Skip to main content
Log in

Fructose–Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Sports beverages formulated with fructose and glucose composites enhance exogenous carbohydrate oxidation, gut comfort, and endurance performance, relative to single-saccharide formulations. However, a critical review of performance data is absent. We conducted a comprehensive literature review of the effect of fructose:glucose/maltodextrin (glucose or maltodextrin) composites versus glucose/maltodextrin on endurance performance. Mechanistic associations were drawn from effects on carbohydrate metabolism, gut, and other sensory responses. Overall, 14 studies contained estimates of 2.5–3.0-h endurance performance in men, mostly in cycling. Relative to isocaloric glucose/maltodextrin, the ingestion of 0.5–1.0:1-ratio fructose:glucose/maltodextrin beverages at 1.3–2.4 g carbohydrate·min−1 produced small to moderate enhancements (1–9 %; 95 % confidence interval 0–19) in mean power. When 0.5:1-ratio composites were ingested at ≥1.7 g·min−1, improvements were larger (4–9 %; 2–19) than at 1.4–1.6 g·min−1 (1–3 %; 0–6). The effect sizes at higher ingestion rates were associated with increased exogenous carbohydrate oxidation rate, unilateral fluid absorption, and lower gastrointestinal distress, relative to control. Solutions containing a 0.7–1.0:1 fructose:glucose ratio were absorbed fastest; when ingested at 1.5–1.8 g·min−1, a 0.8:1 fructose:glucose ratio conveyed the highest exogenous carbohydrate energy and endurance power compared with lower or higher fructose:glucose ratios. To conclude, ingesting 0.5–1.0:1-ratio fructose:glucose/maltodextrin beverages at 1.3–2.4 g·min−1 likely benefits 2.5–3.0 h endurance power versus isocaloric single saccharide. Further ratio and dose–response research should determine if meaningful performance benefits of composites accrue with ingestion <1.3 g·min−1, relative to higher doses. Effects should be established in competition, females, other food formats, and in heat-stress and ultra-endurance exercise where carbohydrate demands may differ from the current analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20(7–8):669–77.

    Article  CAS  PubMed  Google Scholar 

  2. Jeukendrup AE. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. Curr Opin Clin Nutr Metab Care. 2010;13(4):452–7.

    Article  CAS  PubMed  Google Scholar 

  3. Vandenbogaerde TJ, Hopkins WG. Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med. 2011;41(9):773–92.

    Article  PubMed  Google Scholar 

  4. Valeriani A. The need for carbohydrate intake during endurance exercise. Sports Med. 1991;12(6):349–58.

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton MT, Gonzalez-Alonso J, Montain SJ, Coyle EF. Fluid replacement and glucose infusion during exercise prevent cardiovascular drift. J Appl Physiol. 1991;71(3):871–7.

    CAS  PubMed  Google Scholar 

  6. Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilisation during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.

    CAS  PubMed  Google Scholar 

  7. Brouns F, Saris W, Schneider H, Brouns F, Saris W, Schneider H. Rationale for upper limits of electrolyte replacement during exercise. Int J Sport Nutr. 1992;2(3):229–38.

    CAS  PubMed  Google Scholar 

  8. Shi X, Passe DH. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis. Int J Sport Nutr Exerc Metabol. 2010;20(5):427–42.

    Google Scholar 

  9. Jentjens RL, Achten J, Jeukendrup AE. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36(9):1551–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wallis GA, Rowlands DS, Shaw C, Jentjens RL, Jeukendrup AE. Oxidation of combined ingestion of maltodextrins and fructose during exercise. Med Sci Sports Exerc. 2005;37(3):426–32.

    Article  CAS  PubMed  Google Scholar 

  11. Adopo E, Peronnet F, Massicotte D, Brisson GR, Hillaire-Marcel C. Respective oxidation of exogenous glucose and fructose given in the same drink during exercise. J Appl Physiol. 1994;76(3):1014–9.

    CAS  PubMed  Google Scholar 

  12. O’Brien WJ, Rowlands DS. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. Am J Physiol Gastrointest Liver Physiol. 2011;300(1):G181–9.

    Article  PubMed  CAS  Google Scholar 

  13. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.

    Article  CAS  PubMed  Google Scholar 

  14. Rowlands DS, Swift M, Ros M, Green JG. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 2012;37(3):425–36.

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien WJ, Stannard SR, Clarke JA, Rowlands DS. Fructose–maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc. 2013;45(9):1814–24.

