Skip to main content
Log in

Understanding Vertical Jump Potentiation: A Deterministic Model

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This review article discusses previous postactivation potentiation (PAP) literature and provides a deterministic model for vertical jump (i.e., squat jump, countermovement jump, and drop/depth jump) potentiation. There are a number of factors that must be considered when designing an effective strength–power potentiation complex (SPPC) focused on vertical jump potentiation. Sport scientists and practitioners must consider the characteristics of the subject being tested and the design of the SPPC itself. Subject characteristics that must be considered when designing an SPPC focused on vertical jump potentiation include the individual’s relative strength, sex, muscle characteristics, neuromuscular characteristics, current fatigue state, and training background. Aspects of the SPPC that must be considered for vertical jump potentiation include the potentiating exercise, level and rate of muscle activation, volume load completed, the ballistic or non-ballistic nature of the potentiating exercise, and the rest interval(s) used following the potentiating exercise. Sport scientists and practitioners should design and seek SPPCs that are practical in nature regarding the equipment needed and the rest interval required for a potentiated performance. If practitioners would like to incorporate PAP as a training tool, they must take the athlete training time restrictions into account as a number of previous SPPCs have been shown to require long rest periods before potentiation can be realized. Thus, practitioners should seek SPPCs that may be effectively implemented in training and that do not require excessive rest intervals that may take away from valuable training time. Practitioners may decrease the necessary time needed to realize potentiation by improving their subject’s relative strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Robbins DW. Postactivation potentiation and its practical applicability: a brief review. J Strength Cond Res. 2005;19(2):453–8.

    PubMed  Google Scholar 

  2. Bevan HR, Cunningham DJ, Tooley EP, et al. Influence of postactivation potentiation on sprinting performance in professional rugby players. J Strength Cond Res. 2010;24(3):701–5.

    Article  PubMed  Google Scholar 

  3. McCann MR, Flanagan SP. The effects of exercise selection and rest interval on postactivation potentiation of vertical jump performance. J Strength Cond Res. 2010;24(5):1285–91.

    Article  PubMed  Google Scholar 

  4. Linder EE, Prins JH, Murata NM, et al. Effects of preload 4 repetition maximum on 100-m sprint times in collegiate women. J Strength Cond Res. 2010;24(5):1184–90.

    Article  PubMed  Google Scholar 

  5. Comyns TM, Harrison AJ, Hennessy LK, et al. The optimal complex training rest interval for athletes from anaerobic sports. J Strength Cond Res. 2006;20(3):471–6.

    PubMed  Google Scholar 

  6. Kilduff LP, Bevan HR, Kingsley MI, et al. Postactivation potentiation in professional rugby players: optimal recovery. J Strength Cond Res. 2007;21(4):1134–8.

    PubMed  Google Scholar 

  7. Stone MH, Sands WA, Pierce KC, et al. Power and power potentiation among strength-power athletes: preliminary study. Int J Sports Physiol Perform. 2008;3(1):55–67.

    PubMed  Google Scholar 

  8. Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2):147–66.

    Article  PubMed  Google Scholar 

  9. Docherty D, Hodgson MJ. The application of postactivation potentiation to elite sport. Int J Sports Physiol Perform. 2007;2(4):439–44.

    PubMed  Google Scholar 

  10. Hodgson M, Docherty D, Robbins D. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 2005;35(7):585–95.

    Article  PubMed  Google Scholar 

  11. Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138–43.

    Article  PubMed  Google Scholar 

  12. Comyns TM, Harrison AJ, Hennessy L, et al. Identifying the optimal resistive load for complex training in male rugby players. Sports Biomech. 2007;6(1):59–70.

    Article  PubMed  Google Scholar 

  13. Verkhoshansky Y. Speed-strength preparation and development of strength endurance of athletes in various specializations. Sov Sports Rev. 1986;22:120–4.

    Google Scholar 

  14. Chu DA. Explosive power and strength: complex training for maximum results. Champaign: Human Kinetics; 1996.

    Google Scholar 

  15. Docherty D, Robbins D, Hodgson M. Complex training revisited: A review of its current status as a viable training approach. Strength Cond J. 2004;26(6):52–7.

    Google Scholar 

  16. Ebben WP, Jensen RL, Blackard DO. Electromyographic and kinetic analysis of complex training variables. J Strength Cond Res. 2000;14(4):451–6.

    Google Scholar 

  17. Ebben WP, Watts PB. A review of combined weight training and plyometric training modes: complex training. Strength Cond J. 1998;20(5):18–27.

    Article  Google Scholar 

  18. Ebben WP, Blackard DO. Complex training with combined explosive weight training and plyometric exercises. Olympic coach. 1997;7(4):11–2.

    Google Scholar 

  19. Ebben WP. Complex training: a brief review. J Sports Sci Med. 2002;1(2):42–6.

    PubMed  PubMed Central  Google Scholar 

  20. Rassier DE, Herzog W. The effects of training on fatigue and twitch potentiation in human skeletal muscle. Eur J Sport Sci. 2001;1(3):1–8.

