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Abstract
Internal validity is often the primary concern for health technology assessment agencies when assessing comparative effec-
tiveness evidence. However, the increasing use of real-world data from countries other than a health technology assessment 
agency’s target population in effectiveness research has increased concerns over the external validity, or “transportability”, 
of this evidence, and has led to a preference for local data. Methods have been developed to enable a lack of transportability 
to be addressed, for example by accounting for cross-country differences in disease characteristics, but their consideration in 
health technology assessments is limited. This may be because of limited knowledge of the methods and/or uncertainties in 
how best to utilise them within existing health technology assessment frameworks. This article aims to provide an introduc-
tion to transportability, including a summary of its assumptions and the methods available for identifying and adjusting for 
a lack of transportability, before discussing important considerations relating to their use in health technology assessment 
settings, including guidance on the identification of effect modifiers, guidance on the choice of target population, estimand, 
study sample and methods, and how evaluations of transportability can be integrated into health technology assessment 
submission and decision processes.

1  Introduction

Health technology assessment (HTA) agencies commonly 
express a preference for evidence from randomised con-
trolled trials (RCTs) to guide decision making, citing that 
randomisation eliminates non-chance confounding from 
unmeasured patient characteristics [1–3]. Conditional on 

no loss to follow-up and no measurement error, blinded 
randomisation in large samples ensures RCTs produce 
unbiased estimates of comparative efficacy within the trial 
sample, i.e. effects that are internally valid [4].

However, evidence-based decision making also requires 
that evidence is externally valid, i.e. that treatment effects 
from a study represent unbiased estimates of efficacy in a 
specific target population of interest. When study popu-
lations are not randomly selected from a target popula-
tion, external validity is more uncertain and it is possible 
that distributions of effect modifiers (characteristics that 
predict variation in treatment effects) differ between the 
trial sample and target population [5]. Trial samples rarely 
represent random samples of the target population, often 
having strict inclusion/exclusion criteria, targeting patients 
with the highest risk of an outcome, and containing a 
selected sample of patients agreeing to participate [6].

Studies using real-world data (RWD) are increasingly 
common sources of comparative-effectiveness evidence 
in both regulatory and HTA submissions, particularly in 
rare cancers and other diseases, where conducting well-
powered RCTs is difficult [7–9]. Despite the absence of 
randomisation reducing the likelihood of internal validity, 
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Key Points 

The transportability of comparative effectiveness 
evidence generated using data from other countries has 
become a key concern of health technology assessment 
agencies.

Methods have been developed to measure and adjust 
for a lack of transportability but their consideration in a 
health technology assessment is limited.

This article provides an introduction to transportability 
and related methods, and discusses important considera-
tions regarding their use in health technology assessment 
settings.

RWD studies are often conducted in samples of patients 
being treated in clinical practice, which are likely more 
representative of a decision-maker’s target population.

However, external validity does not just refer to gener-
alisability but also to transportability [6]. Whereas gener-
alisability relates to whether inferences from a study can 
be extended to a target population from which the study 
dataset was sampled, transportability relates to whether 
inferences can be extended to a separate (external) popu-
lation from which the study sample was not derived [10]. 
The availability and quality of RWD vary substantially by 
country, meaning that submissions to some HTA agen-
cies often include evidence from patients residing in other 
countries. Similarly, in many countries, new therapies will 
not be available to patients prior to reimbursement, mean-
ing local RWD sources will not collect data on all treat-
ments of interest, and manufacturers must use RWD from 
countries where the therapy is already adopted [11]. The 
transportability of evidence from other countries, esti-
mated either from RCTs or RWD, has therefore become 
a key concern of HTA agencies [12], driven for example 
by cross-country differences in potential effect modifiers 
such as disease characteristics, comparator therapies and 
treatment settings, and has led to a preference for local 
data [1, 13].

When evidence from other countries is used to inform 
comparative effectiveness (or efficacy), consideration of 
transportability in study design and analysis should be a key 
step. Methods have been developed to correct for a lack of 
transportability [14]. However, these methods have received 
little attention in an HTA setting. This may be because of 
limited knowledge of the methods and/or uncertainties in 
how best to utilise them within existing HTA frameworks.