    Article  PubMed  CAS  Google Scholar 

  16. Gisolfi CV, Duchman SM. Guidelines for optimal replacement beverages for different athletic events. Med Sci Sports Exerc. 1992;24(6):679–87.

    Article  CAS  PubMed  Google Scholar 

  17. Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(Suppl 1):25–33.

    Article  PubMed Central  Google Scholar 

  18. Macdermid PW, Stannard S, Rankin D, Shillington D. A comparative analysis between the effects of galactose and glucose supplementation on endurance performance. Int J Sport Nutr Exerc Metab. 2012;22(1):24–30.

    CAS  PubMed  Google Scholar 

  19. Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19(6):597–604.

    Article  CAS  PubMed  Google Scholar 

  20. Murray R, Seifert JG, Eddy DE, Paul GL, Halaby GA. Carbohydrate feeding and exercise: effect of beverage carbohydrate content. Eur J Appl Physiol Occup Physiol. 1989;59(1–2):152–8.

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. J Appl Physiol (1985). 1989;67(5):1843–9.

    CAS  Google Scholar 

  22. Mitchell JB, Costill DL, Houmard JA, Flynn MG, Fink WJ, Beltz JD. Effects of carbohydrate ingestion on gastric emptying and exercise performance. Med Sci Sports Exerc. 1988;20(2):110–5.

    Article  CAS  PubMed  Google Scholar 

  23. Rowlands DS, Thorburn MS, Thorp RM, Broadbent SM, Shi X. Effect of graded fructose co-ingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 2008;104:1709–19.

    Article  CAS  PubMed  Google Scholar 

  24. Murray R, Paul GL, Seifert JG, Eddy DE, Halaby GA. The effects of glucose, fructose, and sucrose ingestion during exercise. Med Sci Sports Exerc. 1989;21(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  25. Craig BW. The influence of fructose feeding on physical performance. Am J Clin Nutr. 1993;58(5 Suppl):815S–9S.

    CAS  PubMed  Google Scholar 

  26. Triplett D, Doyle D, Rupp J, Benardot D. An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sport Nutr Exerc Metab. 2010;20(2):122–31.

    CAS  PubMed  Google Scholar 

  27. Tarpey MD, Roberts JD, Kass LS, Tarpey RJ, Roberts MG. The ingestion of protein with a maltodextrin and fructose beverage on substrate utilisation and exercise performance. Appl Physiol Nutr Metab. 2013;38(12):1245–53.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts JD, Tarpey MD, Kass LS, Tarpey RJ, Roberts MG. Assessing a commercially available sports drink on exogenous carbohydrate oxidation, fluid delivery and sustained exercise performance. J Int Soc Sports Nutr. 2014;11(1):1–14.

    Article  CAS  Google Scholar 

  29. Baur DA, Schroer AB, Luden ND, Womack CJ, Smyth SA, Saunders MJ. Glucose-fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc. 2014;46(9):1778–86.

    Article  CAS  PubMed  Google Scholar 

  30. Wilson PB, Ingraham SJ. Glucose-fructose likely improves gastrointestinal comfort and endurance running performance relative to glucose-only. Scand J Med Sci Sports. 2015. doi:10.1111/sms.12386 [Epub ahead of print].

    PubMed  Google Scholar 

  31. Pfeiffer B, Cotterill A, Grathwohl D, Stellingwerff T, Jeukendrup AE. The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run. Int J Sports Nutr Exerc Metab. 2009;19(5):485–503.

    CAS  Google Scholar 

  32. Paton CD, Hopkins WG. Variation in performance of elite cyclists from race to race. Eur J Sport Sci. 2006;6(1):25–31.

    Article  Google Scholar 

  33. Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472–85.

    Article  CAS  PubMed  Google Scholar 

  34. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sport Exerc. 2009;41(1):3–13.

    Article  Google Scholar 

  35. Smith JW, Pascoe DD, Passe D, Ruby BC, Stewart LK, Baker LB, et al. Curvilinear dose-response relationship of carbohydrate (0–120 g·h−1) and performance. Med Sci Sports Exerc. 2013;45(2):336–41.

    Article  CAS  PubMed  Google Scholar 

  36. Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96(4):1277–84.

    Article  CAS  PubMed  Google Scholar 

  37. Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol. 1994;76(6):2364–72.

    CAS  PubMed  Google Scholar 

  38. Jentjens RL, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 2004;96(4):1285–91.

    Article  CAS  PubMed  Google Scholar 

  39. Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29(6):407–24.

