Skip to main content

Advertisement

Log in

How to Tackle Mental Fatigue: A Systematic Review of Potential Countermeasures and Their Underlying Mechanisms

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Introduction

Mental fatigue (MF) is a psychobiological state that impairs cognitive as well as physical performance in different settings. Recently, numerous studies have sought ways to counteract these negative effects of MF. An overview of the explored countermeasures for MF is, however, lacking.

Objectives

The objective of this review is to provide an overview of the different MF countermeasures currently explored in literature. Countermeasures were classified by the timing of application (before, during or after the moment of MF) and type of intervention (behavioural, physiological and psychological).

Methods

The databases of PubMed (MEDLINE), Web of Science and PsycINFO were searched until March 7, 2022. Studies were eligible when MF was induced using a task with a duration of at least 30 min, when they assessed MF markers in at least two out of the three areas wherein MF markers have been defined (i.e., behavioural, subjective and/or [neuro]physiological) and used a placebo or control group for the countermeasure.

Results

A total of 33 studies investigated one or more countermeasures against MF. Of these, eight studies assessed a behavioural countermeasure, 22 a physiological one, one a psychological countermeasure and two a combination of a behavioural and psychological countermeasure. The general finding was that a vast majority of the countermeasures induced a positive effect on behavioural (e.g., task or sport performance) and/or subjective MF markers (e.g., visual analogue scale for MF or alertness). No definitive conclusion could be drawn regarding the effect of the employed countermeasures on (neuro)physiological markers of MF as only 19 of the included studies investigated these measures, and within these a large heterogeneity in the evaluated (neuro)physiological markers was present.

Discussion

Within the physiological countermeasures it seems that the use of odours during a MF task or caffeine before the MF task are the most promising interventions in combating MF. Promising behavioural (e.g., listening to music) and psychological (e.g., extrinsic motivation) countermeasures of MF have also been reported. The most assumed mechanism through which these countermeasures operate is the dopaminergic system. However, this mechanism remains speculative as (neuro)physiological markers of MF have been scarcely evaluated to date.

Conclusion

The present systematic review reveals that a wide range of countermeasures have been found to successfully counteract MF on a subjective, (neuro)physiological and/or behavioural level. Of these, caffeine, odours, music and extrinsic motivation are the most evidenced for countering MF. To provide in-detail practical guidelines for the real-life application of MF countermeasures, more research must be performed into the underlying mechanisms and into the optimal dosage and time of application/intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rozand V, Lebon F, Papaxanthis C, Lepers R. Effect of mental fatigue on speed-accuracy trade-off. Neuroscience. 2015;297:219–30. https://doi.org/10.1016/j.neuroscience.2015.03.066.

    Article  CAS  PubMed  Google Scholar 

  2. Van Cutsem J, Marcora S, De Pauw K, et al. The effects of mental fatigue on physical performance: a systematic review. Sports Med. 2017;47(8):1569–88. https://doi.org/10.1007/s40279-016-0672-0.

    Article  PubMed  Google Scholar 

  3. Brown DMY, Graham JD, Innes KI, et al. Effects of prior cognitive exertion on physical performance: a systematic review and meta-analysis. Sport Med. 2020. https://doi.org/10.1007/s40279-019-01204-8.

    Article  Google Scholar 

  4. McMorris T, Barwood M, Hale BJ, et al. Cognitive fatigue effects on physical performance: a systematic review and meta-analysis. Physiol Behav. 2018;188:103–7. https://doi.org/10.1016/j.physbeh.2018.01.029.

    Article  CAS  PubMed  Google Scholar 

  5. Habay J, Van Cutsem J, Verschueren J, et al. Mental fatigue and sport-specific psychomotor performance: a systematic review. Sports Med. 2021;51(7):1527–48. https://doi.org/10.1007/s40279-021-01429-6.

    Article  PubMed  Google Scholar 

  6. Smith MR, Thompson C, Marcora SM, et al. Mental fatigue and soccer: current knowledge and future directions. Sports Med. 2018;48(7):1525–32. https://doi.org/10.1007/s40279-018-0908-2.

    Article  PubMed  Google Scholar 

  7. Galy E, Mélan C. Effects of cognitive appraisal and mental workload factors on performance in an arithmetic task. Appl Psychophysiol Biofeedback. 2015;40(4):313–25. https://doi.org/10.1007/s10484-015-9302-0.