    Article  Google Scholar 

  21. Palmer BM, Moore RL. Myosin light chain phosphorylation and tension potentiation in mouse skeletal muscle. Am J Physiol Cell Physiol. 1989;257(5):C1012–9.

    CAS  Google Scholar 

  22. Cochrane DJ, Stannard SR, Firth EC, et al. Acute whole-body vibration elicits post-activation potentiation. Eur J Appl Physiol. 2010;108(2):311–9.

    Article  PubMed  Google Scholar 

  23. Hodgson M, Docherty D, Zehr EP. Postactivation potentiation of force is independent of h-reflex excitability. Int J Sports Physiol Perform. 2008;3(2):219–31.

    PubMed  Google Scholar 

  24. Vandenboom R, Grange RW, Houston ME. Myosin phosphorylation enhances rate of force development in fast-twitch skeletal muscle. Am J Physiol. 1995;268(3 Pt 1):C596–603.

    CAS  PubMed  Google Scholar 

  25. Ryder JW, Lau KS, Kamm KE, et al. Enhanced skeletal muscle contraction with myosin light chain phosphorylation by a calmodulin-sensing kinase. J Biol Chem. 2007;282(28):20447–54.

    Article  CAS  PubMed  Google Scholar 

  26. Hamada T, Sale DG, MacDougall JD, et al. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol. 2000;88(6):2131–7.

    CAS  PubMed  Google Scholar 

  27. Trimble MH, Harp SS. Postexercise potentiation of the H-reflex in humans. Med Sci Sports Exerc. 1998;30(6):933–41.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki S, Kaiya K, Watanabe S, et al. Contraction-induced potentiation of human motor unit discharge and surface EMG activity. Med Sci Sports Exerc. 1988;20(4):391–5.

    Article  CAS  PubMed  Google Scholar 

  29. Burkett LN, Phillips WT, Ziuraitis J. The best warm-up for the vertical jump in college-age athletic men. J Strength Cond Res. 2005;19(3):673–6.

    PubMed  Google Scholar 

  30. Mahlfeld K, Franke J, Awiszus F. Postcontraction changes of muscle architecture in human quadriceps muscle. Muscle Nerve. 2004;29(4):597–600.

    Article  PubMed  Google Scholar 

  31. Shorten MR. Muscle elasticity and human performance. Med Sport Sci. 1987;25(1):18.

    Google Scholar 

  32. Hutton RS, Atwater SW. Acute and chronic adaptations of muscle proprioceptors in response to increased use. Sports Med. 1992;14(6):406–21.

    Article  CAS  PubMed  Google Scholar 

  33. Henneman E, Somjen G, Carpenter DO. Excitability and inhibitibility of motoneurons of different sizes. J Neurophysiol. 1965;28(3):599–620.

    CAS  PubMed  Google Scholar 

  34. Taylor KL. Fatigue monitoring in high performance sport: a survey of current trends. J Aust Strength Cond. 2012;20(1):12–23.

    Google Scholar 

  35. Bobbert MF, Huijing PA, Van Ingen Schenau GJ. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med Sci Sports Exerc. 1987;19(4):332–8.

    CAS  PubMed  Google Scholar 

  36. Bobbert MF, Huijing PA, Van Ingen Schenau GJ. Drop Jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med Sci Sports Exerc. 1987;19(4):339–46.

    CAS  PubMed  Google Scholar 

  37. Verkhoshansky YV, Siff MC. Supertraining: Verkhoshansky; 2009. p. 456–9, 563–577.

  38. Arabatzi F, Patikas D, Zafeiridis A, et al. The post-activation potentiation effect on squat jump performance: age and sex effect. Pediatr Exerc Sci. 2014;26(2):187–94.

    Article  PubMed  Google Scholar 

  39. Cilli M, Gelen E, Yildiz S, et al. Acute effects of a resisted dynamic warm-up protocol on jumping performance. Biol Sport. 2014;31:277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kavanaugh AA, Ramsey MW, Sands WA, et al. Acute whole-body vibration does not affect static jump performance. Eur J Sport Sci. 2011;11(1):19–25.

    Article  Google Scholar 

  41. Requena B, Saez-Saez de Villarreal E, Gapeyeva H, et al. Relationship between postactivation potentiation of knee extensor muscles, sprinting and vertical jumping performance in professional soccer players. J Strength Cond Res. 2011;25(2):367–73.

    Article  PubMed  Google Scholar 

  42. Rittweger J, Beller G, Felsenberg D. Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol. 2000;20(2):134–42.

    Article  CAS  PubMed  Google Scholar 

  43. Ronnestad BR. Acute effects of various whole-body vibration frequencies on lower-body power in trained and untrained subjects. J Strength Cond Res. 2009;23(4):1309–15.