    Article  CAS  PubMed  Google Scholar 

  40. Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.

    Article  CAS  PubMed  Google Scholar 

  41. Ahlborg G, Bergstrom J, Brohult J, Hultman E, Maschio G. Human muscle glycogen content and capacity for prolonged exercise after different diets. Foersvarmedicin. 1967;3:85–99.

    Google Scholar 

  42. Currell K, Urch J, Cerri E, Jentjens RLP, Blannin AK, Jeukendrup AE. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. Appl Physiol Nutr Metab. 2008;33:1067–72.

    Article  CAS  PubMed  Google Scholar 

  43. Jentjens RL, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.

    Article  CAS  PubMed  Google Scholar 

  44. Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. Scand J Med Sci Sports. 2010;20(1):112–21.

    Article  CAS  PubMed  Google Scholar 

  45. Coggan AR, Coyle EF. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol. 1987;63:2388–95.

    CAS  PubMed  Google Scholar 

  46. Coggan AR, Coyle EF. Metabolism and performance following carbohydrate ingestion late in exercise. Med Sci Sports Exerc. 1989;21(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  47. Coyle EF, Coggan AR. Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Med. 1984;1(6):446–58.

    Article  CAS  PubMed  Google Scholar 

  48. Wallis GA, Dawson R, Achten J, Webber J, Jeukendrup AE. Metabolic response to carbohydrate ingestion during exercise in males and females. Am J Physiol Endocrinol Metab. 2006;290(4):E708–15.

    Article  CAS  PubMed  Google Scholar 

  49. Vist GE, Maughan RJ. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol. 1995;486:523–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Maughan RJ, Leiper JB. Limitations to fluid replacement during exercise. Can J Appl Physiol. 1999;24(2):173–87.

    Article  CAS  PubMed  Google Scholar 

  51. Neufer P, Costill D, Fink W, Kirwan J, Fielding R, Flynn M. Effects of exercise and carbohydrate consumption on gastric emptying. Med Sci Sports Exerc. 1986;18:658–62.

    Article  CAS  PubMed  Google Scholar 

  52. Shi X, Summers RW, Schedl HP, Flanagan SW, Chang R, Gisolfi CV. Effects of carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports Exerc. 1995;27:1607–15.

    CAS  PubMed  Google Scholar 

  53. Rehrer NJ, Wagenmakers AJ, Beckers EJ, Halliday D, Leiper JB, Brouns F, et al. Gastric emptying, absorption and carbohydrate oxidation during prolonged exercise. J Appl Physiol. 1992;72:468–75.

    CAS  PubMed  Google Scholar 

  54. Rumessen JJ, Gudmand-Høyer E. Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides. Gut. 1986;27(10):1161–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Truswell AS, Seach JM, Thorburn AW. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am J Clin Nutr. 1988;48(6):1424–30.

    CAS  PubMed  Google Scholar 

  56. Shi X, Schedl HP, Summers RM, Lambert GP, Chang RT, Xia T, et al. Fructose transport mechanisms in humans. Gastroenterology. 1997;113(4):1171–9.

    Article  CAS  PubMed  Google Scholar 

  57. Wright EM, Martin GM, Turk E. Intestinal absorption in health and disease—sugars. Best Pract Res Clin Gastroenterol. 2003;17:943–56.

    Article  CAS  PubMed  Google Scholar 

  58. Shi X, Summers RW, Schedl HP, Chang RT, Lambert GP, Gisolfi CV. Effects of solution osmolality on absorption of select fluid replacement solutions in human duodenojejunum. J Appl Physiol. 1994;77(3):1178–84.

    CAS  PubMed  Google Scholar 

  59. Davis JM, Burgess WA, Slentz CA, Bartoli WP. Fluid availability of sports drinks differing in carbohydrate type and concentration. Am J Clin Nutr. 1990;51(6):1054–7.

    CAS  PubMed  Google Scholar 

  60. Hawley JA, Bosch AN, Weltan SM, Dennis SC, Noakes TD. Effects of glucose ingestion or glucose infusion on fuel substrate kinetics during prolonged exercise. Eur J Appl Physiol. 1994;68:381–9.

    Article  CAS  Google Scholar 

  61. Jeukendrup AE, Wagenmakers AJ, Stegen JH, Gijsen AP, Brouns F, Saris WH. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol. 1999;276(4 Pt 1):E672–83.