    Article  PubMed  Google Scholar 

  8. Borghini G, Vecchiato G, Toppi J et al. Assessment of mental fatigue during car driving by using high resolution EEG activity and neurophysiologic indices. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 70 (cm); 2012. pp. 6442–6445. https://doi.org/10.1109/EMBC.2012.6347469.

  9. Verschueren J, Tassignon B, Pluym B, et al. Bringing context to balance: development of a reactive balance test within the injury prevention and return to sport domain. Arch Physiother. 2019;9(1):6. https://doi.org/10.1186/s40945-019-0057-4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sun Y, Lim J, Dai Z, et al. The effects of a mid-task break on the brain connectome in healthy participants: a resting-state functional MRI study. Neuroimage. 2017;152:19–30. https://doi.org/10.1016/j.neuroimage.2017.02.084.

    Article  PubMed  Google Scholar 

  11. Azevedo R, Silva-Cavalcante MD, Gualano B, et al. Effects of caffeine ingestion on endurance performance in mentally fatigued individuals. Eur J Appl Physiol. 2016;116(11–12):2293–303. https://doi.org/10.1007/s00421-016-3483-y.

    Article  CAS  PubMed  Google Scholar 

  12. Van Cutsem J, De Pauw K, Marcora S, et al. A caffeine-maltodextrin mouth rinse counters mental fatigue. Psychopharmacology. 2018;235(4):947–58. https://doi.org/10.1007/s00213-017-4809-0.

    Article  CAS  PubMed  Google Scholar 

  13. Van Cutsem J, Roelands B, Pluym B, et al. Can creatine combat the mental fatigue-associated decrease in visuomotor skills? Med Sci Sports Exerc. 2020;52(1):120–30. https://doi.org/10.1249/MSS.0000000000002122.

    Article  Google Scholar 

  14. Watanabe A, Kato N, Kato T. Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res. 2002;42(4):279–85. https://doi.org/10.1016/S0168-0102(02)00007-X.

    Article  CAS  PubMed  Google Scholar 

  15. Glade MJ. Caffeine-not just a stimulant. Nutrition. 2010;26(10):932–8. https://doi.org/10.1016/j.nut.2010.08.004.

    Article  CAS  PubMed  Google Scholar 

  16. Cappelletti S, Daria P, Sani G, Aromatario M. Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol. 2014;13(1):71–88. https://doi.org/10.2174/1570159x13666141210215655.

    Article  CAS  Google Scholar 

  17. Martin K, Meeusen R, Thompson KG, et al. Mental fatigue impairs endurance performance: a physiological explanation. Sports Med. 2018;48(9):2041–51. https://doi.org/10.1007/s40279-018-0946-9.

    Article  PubMed  Google Scholar 

  18. Meeusen R, Van Cutsem J, Roelands B. Endurance exercise-induced and mental fatigue and the brain. Exp Physiol. 2020. https://doi.org/10.1113/EP088186.

    Article  PubMed  Google Scholar 

  19. Davis JM, Zhao Z, Stock HS, et al. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol. 2003;284(253–2):399–404. https://doi.org/10.1152/ajpregu.00386.2002.

    Article  Google Scholar 

  20. Guo W, Ren J, Wang B, Zhu Q. Effects of relaxing music on mental fatigue induced by a continuous performance task: behavioral and ERPs evidence. PLoS One. 2015;10(8):1–12. https://doi.org/10.1371/journal.pone.0136446.

    Article  CAS  Google Scholar 

  21. Franco-Alvarenga PE, Brieztke C, Canestri R, Pires FO. Psychophysiological responses of music on physcial performance: a critical review. Revista Brasileira de Ciência e Movimento. 2019;27(2):218. https://doi.org/10.31501/rbcm.v27i2.9908.

    Article  Google Scholar 

  22. Angel LA, Polzella DJ, Elvers GC. Background music and cognitive performance. Percept Mot Skills. 2010;110(3C):1059–64. https://doi.org/10.2466/04.11.22.pms.110.c.1059-1064.

    Article  PubMed  Google Scholar 

  23. Russell S, Jenkins D, Smith M, et al. The application of mental fatigue research to elite team sport performance: new perspectives. J Sci Med Sport. 2019;22(6):723–8. https://doi.org/10.1016/j.jsams.2018.12.008.