    Article  PubMed  Google Scholar 

  44. Seitz LB, de Villarreal ESS, Haff GG. The temporal profile of postactivation potentiation is related to strength level. J Strength Cond Res. 2014;28:706–15.

    Article  PubMed  Google Scholar 

  45. Smilios I, Pilianidis T, Sotiropoulos K, et al. Short-term effects of selected exercise and load in contrast training on vertical jump performance. J Strength Cond Res. 2005;19(1):135–9.

    PubMed  Google Scholar 

  46. Suchomel TJ, Sato K, DeWeese BH, et al. Relationships between potentiation effects following ballistic half-squats and bilateral symmetry. Int J Sports Physiol Perform. 2015. doi:10.1123/ijspp.2015-0321.

  47. Suchomel TJ, Sato K, DeWeese BH, et al. Potentiation effects of half-squats performed in a ballistic or non-ballistic manner. J Strength Cond Res. 2015. doi:10.1519/JSC.0000000000001251.

  48. Suchomel TJ, Sato K, DeWeese BH, et al. Potentiation following ballistic and non-ballistic complexes: The effect of strength level. J Strength Cond Res. 2015. doi:10.1519/JSC.0000000000001288.

  49. Sygulla KS, Fountaine CJ. Acute post-activation potentiation effects in NCAA division II female athletes. Int J Exerc Sci. 2014;7(3):212–9.

    PubMed  PubMed Central  Google Scholar 

  50. Weber KR, Brown LE, Coburn JW, et al. Acute effects of heavy-load squats on consecutive squat jump performance. J Strength Cond Res. 2008;22(3):726–30.

    Article  PubMed  Google Scholar 

  51. Young W, Elliott S. Acute effects of static stretching, proprioceptive neuromuscular facilitation stretching, and maximum voluntary contractions on explosive force production and jumping performance. Res Q Exerc Sport. 2001;72(3):273–9.

    Article  CAS  PubMed  Google Scholar 

  52. Andrews TR, Mackey T, Inkrott TA, et al. Effect of hang cleans or squats paired with countermovement vertical jumps on vertical displacement. J Strength Cond Res. 2011;25(9):2448–52.

    Article  PubMed  Google Scholar 

  53. Armstrong WJ, Grinnell DC, Warren GS. The acute effect of whole-body vibration on the vertical jump height. J Strength Cond Res. 2010;24(10):2835–9.

    Article  PubMed  Google Scholar 

  54. Batista MA, Roschel H, Barroso R, et al. Influence of strength training background on postactivation potentiation response. J Strength Cond Res. 2011;25(9):2496–502.

    Article  PubMed  Google Scholar 

  55. Berning JM, Adams KJ, DeBeliso M, et al. Effect of functional isometric squats on vertical jump in trained and untrained men. J Strength Cond Res. 2010;24(9):2285–9.

    Article  PubMed  Google Scholar 

  56. Bogdanis GC, Tsoukos A, Veligekas P, et al. Effects of muscle action type with equal impulse of conditioning activity on postactivation potentiation. J Strength Cond Res. 2014;28(9):2521–8.

    Article  PubMed  Google Scholar 

  57. Bomfim Lima J, Marin D, Barquilha G, et al. Acute effects of drop jump potentiation protocol on sprint and countermovement vertical jump performance. Hum Mov. 2011;12(4):324–30.

  58. Boullosa DA, Abreu L, Beltrame LG, et al. The acute effect of different half squat set configurations on jump potentiation. J Strength Cond Res. 2013;27(8):2059–66.

    Article  PubMed  Google Scholar 

  59. Boullosa DA, Tuimil JL. Postactivation potentiation in distance runners after two different field running protocols. J Strength Cond Res. 2009;23(5):1560–5.

    Article  PubMed  Google Scholar 

  60. Boyd DA, Donald N, Balshaw TG. A comparison of acute countermovement jump responses following functional isometric and dynamic half squats. J Strength Cond Res. 2014;28(12):3363–74.

    Article  PubMed  Google Scholar 

  61. Burns JD, Miller PC, Hall EE. Acute effects of whole body vibration on functional capabilities of skeletal muscle. Retos. 2015;27:180–3.

    Google Scholar 

  62. Chaouachi A, Poulos N, Abed F, et al. Volume, intensity, and timing of muscle power potentiation are variable. Appl Physiol Nutr Metab. 2011;36(5):736–47.

    Article  PubMed  Google Scholar 

  63. Chattong C, Brown LE, Coburn JW, et al. Effect of a dynamic loaded warm-up on vertical jump performance. J Strength Cond Res. 2010;24(7):1751–4.

    Article  PubMed  Google Scholar 

  64. Chen ZR, Wang YH, Peng HT, et al. The acute effect of drop jump protocols with different volumes and recovery time on countermovement jump performance. J Strength Cond Res. 2013;27(1):154–8.

    Article  PubMed  Google Scholar 

  65. Chiu LZF, Salem GJ. Potentiation of vertical jump performance during a snatch pull exercise session. J Appl Biomech. 2012;28:627–35.