Existing studies have provided detailed technical informa-
tion on these methods [14, 15]. This article aims to provide 
a concise summary of methods available for identifying and 
correcting for a lack of transportability, with a specific focus 
on transporting evidence from either RCTs or RWD and 
transporting evidence across countries. We also extend exist-
ing studies by discussing important considerations regarding 
their use in HTA settings. Although we focus specifically 
on transporting results across countries, we note that HTA 
agencies may also be interested in transporting inferences 
across patient subgroups and treatment settings. Similar con-
siderations will also be relevant when transporting results 
across regions within the same country. We also focus on 
transporting estimates of relative treatment effects, although 
RWD studies in particular may be used for a variety of other 
purposes in HTAs, for example, for deriving model inputs 
such as utilities relating to disease states, meaning transport-
ing absolute rather than comparative effects is a concern.

2 � Methods for Transportability

2.1 � Key Assumptions

Typically, decision makers are interested in the target popu-
lation average treatment effect (PATE): the average effect 
of treatment if all individuals in the target population were 
assigned the treatment. However, researchers commonly 
have access only to a sample and must estimate the study 
sample average treatment effect (SATE).

Westreich et al. define the ability of the SATE to approx-
imate the PATE as “target validity”, and deviations from 
the PATE as “target bias” [6]. These deviations can occur 
because of threats to internal validity, such as confounding 
and threats to external validity (Fig. 1).

Transportability is a specific form of external validity, 
where the study sample is not a subset of the target popula-
tion (Fig. 2), for example, when extending inferences from 
a sample of patients from one country to patients in a dif-
ferent country. This differs from generalisability, where the 
study sample is a subset of the target population, for exam-
ple, if extending inferences from a sample of patients with 
a given condition to all patients with that condition in the 
same country.

In addition to data on the study sample, methods to iden-
tify and adjust for a lack of transportability require a sam-
ple of data on the target population (the “target sample”). 
The key assumptions required to identify the PATE under 
transportability are outlined in Box 1 [14, 16, 17]. Stand-
ard assumptions for internal validity are required, includ-
ing: (1) no differences in unmeasured outcome predictors 
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(confounders) between treatment arms (conditional treat-
ment exchangeability); (2) overlap in the characteristics of 
measured outcome predictors between treatment arms (posi-
tivity of treatment assignment); and (3) that the outcomes 
of individuals do not depend on the treatments received by 
others (stable unit treatment value assumption). Analogues 
of these assumptions for external validity are then required, 
and relate to differences between the study and target sam-
ples (rather than between treatment arms).

The conditional mean difference exchangeability of study 
selection assumption will often be most crucial, and will be 
the focus of the analysis. This includes identification and 
adjustment for observed effect modifiers, and arguments 
over the plausibility of no unmeasured effect modification. 
Where treatment effects are estimated from RWD, the plau-
sibility of no unobserved confounding is also key. Whilst 
transporting absolute effects is not the focus of this paper, no 
unobserved confounding is also required for external validity 
in this case.

To explain these concepts, a hypothetical example is pro-
vided in Box 2.

2.2 � Overview of Key Methods

Methods for identifying and correcting for barriers to trans-
portability are summarised in Fig. 3, based on information 
in existing published reviews [14, 15]. Detailed informa-
tion on these methods is provided in the Appendix. As in 
HTA submissions, the burden of evidence generation falls 
on the manufacturers (who will commonly have access to the 
individual patient-level data [IPD] from the study sample), 
we focus on methods where IPD is available for the study 
sample and where either IPD or summary data are avail-
able from a target sample. However, we note that alternative 
methods such as meta-analytic techniques can be used when 
only summary data are available on both samples [14].