    Article  PubMed  Google Scholar 

  24. Roelands B, Kelly V, Russell S, Habay J. The physiological nature of mental fatigue: current knowledge and future avenues for sport science. Int J Sports Physiol Perform. 2022;17(2):149–50. https://doi.org/10.1123/ijspp.2021-0524.

    Article  PubMed  Google Scholar 

  25. Dallaway N, Lucas SJE, Ring C. Concurrent brain endurance training improves endurance exercise performance. J Sci Med Sport. 2021;24:405–11. https://doi.org/10.1016/j.jsams.2020.10.008.

    Article  PubMed  Google Scholar 

  26. Axelsen JL, Kirk U, Staiano W. On-the-spot binaural beats and mindfulness reduces the effect of mental fatigue. J Cogn Enhanc. 2020;4(1):31–9. https://doi.org/10.1007/s41465-019-00162-3.

    Article  Google Scholar 

  27. Hayashi M, Chikazawa Y, Hori T. Short nap versus short rest: recuperative effects during VDT work. Ergonomics. 2004;47(14):1549–60. https://doi.org/10.1080/00140130412331293346.

    Article  PubMed  Google Scholar 

  28. Boksem MAS, Meijman TF, Lorist MM. Mental fatigue, motivation and action monitoring. Biol Psychol. 2006;72(2):123–32. https://doi.org/10.1016/j.biopsycho.2005.08.007.

    Article  PubMed  Google Scholar 

  29. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021. https://doi.org/10.1136/bmj.n71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Giboin LS, Wolff W. The effect of ego depletion or mental fatigue on subsequent physical endurance performance: a meta-analysis. Perform Enhanc Health. 2019;7(1–2): 100150. https://doi.org/10.1016/j.peh.2019.100150.

    Article  Google Scholar 

  31. Fortes LS, Lima-Junior D, Nascimento-Júnior JRA, et al. Effect of exposure time to smartphone apps on passing decision-making in male soccer athletes. Psychol Sport Exerc. 2019;44:35–41. https://doi.org/10.1016/j.psychsport.2019.05.001.

    Article  Google Scholar 

  32. Gantois P, Caputo Ferreira ME, de Lima-Junior D, et al. Effects of mental fatigue on passing decision-making performance in professional soccer athletes. Eur J Sport Sci. 2020;20(4):534–43. https://doi.org/10.1080/17461391.2019.1656781.

    Article  PubMed  Google Scholar 

  33. Nuechterlein KH, Parasuraman R, Jiang Q. Visual sustained attention: image degradation produces rapid sensitivity decrement over time. Science. 1983;220(4594):327–9. https://doi.org/10.1126/science.6836276.

    Article  CAS  PubMed  Google Scholar 

  34. Smith MR, Coutts AJ, Merlini M, et al. Mental fatigue impairs soccer-specific physical and technical performance. Med Sci Sports Exerc. 2016;48(2):267–76. https://doi.org/10.1249/MSS.0000000000000762.

    Article  PubMed  Google Scholar 

  35. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):1–10. https://doi.org/10.1186/s13643-016-0384-4.

    Article  Google Scholar 

  36. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:1–8. https://doi.org/10.1136/bmj.l4898.

    Article  Google Scholar 

  37. Hopstaken JF, Van Der LD, Bakker AB. Shifts in attention during mental fatigue: evidence from subjective, behavioral, physiological, and eye-tracking data [Journal of Experimental Psychology: Human Perception and Performance, 42, 6, (2016), (878-889)], doi: 10.1037/xhp0000189. J Exp Psychol Hum Percept Perform. 2016;42(9):1442. https://doi.org/10.1037/xhp0000300.

    Article  Google Scholar 

  38. Ishihara I, Ikushima M, Horikawa J, et al. A very low level of magnetic field exposure does not affect a participant’s mental fatigue and stress as much as VDT work. J UOEH. 2005;27(1):25–40. https://doi.org/10.7888/juoeh.27.25.

    Article  CAS  PubMed  Google Scholar 

  39. Kato Y, Endo H, Kobayakawa T, et al. Effects of intermittent odours on cognitive-motor performance and brain functioning during mental fatigue. Ergonomics. 2012;55(1):1–11. https://doi.org/10.1080/00140139.2011.633175.