    CAS  PubMed  Google Scholar 

  62. Decombaz J, Jentjens R, Ith M, Scheurer E, Buehler T, Jeukendrup A, et al. Fructose and galactose enhance postexercise human liver glycogen synthesis. Med Sci Sports Exerc. 2011;43(10):1964–71.

    CAS  PubMed  Google Scholar 

  63. Kellett GL, Brot-Laroche E. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes. 2005;54(10):3056–62.

    Article  CAS  PubMed  Google Scholar 

  64. Rolston DDK, Mathan VI. Jejunal and ileal glucose-stimulated water and sodium absorption in tropical enteropath: implications for oral rehydration therapy. Digestion. 1990;46:55–60.

    Article  CAS  PubMed  Google Scholar 

  65. Duchman SM, Ryan AJ, Schedl HP, Summers RW, Bleiler TL, Gisolfi CV. Upper limit for intestinal absorption of a dilute glucose solution in men at rest. Med Sci Sport Exerc. 1997;29(4):482–8.

    Article  CAS  Google Scholar 

  66. Helander HF, Fändriks L. Surface area of the digestive tract—revisited. Scand J Gastroenterol. 2014;49(6):681–9.

    Article  PubMed  Google Scholar 

  67. Leturque A, Brot-Laroche E, Le Gall M, Stolarczyk E, Tobin V. The role of GLUT2 in dietary sugar handling. J Physiol Biochem. 2005;61(4):529–37.

    Article  CAS  PubMed  Google Scholar 

  68. Kellett GL, Helliwell PA. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J. 2000;350(1):155–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. DeBosch BJ, Chi M, Moley KH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012;153(9):4181–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Corpe CP, Burant CF, Hoekstra JH. Intestinal fructose absorption: clinical and molecular aspects. J Pediatr Gastroenterol Nutr. 1999;28(4):364–74.

    Article  CAS  PubMed  Google Scholar 

  71. Miyamoto K, Hase K, Takagi T, Fujii T, Taketani Y, Minami H, et al. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem J. 1993;295(Pt 1):211–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Cui XL, Jiang L, Ferraris RP. Regulation of rat intestinal GLUT2 mRNA abundance by luminal and systemic factors. Biochim Biophys Acta. 2003;1612(2):178–85.

    Article  CAS  PubMed  Google Scholar 

  73. Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, et al. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr. 2010;92(5):1071–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ahlborg G, Bjorkman O. Splanchnic and muscle fructose metabolism during and after exercise. J Appl Physiol. 1990;69(4):1244–51.

    CAS  PubMed  Google Scholar 

  75. Hulston CJ, Wallis GA, Jeukendrup AE. Exogenous CHO oxidation with glucose plus fructose intake during exercise. Med Sci Sports Exerc. 2009;41:357–63.

    Article  CAS  PubMed  Google Scholar 

  76. Jentjens RL, Jeukendrup AE. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Brit J Nutr. 2005;93:485–92.

    Article  CAS  PubMed  Google Scholar 

  77. Brouns F. Functional foods for athletes. Trends Food Sci Technol. 1997;8(11):358–63.

    Article  CAS  Google Scholar 

  78. Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58(5):754S–65S.

    CAS  PubMed  Google Scholar 

  79. Bjorkman O, Crump M, Phillips RW. Intestinal metabolism of orally administered glucose and fructose in Yucatan miniature swine. J Nutr. 1984;114:1413–20.

    CAS  PubMed  Google Scholar 

  80. Rajas F, Bruni N, Montano S, Zitoun C, Mithieux G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: regulation of expression in fasted and diabetic rats. Gastroenterology. 1999;117:132–9.

    Article  CAS  PubMed  Google Scholar 

  81. Hundal HS, Darakhshan F, Kristiansen S, Blakemore SJ, Richter EA. GLUT5 expression and fructose transport in human skeletal muscle. Adv Exp Med Biol. 1998;441:35–45.

    Article  CAS  PubMed  Google Scholar 

  82. Froesch ER, Ginsberg JL. Fructose metabolism of adipose tissue: I. Comparison of fructose and glucose metabolism in epididymal adipose tissue of normal rats. J Biol Chem. 1962;237(11):3317–24.

    CAS  PubMed  Google Scholar 

  83. Zierath JR, Nolte LA, Wahlström E, Galuska D, Shepherd PR, Kahn BB, et al. Carrier-mediated fructose uptake significantly contributes to carbohydrate metabolism in human skeletal muscle. Biochem J. 1995;311(Pt 2):517–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Rehrer NJ, van Kemenade M, Meester W, Brouns F, Saris WH. Gastrointestinal complaints in relation to dietary intake in triathletes. Int J Sport Nutr. 1992;2(1):48–59.

