typically have a higher relative rate of maxi-
mal fat oxidation compared to men, these differences are not 
apparent after age 45 [36], possibly related to post-meno-
pausal status characterized by low estrogen concentrations, 
higher circulating levels of follicle-stimulating hormone, and 
decreased lean body mass [182]. This suggests the potential 
for an age × sex interaction that cannot be accounted for in 
the modelling. Therefore, the findings that RER decreases 
with age may not translate to older (> 45 years) adults.

4.2.4  Fiber Type

We created a model to investigate the effects of muscle fiber 
type percentage, despite the small number of data points, 
because of the mechanistic potential to influence RER, and 
a significant influence of fiber type percentage was found. 
An increasing percentage of type I muscle fibers would be 
expected to predispose someone towards a lower RER at 
rest and during exercise, due to the differences in reliance 
on oxidative phosphorylation between types I and II muscle 
fibers [183]. The percentage of type I fibers is known to be 
higher in trained endurance athletes [184], and is correlated 
with a higher lactate threshold [185] and negatively cor-
related with muscle glycogen utilization [186]. However, 
in untrained subjects no relationship was observed between 
muscle fiber type composition and RER at rest or during 
exercise at 55% VO2max [187]. It is possible some degree of 
endurance training could be needed for type I fiber percent-
age to help predict RER. Future studies are needed to study 
the influence of training status and intensity on RER during 
exercise, in males and especially females as our model could 
not consider sex as a variable due to the lack of studies in 
females.

4.3  Combined Influence of Factors

From a practical standpoint it is important to understand the 
net effect of modulating multiple variables at the same time, 
rather than just in isolation. The relative influence of each 
variable can be seen in Fig. 3, and predicted values when 
modulating two parameters at once are illustrated in Fig. 4. 
For example, we could expect an RER value during exercise 
that is ~ 0.03 units higher when consuming 1 g  kg−1 per day 
of dietary fat compared with 2.5 g  kg−1 per day (Fig. 4a), 
whereas increasing carbohydrate ingestion during exercise 
from 45 to 90 g/h would only be expected to increase RER 
by ~ 0.01 units (Fig. 4f). It can also be expected that some-
one consuming 1 g  kg−1 dietary fat per day would have to 
cycle for 3 h to attain the same RER as someone consum-
ing 2.5 g  kg−1 per day would attain after just 1 h of cycling 
(Fig. 4a). For the interested reader, we have also created an 
online dashboard that allows users to simultaneously modu-
late all parameters to see the influence on predicted RER 
values [97].

4.4  Other Possible Contributing Factors

Body composition has also been thought to influence RER. 
However, most studies have found no relationship [19, 
187–190], although increases [191] and decreases [192] 
in RER with increasing body fat percentage have been 
reported. The distribution of body fat (upper vs. lower body) 
can influence RER during exercise via differing hormonal 
responses [38], potentially helping to explain some of the 
divergent findings. Other factors that could influence RER 
include cycling cadence [30, 193], hydration status [31], 
short-term exercise training volume [19], genetic variation 
[41], hyperinsulinemia [194], insulin resistance [195], daily 
energy and protein intake, protein supplementation during 
exercise, and pre-exercise glucose levels, but further inves-
tigation is needed in these areas.

4.5  Technical Factors

Finally, a brief consideration of measurement factors is 
warranted. The RER represents whole-body substrate uti-
lization, and likely underestimates the RQ at a given work 
rate, particularly during lower-intensity exercise, due to a 
dilution effect from other organs that rely more on fat oxi-
dation [196]. At lower intensities the metabolism of non-
muscle tissues has a proportionately greater influence on 
gas exchange and may imply a lower muscle RQ, while 
the relative proportion of total gas exchange derived from 
muscle will increase as intensity increases and result in the 
whole-body RER becoming closer to that of muscle [196]. 
Although the repeatability of RER measurements during 
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low-intensity exercise has been shown to be very good [197], 
RER values at exercise intensities > 75%  VO2max are not reli-
able due to changes in the size of the bicarbonate pool [1]. 
Finally, this analysis was performed on group means, rather 
than individual values. Although not commonly performed 
in this manner, others have utilized a similar approach [55, 
198], which could lead to a higher degree of uncertainty 
when predicting individual, as opposed to group mean, val-
ues. It has also been suggested that modifying factors at the 
group level may not accurately reflect the modifying effects 
at the individual level, introducing ecological bias [199]. 
However, the goal of this analysis was to determine which 
factors best explain RER during exercise and understand 
their relative influence, and so the risk of bias can be miti-
gated by accounting for potentially confounding variables 
in the analysis [55].

4.6  Practical Implications

This modelling can be used by athletes and coaches to gain a 
better understanding of the convergence of factors influencing 
substrate oxidation during endurance exercise. Overall, ath-
letes looking to increase fat oxidation during exercise should 
focus more on daily fat and carbohydrate intake, and to a lesser 
degree, pre-exercise carbohydrate intake, while being less 
concerned with carbohydrate ingestion during exercise, par-
ticularly as exercise duration extends. Furthermore, the easily 
measured and easily modifiable factors related to exercise (e.g., 
exercise duration and intensity, daily macronutrient intake, and 
pre- and peri-exercise carbohydrate intake) can only explain 
roughly one-third of the variation in RER during exercise, 
suggesting most of what dictates RER during exercise cannot 
be easily controlled by the athlete. However, there are other 
factors that can be modified such as pre-exercise meal timing 
and glycemic index, the type of carbohydrate ingested before 
and during exercise, hydration status, and cycling cadence that 
are not included in this model due to lack of data. The inclu-
sion of other modifiable factors may indeed strengthen this 
model, but further research is required. Finally, it is important 
to remember that substrate oxidation is only one part of the 
puzzle for athletes, and just because something has little effect 
on RER does not mean it does not have other implications for 
performance and adaptations.

5  Conclusion

Factors known to influence the RER during exercise, such as 
exercise duration and intensity, age, sex, fitness level, muscle 
glycogen, and daily dietary intake, together only explain ~ 60% 
of the variation in RER during exercise, and habitual dietary 
intake has a larger influence on RER than carbohydrate 
ingested during exercise. More research is needed on older 
subjects and females, particularly in relation to carbohydrate 

ingestion during exercise. Future studies should also investi-
gate other potential predictors of RER including the lactate/
ventilatory thresholds, training age, genetic markers, and 
markers of blood glucose and insulin sensitivity, which may 
help explain part of the remaining ~ 40% of variance in RER 
during exercise. Additionally, more research is needed look-
ing at substrate oxidation beyond 4 h of exercise, especially 
considering the popularity of ultra-endurance events.
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