    Article  PubMed  Google Scholar 

  40. Jacquet T, Poulin-Charronnat B, Bard P, et al. Physical activity and music to counteract mental fatigue. Neuroscience. 2021;478:75–88. https://doi.org/10.1016/j.neuroscience.2021.09.019.

    Article  CAS  PubMed  Google Scholar 

  41. Li Z, Jiao K, Chen M, Wang C. Reducing the effects of driving fatigue with magnitopuncture stimulation. Accid Anal Prev. 2004;36(4):501–5. https://doi.org/10.1016/S0001-4575(03)00044-7.

    Article  PubMed  Google Scholar 

  42. Bailey SP, Harris GK, Lewis K, et al. Impact of a carbohydrate mouth rinse on corticomotor excitability after mental fatigue in healthy college-aged subjects. Brain Sci. 2021;11(8):972. https://doi.org/10.3390/brainsci11080972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brietzke C, Franco-Alvarenga PE, Canestri R, et al. Carbohydrate mouth rinse mitigates mental fatigue effects on maximal incremental test performance, but not in cortical alterations. Brain Sci. 2020;10(8):1–15. https://doi.org/10.3390/brainsci10080493.

    Article  CAS  Google Scholar 

  44. Kennedy DO, Scholey AB. A glucose-caffeine “energy drink” ameliorates subjective and performance deficits during prolonged cognitive demand. Appetite. 2004;42(3):331–3. https://doi.org/10.1016/j.appet.2004.03.001.

    Article  CAS  PubMed  Google Scholar 

  45. Lim JH, Kim H, Jeon C, Cho S. The effects on mental fatigue and the cognitive function of mechanical massage and binaural beats (brain massage) provided by massage chairs. Complement Ther Clin Pract. 2018;32(April):32–8. https://doi.org/10.1016/j.ctcp.2018.04.008.

    Article  PubMed  Google Scholar 

  46. Loch F, Hofzum BA, Ferrauti A, et al. Acute effects of mental recovery strategies after a mentally fatiguing task. Front Psychol. 2020;11(December):1–13. https://doi.org/10.3389/fpsyg.2020.558856.

    Article  Google Scholar 

  47. Mizuno K, Tanaka M, Tajima K, et al. Effects of mild-stream bathing on recovery from mental fatigue. Med Sci Monit. 2009;16(1):CR8–14.

    Google Scholar 

  48. Nagai H, Harada M, Nakagawa M, et al. Effects of chicken extract on the recovery from fatigue caused by mental workload. Appl Hum Sci J Physiol Anthropol. 1996;15(6):281–6. https://doi.org/10.2114/jpa.15.281.

    Article  CAS  Google Scholar 

  49. Penna EM, Filho E, Campos BT, et al. No effects of mental fatigue and cerebral stimulation on physical performance of master swimmers. Front Psychol. 2021. https://doi.org/10.3389/fpsyg.2021.656499.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Reay JL, Kennedy DO, Scholey AB. Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity. J Psychopharmacol. 2005;19(4):357–65. https://doi.org/10.1177/0269881105053286.

    Article  CAS  PubMed  Google Scholar 

  51. Reay JL, Kennedy DO, Scholey AB. Effects of Panax ginseng, consumed with and without glucose, on blood glucose levels and cognitive performance during sustained “mentally demanding” tasks. J Psychopharmacol. 2006;20(6):771–81. https://doi.org/10.1177/0269881106061516.

    Article  PubMed  Google Scholar 

  52. Saito N, Yamano E, Ishii A, et al. Involvement of the olfactory system in the induction of anti-fatigue effects by odorants. PLoS One. 2018;13(3):1–18. https://doi.org/10.1371/journal.pone.0195263.

    Article  CAS  Google Scholar 

  53. Scholey AB, French SJ, Morris PJ, et al. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol. 2010;24(10):1505–14. https://doi.org/10.1177/0269881109106923.

    Article  CAS  PubMed  Google Scholar 

  54. Tanaka M, Yamada H, Nakamura T, Watanabe Y. Effects of pellet stove on recovery from mental fatigue. Med Sci Monit. 2012;18(3):1–4. https://doi.org/10.12659/MSM.882519.

    Article  Google Scholar 

  55. Tanaka M, Yamada H, Nakamura T, et al. Fatigue-recovering effect of a house designed with open space. Explore J Sci Heal. 2013;9(2):82–6. https://doi.org/10.1016/j.explore.2012.12.006.