    PubMed  Google Scholar 

  66. Clark RA, Bryant AL, Reaburn P. The acute effects of a single set of contrast preloading on a loaded countermovement jump training session. J Strength Cond Res. 2006;20(1):162–6.

    PubMed  Google Scholar 

  67. Cormie P, Deane RS, Triplett NT, et al. Acute effects of whole-body vibration on muscle activity, strength, and power. J Strength Cond Res. 2006;20(2):257–61.

    PubMed  Google Scholar 

  68. Crewther BT, Kilduff LP, Cook CJ, et al. The acute potentiating effects of back squats on athlete performance. J Strength Cond Res. 2011;25(12):3319–25.

    Article  PubMed  Google Scholar 

  69. Crum AJ, Kawamori N, Stone MH, et al. The acute effects of moderately loaded concentric-only quarter squats on vertical jump performance. J Strength Cond Res. 2012;26(4):914–25.

    Article  PubMed  Google Scholar 

  70. de Villarreal ESS, Gonzalez-Badillo JJ, Izquierdo M. Optimal warm-up stimuli of muscle activation to enhance short and long-term acute jumping performance. Eur J Appl Physiol. 2007;100(4):393–401.

    Article  Google Scholar 

  71. Dinsdale A, Bissas A. Completing a prior set of hang cleans does not improve the performance in the vertical jump irrespective of the length of the recovery period [Abstract]. J Strength Cond Res. 2010;24:1. doi:10.1097/01.JSC.0000367096.11499.1c.

  72. El Hage R, Zakhem E, Moussa E, et al. Acute effects of heavy-load squats on consecutive vertical jump performance. Sci Sports. 2011;26(1):44–7.

    Article  Google Scholar 

  73. Esformes JI, Bampouras TM. Effect of back squat depth on lower body post-activation potentiation. J Strength Cond Res. 2013;27(11):2997–3000.

    Article  PubMed  Google Scholar 

  74. Esformes JI, Cameron N, Bampouras TM. Postactivation potentiation following different modes of exercise. J Strength Cond Res. 2010;24(7):1911–6.

    Article  PubMed  Google Scholar 

  75. Evetovich TK, Conley DS, McCawley PF. Post-activation potentiation enhances upper and lower body athletic performance in collegiate men and women athletes. J Strength Cond Res. 2015;29(2):336–42.

    Article  PubMed  Google Scholar 

  76. Faigenbaum AD, McFarland JE, Schwerdtman JA, et al. Dynamic warm-up protocols, with and without a weighted vest, and fitness performance in high school female athletes. J Athl Train. 2006;41(4):357–63.

    PubMed  PubMed Central  Google Scholar 

  77. French DN, Kraemer WJ, Cooke CB. Changes in dynamic exercise performance following a sequence of preconditioning isometric muscle actions. J Strength Cond Res. 2003;17(4):678–85.

    PubMed  Google Scholar 

  78. Fukutani A, Takei S, Hirata K, et al. Influence of the intensity of squat exercises on the subsequent jump performance. J Strength Cond Res. 2014;28(8):2236–43.

    Article  PubMed  Google Scholar 

  79. Garcia-Pinillos F, Soto-Hermoso VM, Latorre-Roman PA. Acute effects of extended interval training on countermovement jump and handgrip strength performance in endurance athletes: Postactivation potentiation. J Strength Cond Res. 2015;29(1):11–21.

    Article  PubMed  Google Scholar 

  80. Gonzalez-Rave JM, Machado L, Navarro-Valdivielso F, et al. Acute effects of heavy-load exercises, stretching exercises, and heavy-load plus stretching exercises on squat jump and countermovement jump performance. J Strength Cond Res. 2009;23(2):472–9.

    Article  PubMed  Google Scholar 

  81. Gourgoulis V, Aggeloussis N, Kasimatis P, et al. Effect of a submaximal half-squats warm-up program on vertical jumping ability. J Strength Cond Res. 2003;17(2):342–4.

    PubMed  Google Scholar 

  82. Hanson ED, Leigh S, Mynark RG. Acute effects of heavy- and light-load squat exercise on the kinetic measures of vertical jumping. J Strength Cond Res. 2007;21(4):1012–7.

    PubMed  Google Scholar 

  83. Hilfiker R, Hubner K, Lorenz T, et al. Effects of drop jumps added to the warm-up of elite sport athletes with a high capacity for explosive force development. J Strength Cond Res. 2007;21(2):550–5.

    PubMed  Google Scholar 

  84. Hirayama K. Acute effects of an ascending intensity squat protocol on vertical jump performance. J Strength Cond Res. 2014;28(5):1284–8.

    Article  PubMed  Google Scholar 

  85. Jensen RL, Ebben WP. Kinetic analysis of complex training rest interval effect on vertical jump performance. J Strength Cond Res. 2003;17(2):345–9.