Identifying transportability involves testing its assump-
tions, and methods depend on the availability of outcome 
data in the target sample. Where outcome data are unavaila-
ble, requirements underlying the conditional mean difference 
exchangeability of study selection assumption are tested in 
two steps by: (1) assessing differences in the distributions of 
characteristics between study and target populations and (2) 
identifying whether characteristics driving these differences 

Fig. 1   Drivers of the differences 
between the sample average 
treatment effect (SATE) and the 
population average treatment 
effect (PATE). Adapted from 
Degtiar and Rose [14]. External 
validity bias and internal 
validity bias can be positive or 
negative and may bias the SATE 
in different directions. Sampling 
variability may also cause 
deviation from the PATE

Fig. 2   Relevant study and target 
populations in the case of gener-
alisability and transportability
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Box 1   Assumptions for identifying the PATE under transportability

Adapted from Degtiar and Rose [14]. Assumptions of internal validity (such as no unmeasured confounding) will hold automatically in ran-
domised controlled trials, but will need to be carefully considered where non-randomised studies using real-world data are used to estimate 
comparative effectiveness. Other estimands may be of interest to decision makers, such as the target population average treatment effects among 
the treated. These estimands are not the focus of this article, but similar assumptions to the above will apply. PATE population average treatment 
effect, SATE sample average treatment effect

Assumptions for Internal Validity
• Conditional treatment exchangeability: requires no unmeasured confounding when estimating the treatment effects in the study sample.
• Positivity of treatment assignment: requires each subject in the study sample to have a positive probability of receiving each treatment.
• Stable unit treatment value assumption: requires no interference between subjects, i.e. an individual’s outcome depends only on their 

assigned treatment not on treatments of others.
Assumptions for External Validity (Transportability)
• Conditional mean difference exchangeability for study selection: mean difference exchangeability requires that all characteristics explain-

ing treatment effect heterogeneity across individuals (i.e. all observed and unobserved effect modifiers) have equivalent average values in the 
study sample and target population. This implies the SATE can equal the PATE without adjustment for effect modifiers. When this assumption 
fails, conditional mean exchangeability requires that mean differences in outcomes between treatments at each covariate value is identical in 
the study sample and target population. This requires that all effect modifiers that differ between study and target samples are measured. Failure 
of this assumption means adjustment for observed effect modifiers will not identify the PATE.

• Positivity of selection: states that the probability of study participation, conditional on covariates, lies between zero and one. This requires that 
all members of the target population are represented by individuals in the study, i.e. there is overlap in the distribution of effect modifiers, such 
that there exists individuals from both study and target samples in every stratum of effect modifiers. Where propensity score models are used to 
adjust for differences between the study sample and target population, this assumption instead requires that the distribution of propensity scores 
in the study sample and target population have a sufficient overlap or common support. This assumption enables adjustment for effect modifiers 
without extrapolation.

• SUTVA for study selection: requires no interference between subjects in the study sample and target sample, and no differences in how out-
comes are measured and in the distribution of versions of treatment across the study sample and the target population.

Box 2   Assumptions for identifying the PATE under transportability

ATE population average treatment effect, HTA health technology assessment, PATE population average treatment effect, RCT​ randomised con-
trolled trial, RWD real-world data, SATE sample average treatment effect

Background
Consider a case where a manufacturer is submitting evidence to an HTA agency in a hypothetical developing country, Aldova, to support 

reimbursement of a hypothetical oncology treatment, immunotuzumab. The Aldovan HTA agency prefers local data, but because of the lack 
of ability to recruit Aldovan patients for an RCT, trial evidence is not available to provide estimates of comparative effectiveness. In addition, 
although Aldova has a robust oncology RWD source, because immunotuzumab has not yet launched in Aldova, the RWD source does not 
provide data on the treatment of interest so cannot be used for the submission. However, immunotuzumab has previously received approval in 
a developed country, Belgravia, enabling the manufacturer to estimate comparative effectiveness using Belgravian RWD for the submission. 
Evidence suggests income is an important determinant of the effectiveness of immunotuzamab, i.e. is an effect modifier.

Target population and estimands
In this case, the target population is the population of Aldova and the PATE refers to the ATE in this population. The SATE is the ATE in the 

Belgravian study sample. Transportability here refers to the degree to which the ATE estimated using Belgravian RWD reflects the ATE that 
would be estimated in Aldova if suitable Aldovan data were available.