    Article  Google Scholar 

  56. Ataka S, Tanaka M, Nozaki S, et al. Effects of oral administration of caffeine and D-ribose on mental fatigue. Nutrition. 2008;24(3):233–8. https://doi.org/10.1016/j.nut.2007.12.002.

    Article  CAS  PubMed  Google Scholar 

  57. Kennedy D, Okello E, Chazot P, et al. Volatile terpenes and brain function: Investigation of the cognitive and mood effects of mentha × piperita L. essential oil with in vitro properties relevant to central nervous system function. Nutrients. 2018. https://doi.org/10.3390/nu10081029.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yamano E, Tanaka M, Ishii A, et al. Effects of chicken essence on recovery from mental fatigue in healthy males. Med Sci Monit. 2013;19(1):540–7. https://doi.org/10.12659/MSM.883971.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Oberste M, de Waal P, Joisten N, et al. Acute aerobic exercise to recover from mental exhaustion—a randomized controlled trial. Physiol Behav. 2021;241(September): 113588. https://doi.org/10.1016/j.physbeh.2021.113588.

    Article  CAS  PubMed  Google Scholar 

  60. Kennedy DO, Haskell CF, Robertson B, et al. Improved cognitive performance and mental fatigue following a multi-vitamin and mineral supplement with added guaraná (Paullinia cupana). Appetite. 2008;50(2–3):506–13. https://doi.org/10.1016/j.appet.2007.10.007.

    Article  CAS  PubMed  Google Scholar 

  61. Franco-Alvarenga PE, Brietzke C, Canestri R, et al. Caffeine improved cycling trial performance in mentally fatigued cyclists, regardless of alterations in prefrontal cortex activation. Physiol Behav. 2019;204:41–8. https://doi.org/10.1016/j.physbeh.2019.02.009.

    Article  CAS  PubMed  Google Scholar 

  62. Rattray B, Martin K, Hewitt A, et al. Effect of acute modafinil ingestion on cognitive and physical performance following mental exertion. Hum Psychopharmacol. 2019. https://doi.org/10.1002/hup.2700.

    Article  PubMed  Google Scholar 

  63. Burke LM. Practical issues in evidence-based use of performance supplements: supplement interactions, repeated use and individual responses. Sports Med. 2017;47(S1):79–100. https://doi.org/10.1007/s40279-017-0687-1.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hommel B, Sellaro R, Fischer R, et al. High-frequency binaural beats increase cognitive flexibility: evidence from dual-task crosstalk. Front Psychol. 2016;7(AUG):1–7. https://doi.org/10.3389/fpsyg.2016.01287.

    Article  Google Scholar 

  65. Daubner J, Arshaad MI, Henseler C, et al. Pharmacological neuroenhancement: current aspects of categorization, epidemiology, pharmacology, drug development, ethics, and future perspectives. Neural Plast. 2021;2021:8823383. https://doi.org/10.1155/2021/8823383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Pauw K, Roelands B, Knaepen K, et al. Effects of caffeine and maltodextrin mouth rinsing on P300, brain imaging, and cognitive performance. J Appl Physiol. 2015;118(6):776–82. https://doi.org/10.1152/japplphysiol.01050.2014.

    Article  CAS  PubMed  Google Scholar 

  67. Van Cutsem J, Marcora S. The effects of mental fatigue on sport performance—an update. Motiv Self Regul Sport Exerc. 2021. https://doi.org/10.4324/9781003176695.

    Article  Google Scholar 

  68. Turner CE, Byblow WD, Stinear CM, Gant N. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite. 2014;80:212–9. https://doi.org/10.1016/j.appet.2014.05.020.

    Article  PubMed  Google Scholar 

  69. De Pauw K, Roelands B, Van Cutsem J, et al. Electro-physiological changes in the brain induced by caffeine or glucose nasal spray. Psychopharmacology. 2017;234(1):53–62. https://doi.org/10.1007/s00213-016-4435-2.

    Article  CAS  PubMed  Google Scholar 

  70. Broughan C. Odours, emotions, and cognition—how affect cognitive performance. Int J Aromather. 2002;12(2):92–8. https://doi.org/10.1016/S0962-4562(02)00033-4.