    PubMed  Google Scholar 

  86. Jones P, Lees A. A biomechanical analysis of the acute effects of complex training using lower limb exercises. J Strength Cond Res. 2003;17(4):694–700.

    PubMed  Google Scholar 

  87. Khamoui AV, Brown LE, Coburn JW, et al. Effect of potentiating exercise volume on vertical jump parameters in recreationally trained men. J Strength Cond Res. 2009;23(5):1465–9.

    Article  PubMed  Google Scholar 

  88. Kilduff LP, Cunningham DJ, Owen NJ, et al. Effect of postactivation potentiation on swimming starts in international sprint swimmers. J Strength Cond Res. 2011;25(9):2418–23.

    Article  PubMed  Google Scholar 

  89. Kilduff LP, Owen N, Bevan H, et al. Influence of recovery time on post-activation potentiation in professional rugby players. J Sports Sci. 2008;26(8):795–802.

    Article  PubMed  Google Scholar 

  90. Lamont HS, Cramer JT, Bemben DA, et al. The acute effect of whole-body low-frequency vibration on countermovement vertical jump performance in college-aged men. J Strength Cond Res. 2010;24(12):3433–42.

    Article  PubMed  Google Scholar 

  91. Latorre-Román PA, García-Pinillos F, Martínez-López EJ, et al. Concurrent fatigue and postactivation potentiation during extended interval training in long-distance runners. Mot Rev Educ Fís. 2014;20(4):423–30.

  92. Lowery RP, Duncan NM, Loenneke JP, et al. The effects of potentiating stimuli intensity under varying rest periods on vertical jump performance and power. J Strength Cond Res. 2012;26(12):3320–5.

    Article  PubMed  Google Scholar 

  93. Mangus BC, Takahashi M, Mercer JA, et al. Investigation of vertical jump performance after completing heavy squat exercises. J Strength Cond Res. 2006;20(3):597–600.

    PubMed  Google Scholar 

  94. Mitchell CJ, Sale DG. Enhancement of jump performance after a 5-RM squat is associated with postactivation potentiation. Eur J Appl Physiol. 2011;111(8):1957–63.

    Article  PubMed  Google Scholar 

  95. Moir GL, Mergy D, Witmer C, et al. The acute effects of manipulating volume and load of back squats on countermovement vertical jump performance. J Strength Cond Res. 2011;25(6):1486–91.

    Article  PubMed  Google Scholar 

  96. Mola JN, Bruce-Low SS, Burnet SJ. Optimal recovery time for postactivation potentiation in professional soccer players. J Strength Cond Res. 2014;28(6):1529–37.

    Article  PubMed  Google Scholar 

  97. Naclerio F, Faigenbaum AD, Larumbe-Zabala E, et al. Effectiveness of different postactivation potentiation protocols with and without whole body vibration on jumping performance in college athletes. J Strength Cond Res. 2014;28(1):232–9.

    Article  PubMed  Google Scholar 

  98. Needham RA, Morse CI, Degens H. The acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. J Strength Cond Res. 2009;23(9):2614–20.

    Article  PubMed  Google Scholar 

  99. Reardon D, Hoffman JR, Mangine GT, et al. Do acute changes in muscle architecture affect post-activation potentiation? J Sports Sci Med. 2014;13:483–92.

    PubMed  PubMed Central  Google Scholar 

  100. Rixon KP, Lamont HS, Bemben MG. Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. J Strength Cond Res. 2007;21(2):500–5.

    PubMed  Google Scholar 

  101. Robbins DW, Docherty D. Effect of loading on enhancement of power performance over three consecutive trials. J Strength Cond Res. 2005;19(4):898–902.

    PubMed  Google Scholar 

  102. Scott SL, Docherty D. Acute effects of heavy preloading on vertical and horizontal jump performance. J Strength Cond Res. 2004;18(2):201–5.

    PubMed  Google Scholar 

  103. Sotiropoulos K, Smilios I, Christou M, et al. Effects of warm-up on vertical jump performance and muscle electrical activity using half-squats at low and moderate intensity. J Sports Sci Med. 2010;9(2):326–31.

    PubMed  PubMed Central  Google Scholar 

  104. Stieg JL, Faulkinbury KJ, Tran TT, et al. Acute effects of depth jump volume on vertical jump performance in collegiate women soccer players. Kinesiology. 2011;43(1):25–30.

    Google Scholar 

  105. Till KA, Cooke C. The effects of postactivation potentiation on sprint and jump performance of male academy soccer players. J Strength Cond Res. 2009;23(7):1960–7.

    Article  PubMed  Google Scholar 

  106. Tobin DP, Delahunt E. The acute effect of a plyometric stimulus on jump performance in professional rugby players. J Strength Cond Res. 2014;28(2):367–72.

    Article  PubMed  Google Scholar 

  107. Tsolakis C, Bogdanis GC. Influence of type of muscle contraction and gender on postactivation potentiation of upper and lower limb explosive performance in elite fencers. J Sports Sci Med. 2011;10(3):577–83.