    CAS  PubMed  Google Scholar 

  85. Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pottgen K, Res P, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344–51.

    Article  CAS  PubMed  Google Scholar 

  86. de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44(1):014–0153.

    Google Scholar 

  87. Thorburn MS, Vistisen B, Thorp RM, Rockell M, Jeukendrup AE, Xuebing X, et al. Attenuated gastric tolerance but no benefit to performance with adaptation to octanoate-rich esterified oils in well-trained male cyclists. J Appl Physiol. 2006;101:1733–43.

    Article  CAS  PubMed  Google Scholar 

  88. Wilmore JH, Morton AR, Gilbey HJ, Wood RJ. Role of taste preference on fluid intake during and after 90 min of running at 60% of VO2max in the heat. Med Sci Sports Exerc. 1998;3(4):587–95.

    Article  Google Scholar 

  89. Casa DJ, Guskiewicz KM, Anderson SA, Courson RW, Heck JF, Jimenez CC, et al. National athletic trainers’ association position statement: preventing sudden death in sports. J Athl Train. 2012;47(1):96–118.

    PubMed Central  PubMed  Google Scholar 

  90. Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587(8):1779–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Jeukendrup AE, Chambers ES. Oral carbohydrate sensing and exercise performance. Curr Opin Clin Nutr Metab Care. 2010;13(4):447–51.

    Article  CAS  PubMed  Google Scholar 

  92. Carter J, Jeukendrup AE, Jones DA. The effect of sweetness on the efficacy of carbohydrate supplementation during exercise in the heat. Can J Appl Physiol. 2005;30(4):379–91.

    Article  PubMed  Google Scholar 

  93. Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sport Exerc. 2004;36(12):2107–11.

    Article  CAS  Google Scholar 

  94. Carter JM, Jeukendrup AE, Mann CH, Jones DA. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc. 2004;36(9):1543–50.

    Article  PubMed  Google Scholar 

  95. Sinclair J, Bottoms L, Flynn C, Bradley E, Alexander G, McCullagh S, et al. The effect of different durations of carbohydrate mouth rinse on cycling performance. Eur J Sport Sci. 2014;14(3):259–64.

    Article  PubMed  Google Scholar 

  96. Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449–61.

    Article  PubMed  Google Scholar 

  97. Tremblay J, Peronnet F, Massicotte D, Lavoie C. Carbohydrate supplementation and sex differences in fuel selection during exercise. Med Sci Sports Exerc. 2010;42(7):1314–23.

    Article  CAS  PubMed  Google Scholar 

  98. Tarnopolsky MA. Gender differences in metabolism; nutrition and supplements. J Sci Med Sport. 2000;3(3):287–98.

    Article  CAS  PubMed  Google Scholar 

  99. Burke LM. Nutritional needs for exercise in the heat. Comp Biochem Physiol. 2001;128(4):735–48.

    Article  CAS  Google Scholar 

  100. Laursen PB, Rhodes EC. Factors affecting performance in an ultraendurance triathlon. Sports Med. 2001;31(3):195–209.

    Article  CAS  PubMed  Google Scholar 

  101. Hoffman MD, Fogard K. Factors related to successful completion of a 161-km ultramarathon. Int J Sports Physiol Perform. 2011;6:25–37.

    PubMed  Google Scholar 

  102. Suzuki A, Okazaki K, Imai D, Takeda R, Naghavi N, Yokoyama H, et al. Thermoregulatory responses are attenuated after fructose but not glucose intake. Med Sci Sports Exerc. 2014;46(7):1452–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Massey University (David Rowlands) received funding from Nestec in 2013 to conduct research on composite-carbohydrate metabolism and performance, under which Stuart Houltham was employed. David Bailey was an employee of Nestec during the preparation of the manuscript. Intertek (Kathy Musa-Veloso and Lina Paulionis) were contracted by Nestec in 2014 to review the research literature on composite-carbohydrate effects on metabolism and performance. Freddy Brown has no conflict of interest. There were no grants associated with the preparation of this manuscript. No author received funding to prepare this manuscript. The views expressed in this review are those of the authors and are independent of the position or policy of Nestec and Intertek Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Rowlands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowlands, D.S., Houltham, S., Musa-Veloso, K. et al. Fructose–Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives. Sports Med 45, 1561–1576 (2015). https://doi.org/10.1007/s40279-015-0381-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0381-0

Keywords

Navigation