    Article  Google Scholar 

  71. Chong TT-J, Apps M, Giehl K, et al. Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biol. 2017;15(2): e1002598. https://doi.org/10.1371/journal.pbio.1002598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Masuo Y, Satou T, Takemoto H, Koike K. Smell and stress response in the brain: review of the connection between chemistry and neuropharmacology. Molecules. 2021;26(9):2571. https://doi.org/10.3390/molecules26092571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Avgerinos KI, Spyrou N, Bougioukas KI, Kapogiannis D. Effects of creatine supplementation on cognitive function of healthy individuals: a systematic review of randomized controlled trials. Exp Gerontol. 2018;108:166–73. https://doi.org/10.1016/j.exger.2018.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meeusen R, Decroix L. Nutritional supplements and the brain. Int J Sport Nutr Exerc Metab. 2018;28(2):200–11. https://doi.org/10.1123/ijsnem.2017-0314.

    Article  CAS  PubMed  Google Scholar 

  75. Suttiwan P, Yuktanandana P, Ngamake S. Effectiveness of essence of chicken on cognitive function improvement: a randomized controlled clinical trial. Nutrients. 2018;10(7):845. https://doi.org/10.3390/nu10070845.

    Article  CAS  PubMed Central  Google Scholar 

  76. Teoh S, Sudfangsai S, Lumbiganon P, et al. Chicken essence for cognitive function improvement: a systematic review and meta-analysis. Nutrients. 2016;8(1):57. https://doi.org/10.3390/nu8010057.

    Article  CAS  PubMed Central  Google Scholar 

  77. Caruso G, Godos J, Castellano S, et al. The therapeutic potential of carnosine/anserine supplementation against cognitive decline: a systematic review with meta-analysis. Biomedicines. 2021;9(3):253. https://doi.org/10.3390/biomedicines9030253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Charernboon T, Jaisin K, Pattanaseri K. Chicken essence and cognitive function: a systematic review and meta-analysis. J Med Assoc Thai. 2016;99(July):S93–101.

    PubMed  Google Scholar 

  79. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology. 2008;33(7):1477–502. https://doi.org/10.1038/sj.npp.1301534.

    Article  CAS  PubMed  Google Scholar 

  80. Colzato LS, Mourits R. Modafinil. In: Theory-driven approaches to Cogn. Enhanc. Cham, Springer International Publishing; 2017. pp. 83–93

  81. Van Puyvelde M, Van Cutsem J, Lacroix E, Pattyn N. A state-of-the-art review on the use of modafinil as a performance-enhancing drug in the context of military operationality. Mil Med. 2021. https://doi.org/10.1093/milmed/usab398.

    Article  Google Scholar 

  82. Webber HE, Lopez-Gamundi P, Stamatovich SN, et al. Using pharmacological manipulations to study the role of dopamine in human reward functioning: a review of studies in healthy adults. Neurosci Biobehav Rev. 2021;120:123–58. https://doi.org/10.1016/j.neubiorev.2020.11.004.

    Article  CAS  PubMed  Google Scholar 

  83. Ahmed Z, Wieraszko A. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism. Bioelectromagnetics. 2015;36(5):386–97. https://doi.org/10.1002/bem.21917.

    Article  CAS  PubMed  Google Scholar 

  84. Stagg CJ, Antal A, Nitsche MA. Physiology of transcranial direct current stimulation. J ECT. 2018;34(3):144–52. https://doi.org/10.1097/YCT.0000000000000510.

    Article  PubMed  Google Scholar 

  85. Yang S, Qiao Y, Wang L, Hao P. Magnetic stimulation at acupoints relieves mental fatigue: an event related potential (P300) study. Technol Health Care. 2017;25(S1):157–65. https://doi.org/10.3233/THC-171318.

    Article  PubMed  Google Scholar 

  86. Mcmorris T. Cognitive fatigue effects on physical performance: the role of interoception. Sports Med. 2020;50:1703–8. https://doi.org/10.1007/s40279-020-01320-w.

    Article  PubMed  Google Scholar 

  87. Terry PC, Karageorghis CI, Curran ML, et al. Effects of music in exercise and sport: a meta-analytic review. Psychol Bull. 2020;146(2):91–117. https://doi.org/10.1037/bul0000216.