    PubMed  PubMed Central  Google Scholar 

  108. Turner AP, Sanderson MF, Attwood LA. The acute effect of different frequencies of whole-body vibration on countermovement jump performance. J Strength Cond Res. 2011;25(6):1592–7.

    Article  PubMed  Google Scholar 

  109. Veligekas P, Bogdanis GC, Tsoukos A, et al. Effect of maximum isometric contractions with different knee angles on postactivation potentiation in power athletes. Med Sci Sports Exerc. 2013;45(5):S507.

    Google Scholar 

  110. West D, Cunningham D, Bevan H, et al. Influence of active recovery on professional rugby union player’s ability to harness postactivation potentiation. J Sports Med Phys Fitness. 2013;53(2):203–8.

    CAS  PubMed  Google Scholar 

  111. Witmer CA, Davis SE, Moir GL. The acute effects of back squats on vertical jump performance in men and women. J Sports Sci Med. 2010;9(2):206–13.

    PubMed  PubMed Central  Google Scholar 

  112. Young WB, Jenner A, Griffiths K. Acute enhancement of power performance from heavy load squats. J Strength Cond Res. 1998;12(2):82–4.

    Google Scholar 

  113. Bergmann J, Kramer A, Gruber M. Repetitive hops induce postactivation potentiation in triceps surae as well as an increase in the jump height of subsequent maximal drop jumps. PloS One. 2013;8(10):e77705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ham DJ, Knez WL, Young WB. A deterministic model of the vertical jump: Implications for training. J Strength Cond Res. 2007;21(3):967–72.

    PubMed  Google Scholar 

  115. Baltzopoulos V, Gleeson NP. Skeletal muscle function. In: Eston RG, Reilly T, editors. Kinanthropometry and exercise physiology laboratory manual: tests, procedures and data. London: Routledge; 2001. p. 7–35.

    Google Scholar 

  116. Chiu LZF, Fry AC, Weiss LW, et al. Postactivation potentiation response in athletic and recreationally trained individuals. J Strength Cond Res. 2003;17(4):671–7.

    PubMed  Google Scholar 

  117. Koch AJ, O’Bryant HS, Stone ME, et al. Effect of warm-up on the standing broad jump in trained and untrained men and women. J Strength Cond Res. 2003;17(4):710–4.

    PubMed  Google Scholar 

  118. Jo E, Judelson DA, Brown LE, et al. Influence of recovery duration after a potentiating stimulus on muscular power in recreationally trained individuals. J Strength Cond Res. 2010;24(2):343–7.

    Article  PubMed  Google Scholar 

  119. Bullock N, Comfort P. An investigation into the acute effects of depth jumps on maximal strength performance. J Strength Cond Res. 2011;25(11):3137–41.

    Article  PubMed  Google Scholar 

  120. Ruben RM, Molinari MA, Bibbee CA, et al. The acute effects of an ascending squat protocol on performance during horizontal plyometric jumps. J Strength Cond Res. 2010;24(2):358–69.

    Article  PubMed  Google Scholar 

  121. Terzis G, Karampatsos G, Kyriazis T, et al. Acute effects of countermovement jumping and sprinting on shot put performance. J Strength Cond Res. 2012;26(3):684–90.

    Article  PubMed  Google Scholar 

  122. Miyamoto N, Wakahara T, Ema R, et al. Further potentiation of dynamic muscle strength after resistance training. Med Sci Sports Exerc. 2013;45(7):1323–30.

    Article  PubMed  Google Scholar 

  123. Staron RS, Hagerman FC, Hikida RS, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000;48(5):623–9.

    Article  CAS  PubMed  Google Scholar 

  124. Terzis G, Spengos K, Karampatsos G, et al. Acute effect of drop jumping on throwing performance. J Strength Cond Res. 2009;23(9):2592–7.

    Article  PubMed  Google Scholar 

  125. Gullich A, Schmidtbleicher D. MVC-induced short-term potentiation of explosive force. New Stud Athletics. 1996;11(4):67–81.

    Google Scholar 

  126. O’Leary DD, Hope K, Sale DG. Posttetanic potentiation of human dorsiflexors. J Appl Physiol. 1997;83(6):2131–8.

    PubMed  Google Scholar 

  127. Vandenboom R, Grange RW, Houston ME. Threshold for force potentiation associated with skeletal myosin phosphorylation. Am J Physiol. 1993;265(6 Pt 1):C1456–62.

    CAS  PubMed  Google Scholar 

  128. Vandervoort AA, Quinlan J, McComas AJ. Twitch potentiation after voluntary contraction. Exp Neurol. 1983;81(1):141–52.

    Article  CAS  PubMed  Google Scholar 

  129. Hamada T, Sale DG, MacDougall JD, et al. Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand. 2003;178(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  130. Radcliffe JC, Radcliffe JL. Effects of different warm-up protocols on peak power output during a single response jump task [Abstract]. Med Sci Sports Exerc. 1996;28:S189.

    Article  Google Scholar 

  131. O’Leary DD, Hope K, Sale DG. Influence of gender on post-tetanic potentiation in human dorsiflexors. Can J Physiol Pharmacol. 1998;76(7–8):772–9.

    Article  PubMed  Google Scholar 

  132. Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol. 1976;40(1):12–6.

    CAS  PubMed  Google Scholar 

  133. Aagaard P, Andersen JL. Correlation between contractile strength and myosin heavy chain isoform composition in human skeletal muscle. Med Sci Sports Exerc. 1998;30(8):1217–22.

    Article  CAS  PubMed  Google Scholar 

  134. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338(1):37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Folland JP, Williams AG. The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    Article  PubMed  Google Scholar 

  136. Fukunaga T, Ichinose Y, Ito M, et al. Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol. 1997;82(1):354–8.

    CAS  PubMed  Google Scholar 

  137. Kubo K, Kanehisa H, Kawakami Y, et al. Effects of repeated muscle contractions on the tendon structures in humans. Eur J Appl Physiol. 2001;84(1–2):162–6.

    CAS  PubMed  Google Scholar 

  138. Zehr EP. Training-induced adaptive plasticity in human somatosensory reflex pathways. J Appl Physiol. 2006;101(6):1783–94.

    Article  PubMed  Google Scholar 

  139. Duclay J, Martin A. Evoked H-reflex and V-wave responses during maximal isometric, concentric, and eccentric muscle contraction. J Neurophysiol. 2005;94(5):3555–62.

    Article  PubMed  Google Scholar 

  140. Nishihira Y, Iwasaki T, Hatta A, et al. Effect of whole body vibration stimulus and voluntary contraction on motoneuron pool. Adv Exerc Sport Physiol. 2002;8(4):83–6.

    Google Scholar 

  141. Baudry S, Klass M, Duchateau J. Postactivation potentiation influences differently the nonlinear summation of contractions in young and elderly adults. J Appl Physiol. 2005;98(4):1243–50.

    Article  PubMed  Google Scholar 

  142. Wilcock IM, Whatman C, Harris N, et al. Vibration training: could it enhance the strength, power, or speed of athletes? J Strength Cond Res. 2009;23(2):593–603.

    PubMed  Google Scholar 

  143. Kemertzis MA, Lythgo ND, Morgan DL, et al. Ankle flexors produce peak torque at longer muscle lengths after whole-body vibration. Med Sci Sports Exerc. 2008;40(11):1977–83.

    Article  PubMed  Google Scholar 

  144. Fernandes IA, Kawchuk G, Bhambhani Y, et al. Does whole-body vibration acutely improve power performance via increased short latency stretch reflex response? J Sci Med Sport. 2013;16(4):360–4.

    Article  PubMed  Google Scholar 

  145. Ritzmann R, Gollhofer A, Kramer A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur J Appl Physiol. 2013;113(1):1–11.

    Article  PubMed  Google Scholar 

  146. Ritzmann R, Kramer A, Gollhofer A, et al. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sports. 2013;23(3):331–9.

    Article  CAS  PubMed  Google Scholar 

  147. Wang H-H, Chen W-H, Liu C, et al. Whole-body vibration combined with extra-load training for enhancing the strength and speed of track and field athletes. J Strength Cond Res. 2014;28(9):2470–7.

    Article  PubMed  Google Scholar 

  148. Zajac FE. Muscle coordination of movement: a perspective. J Biomech. 1993;26:109–24.

    Article  PubMed  Google Scholar 

  149. Gruber M, Gruber SBH, Taube W, et al. Differential effects of ballistic versus sensorimotor training on rate of force development and neural activation in humans. J Strength Cond Res. 2007;21(1):274–82.

    Article  PubMed  Google Scholar 

  150. Cochrane DJ. The potential neural mechanisms of acute indirect vibration. J Sports Sci Med. 2011;10(1):19–30.

    PubMed  PubMed Central  Google Scholar 

  151. Kurokawa S, Fukunaga T, Nagano A, et al. Interaction between fascicles and tendinous structures during counter movement jumping investigated in vivo. J Appl Physiol. 2003;95(6):2306–14.

    Article  PubMed  Google Scholar 

  152. Eckhardt H, Wollny R, Müller H, et al. Enhanced myofiber recruitment during exhaustive squatting performed as whole-body vibration exercise. J Strength Cond Res. 2011;25(4):1120–5.

    Article  PubMed  Google Scholar 

  153. Fratini A, Cesarelli M, Bifulco P, et al. Relevance of motion artifact in electromyography recordings during vibration treatment. J Electromyogr Kinesiol. 2009;19(4):710–8.

    Article  PubMed  Google Scholar 

  154. Maffiuletti NA, Martin A, Babault N, et al. Electrical and mechanical Hmax-to-Mmax ratio in power-and endurance-trained athletes. J Appl Physiol. 2001;90(1):3–9.