    Article  PubMed  Google Scholar 

  88. Gergelyfi M, Jacob B, Olivier E, Zénon A. Dissociation between mental fatigue and motivational state during prolonged mental activity. Front Behav Neurosci. 2015. https://doi.org/10.3389/fnbeh.2015.00176.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Herlambang MB, Cnossen F, Taatgen NA. The effects of intrinsic motivation on mental fatigue. PLoS One. 2021;16(1):1–22. https://doi.org/10.1371/journal.pone.0243754.

    Article  CAS  Google Scholar 

  90. Herlambang MB, Taatgen NA, Cnossen F. The role of motivation as a factor in mental fatigue. Hum Factors. 2019;61(7):1171–85. https://doi.org/10.1177/0018720819828569.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schiphof-Godart L, Roelands B, Hettinga FJ. Drive in sports: how mental fatigue affects endurance performance. Front Psychol. 2018. https://doi.org/10.3389/fpsyg.2018.01383.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kirk U, Wieghorst A, Nielsen CM, Staiano W. On-the-spot binaural beats and mindfulness reduces behavioral markers of mind wandering. J Cogn Enhanc. 2019;3(2):186–92. https://doi.org/10.1007/s41465-018-0114-z.

    Article  Google Scholar 

  93. Ferreri L, Mas-Herrero E, Zatorre RJ, et al. Dopamine modulates the reward experiences elicited by music. Proc Natl Acad Sci. 2019;116(9):3793–8. https://doi.org/10.1073/pnas.1811878116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Menon V, Levitin DJ. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage. 2005;28(1):175–84. https://doi.org/10.1016/j.neuroimage.2005.05.053.

    Article  CAS  PubMed  Google Scholar 

  95. Kimura T, Yamada T, Hirokawa Y, Shinohara K. Brief and indirect exposure to natural environment restores the directed attention for the task. Front Psychol. 2021. https://doi.org/10.3389/fpsyg.2021.619347.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Englert C, Taylor IM. Motivation and self-regulation in sport and exercise. 1st ed. 2021. https://doi.org/10.4324/9781003176695.

  97. Martin K, Thompson KG, Keegan R, Rattray B. Are individuals who engage in more frequent self-regulation less susceptible to mental fatigue? J Sport Exerc Psychol. 2019;41(5):289–97. https://doi.org/10.1123/jsep.2018-0222.

    Article  Google Scholar 

  98. Leyland A, Rowse G, Emerson L-M. Experimental effects of mindfulness inductions on self-regulation: systematic review and meta-analysis. Emotion. 2019;19(1):108–22. https://doi.org/10.1037/emo0000425.

    Article  PubMed  Google Scholar 

  99. Coimbra DR, Bevilacqua GG, Pereira FS, Andrade A. Effect of mindfulness training on fatigue and recovery in elite volleyball athletes: a randomized controlled follow-up study. J Sports Sci Med. 2021. https://doi.org/10.52082/jssm.2021.1.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Filipas L, Martin K, Northey JM, et al. A 4-week endurance training program improves tolerance to mental exertion in untrained individuals. J Sci Med Sport. 2020;23(12):1215–9. https://doi.org/10.1016/j.jsams.2020.04.020.

    Article  PubMed  Google Scholar 

  101. Qi P, Gao L, Meng J, et al. Effects of rest-break on mental fatigue recovery determined by a novel temporal brain network analysis of dynamic functional connectivity. IEEE Trans Neural Syst Rehabil Eng. 2020;28(1):62–71. https://doi.org/10.1109/TNSRE.2019.2953315.

    Article  CAS  PubMed  Google Scholar 

  102. Sun Y, Lim J, Dai Z, et al. The effects of a mid-task break on the brain connectome in healthy participants: a resting-state functional MRI study. Neuroimage. 2017;152(February):19–30. https://doi.org/10.1016/j.neuroimage.2017.02.084.

    Article  PubMed  Google Scholar 

  103. Gao L, Zhu L, Hu L, et al. Mid-task physical exercise keeps your mind vigilant: evidences from behavioral performance and EEG functional connectivity. IEEE Trans Neural Syst Rehabil Eng. 2021;29:31–40. https://doi.org/10.1109/TNSRE.2020.3030106.

    Article  PubMed  Google Scholar 

  104. Guiney H, Machado L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon Bull Rev. 2013;20(1):73–86. https://doi.org/10.3758/s13423-012-0345-4.

    Article  PubMed  Google Scholar 

  105. Marques A, Marconcin P, Werneck AO, et al. Bidirectional association between physical activity and dopamine across adulthood—a systematic review. Brain Sci. 2021;11(7):829. https://doi.org/10.3390/brainsci11070829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brown DMY, Bray SR. Effects of mental fatigue on physical endurance performance and muscle activation are attenuated by monetary incentives. J Sport Exerc Psychol. 2017;39(6):385–96. https://doi.org/10.1123/jsep.2017-0187.

    Article  PubMed  Google Scholar 

  107. Perry J, Ross M, Weinstock J, Gfeller J. Examining the interrelationships between motivation, conscientiousness, and individual endurance sport performance. J Sport Sci. 2017. https://doi.org/10.17265/2332-7839/2017.03.002.

    Article  Google Scholar 

  108. Collins D. Motivation in sport and exercise. Sport Psychol. 2016. https://doi.org/10.1123/tsp.7.3.331.

    Article  Google Scholar 

  109. Sikander G, Anwar S. Driver fatigue detection systems: a review. IEEE Trans Intell Transp Syst. 2019;20(6):2339–52. https://doi.org/10.1109/TITS.2018.2868499.

    Article  Google Scholar 

  110. Nicholson M, Poulus D, McNulty C. Letter—more physiological research is needed in esports. Int J Esports. 2020;1(1):1–6.

    Google Scholar 

  111. Koshy A, Koshy GM (2020) The potential of physiological monitoring technologies in esports. Int J Esports. 1(1):1–11.

    Google Scholar 

  112. Stevens CJ, Best R. Menthol: a fresh ergogenic aid for athletic performance. Sports Med. 2017;47(6):1035–42. https://doi.org/10.1007/s40279-016-0652-4.

    Article  PubMed  Google Scholar 

  113. Geller K, Renneke K, Custer S, Tigue G. Intrinsic and extrinsic motives support adults’ regular physical activity maintenance. Sports Med Int Open. 2018;02(03):E62–6. https://doi.org/10.1055/a-0620-9137.

    Article  Google Scholar 

  114. Oliver LS, Sullivan JP, Russell S, et al. Effects of nutritional interventions on accuracy and reaction time with relevance to mental fatigue in sporting, military, and aerospace populations: a systematic review and meta-analysis. Int J Environ Res Public Health. 2021;19(1):307. https://doi.org/10.3390/ijerph19010307.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Moeller SJ, Tomasi D, Honorio J, et al. Dopaminergic involvement during mental fatigue in health and cocaine addiction. Transl Psychiatry. 2012;2(10):e176–e176. https://doi.org/10.1038/tp.2012.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Luxemburg Institute of Research in Orthopedics, Sport Medicine and Science (LIROMS) and the Strategic Research Program Exercise and the Brain in Health & Disease: The Added Value of Human-Centered Robotics (SRP17) for their valuable contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Van Cutsem.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this manuscript.

Conflict of interest

Matthias Proost, Jelle Habay, Jonas De Wachter, Kevin De Pauw, Ben Rattray, Romain Meeusen, Bart Roelands and Jeroen Van Cutsem have no conflicts of interest relevant to the content of this review.

Compliance with ethical standards

Matthias Proost, Jelle Habay, Jonas De Wachter, Kevin De Pauw, Ben Rattray, Romain Meeusen, Bart Roelands and Jeroen Van Cutsem declare that the systematic review complies with all ethical standards.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The authors declare that all data supporting the findings of this study are available within the manuscript.

Code availability

Not applicable.

Authorship contribution

The design of the search strategy was performed by MP, and subsequently revised by JH, JDW, BaRo and JVC. Screening on title and abstract was done by MP and JH, while full-text screening was conducted by four authors, i.e., MP, JH, BaRo and JVC. Data analysis was first conducted by MP and JH and was later revised and updated by MP. RoB assessment was performed by MP who also designed the RoB figures. MP wrote the first draft of the manuscript which was later altered by JH, JDW, KDP, BeRa, RM, BaRo and JVC. All authors read, revised and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proost, M., Habay, J., De Wachter, J. et al. How to Tackle Mental Fatigue: A Systematic Review of Potential Countermeasures and Their Underlying Mechanisms. Sports Med 52, 2129–2158 (2022). https://doi.org/10.1007/s40279-022-01678-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01678-z

Navigation