    CAS  PubMed  Google Scholar 

  155. Earles DR, Dierking JT, Robertson CT, et al. Pre-and post-synaptic control of motoneuron excitability in athletes. Med Sci Sports Exerc. 2002;34(11):1766–72.

    Article  PubMed  Google Scholar 

  156. Koceja DM, Davison E, Robertson CT. Neuromuscular characteristics of endurance-and power-trained athletes. Res Quart Exerc Sport. 2004;75(1):23–30.

    Article  Google Scholar 

  157. Armstrong WJ, Grinnell DC, Warren GS. The acute effect of whole-body vibration on the vertical jump height. J Strength Cond Res. 2010;24(10):2835–9.

    Article  PubMed  Google Scholar 

  158. Hamada T, Sale DG, MacDougall JD. Postactivation potentiation in endurance-trained male athletes. Med Sci Sports Exerc. 2000;32(2):403–11.

    Article  CAS  PubMed  Google Scholar 

  159. Wilson JM, Duncan NM, Marin PJ, et al. Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res. 2013;27(3):854–9.

    Article  PubMed  Google Scholar 

  160. Young WB. Neural activation and performance in power events. Mod Athl Coach. 1992;30:29–31.

    Google Scholar 

  161. Koziris LP. Postactivation potentiation: Sometimes more fatigue than potentiation. Strength Cond J. 2012;34(6):75–6.

    Article  Google Scholar 

  162. Stone MH, Stone M, Sands WA. Principles and Practice of Resistance Training. Champaign: Human Kinetics; 2007.

    Google Scholar 

  163. Maloney SJ, Turner AN, Fletcher IM. Ballistic exercise as a pre-activation stimulus: a review of the literature and practical applications. Sports Med. 2014;44(10):1347–59.

    Article  PubMed  Google Scholar 

  164. Newton RU, Kraemer WJ, Häkkinen K, et al. Kinematics, kinetics, and muscle activation during explosive upper body movements. J Appl Biomech. 1996;12:31–43.

    Google Scholar 

  165. Lake JP, Lauder MA, Smith NA, et al. A comparison of ballistic and non-ballistic lower-body resistance exercise and the methods used to identify their positive lifting phases. J Appl Biomech. 2012;28(4):431–7.

    PubMed  Google Scholar 

  166. Seitz LB, Trajano GS, Haff GG. The back squat and the power clean: elicitation of different degrees of potentiation. Int J Sports Physiol Perform. 2014;9(4):643–9.

    Article  PubMed  Google Scholar 

  167. Masiulis N, Skurvydas A, Kamandulis S, et al. Post-activation potentiation and fatigue of quadriceps muscle after continuous isometric contractions at maximal and submaximal intensities. Ugdym Kūno Kult Sportas. 2007;4(67):56–63.

    Google Scholar 

  168. Rassier DE, Macintosh BR. Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res. 2000;33(5):499–508.

    Article  CAS  PubMed  Google Scholar 

  169. Fowles JR, Green HJ. Coexistence of potentiation and low-frequency fatigue during voluntary exercise in human skeletal muscle. Can J Physiol Pharmacol. 2003;81(12):1092–100.

    Article  CAS  PubMed  Google Scholar 

  170. Zatsiorsky V. Science and practice of strength training. Champaign: Human Kinetics; 1995.

    Google Scholar 

  171. Gossen ER, Sale DG. Effect of postactivation potentiation on dynamic knee extension performance. Eur J Appl Physiol. 2000;83(6):524–30.

    Article  CAS  PubMed  Google Scholar 

  172. Requena B, Gapeyeva H, Garcia I, et al. Twitch potentiation after voluntary versus electrically induced isometric contractions in human knee extensor muscles. Eur J Appl Physiol. 2008;104(3):463–72.

    Article  PubMed  Google Scholar 

  173. Houston ME, Grange RW. Myosin phosphorylation, twitch potentiation, and fatigue in human skeletal muscle. Can J Physiol Pharmacol. 1990;68(7):908–13.

    Article  CAS  PubMed  Google Scholar 

  174. Gilbert G, Lees A, Graham-Smith P. Temporal profile of post-tetanic potentiation of muscle force characteristics after repeated maximal exercise. J Sports Sci. 2001;19:6.

    Google Scholar 

  175. Gouvêa AL, Fernandes IA, César EP, et al. The effects of rest intervals on jumping performance: a meta-analysis on post-activation potentiation studies. J Sports Sci. 2013;31(5):459–67.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Suchomel.

Ethics declarations

No sources of funding were used to assist in the preparation of this article.

Conflicts of interest

Timothy Suchomel, Hugh Lamont, and Gavin Moir declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchomel, T.J., Lamont, H.S. & Moir, G.L. Understanding Vertical Jump Potentiation: A Deterministic Model. Sports Med 46, 809–828 (2016). https://doi.org/10.1007/s40279-015-0466-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0466-9

Keywords

Navigation