Assumptions for transportability
For the Belgravian ATE to equal the (unobserved) Aldovan ATE, mean difference exchangeability requires that all effect modifiers have equiva-

lent average values in the Belgravian and Aldovan populations. This is unlikely to be plausible in this example because income is an effect 
modifier and average incomes are likely to differ between the less developed Aldova and the more developed Belgravia. Adjustment for the 
lack of transportability (using the Aldovan RWD source as the target sample) is therefore needed. As a result, the conditional mean difference 
exchangeability assumption requires that data on income (and other effect modifiers that differ across the two countries) be available in both 
the Belgravian study sample and the Aldovan target sample. The validity of the positivity of selection assumption may also be a concern and 
would need to be examined, as given the likely large differences in the distribution of income across developed and developing countries, it 
is possible that no individual in the Belgravian sample has an income as low as individuals with the lowest incomes in Aldova. Adjustment 
methods which allow for extrapolation (see Appendix) beyond the common support are likely more appropriate in these cases.

Given comparative effectiveness is estimated from a RWD source, the manufacturer must also consider threats to internal validity (as well as 
transportability).
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Fig. 3   Methods of identifying and adjusting for barriers to transportability. IO inverse odds, IPD individual patient data, ML machine learning, 
SMD standardised mean difference
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are effect modifiers (i.e. explain treatment effect heterogene-
ity). Differences in distributions can also be used to test for 
potential violations of the positivity of selection. Where out-
come data are available, the degree of transportability can be 
measured directly by testing for an unobserved effect modifi-
cation using outcome or treatment effect differences between 
study and target samples after adjustment for observed effect 
modifiers.

Accounting for a lack of transportability involves adjust-
ment to ensure similarity in observed effect modifiers 
between study and target samples. Methods depend on 
whether IPD are available on characteristics of the target 
sample. Where IPD are available, analogues of methods used 
to adjust for observed confounding can be employed, includ-
ing outcome regression-based methods, matching, stratifi-
cation, inverse odds of participation weighting and doubly 
robust methods combining matching/weighting with regres-
sion adjustment. Where only aggregate data are available, 
methods including those employed for population-adjusted 
indirect treatment comparisons, such as matching-adjusted 
indirect comparisons, can be used.

A key assumption of all methods is no unmeasured effect 
modification, and a sensitivity analysis is available to assess 
the extent to which results are sensitive to deviations from 
this assumption [18, 19]. Appropriate methods depend on 
whether unmeasured effect modifiers are missing from the 
target sample only or from both study and target samples.

Finally, many of these methods have been developed for 
transporting treatment effects from RCTs, but can also be 
applied to comparative-effectiveness studies using RWD. 
This can involve pre-processing study sample data using 
weighting/matching to balance observed confounders prior 
to applying transportability methods [19], or using bespoke 
methods that generate weights to simultaneously correct for 
confounding and transportability [20].

3 � Considerations for the Application 
of Transportability Methods for HTA

In the following, we discuss several considerations for the 
application of transportability methods in an HTA context 
(Table 1), building on good practices outlined in the epide-
miological literature [14, 15].

3.1 � Choice of Target Population and Estimand

Discussions regarding the relevant target population(s) 
should be driven by the decision the study aims to inform. 
Where HTA agencies make decisions over national 

reimbursement, the relevant target population will be the 
whole population of individuals with a disease. However, 
where HTA agencies make decisions over regional reim-
bursement or reimbursement within certain subgroups (e.g. 
patients with high-risk genetics), national disease-wide pop-
ulations will not be appropriate target populations.

The decision an analysis aims to inform should also guide 
the appropriate estimand. Decision makers will typically 
be interested in the PATE; however, if treatment discon-
tinuation or switching is substantial or is not expected to 
reflect routine practice or outcomes, other estimands may 
be appropriate.

Following the choice of estimand, investigators must 
clearly outline the assumptions required to identify it. This 
will guide the choice of methods and allow HTA committees 
to judge the plausibility of the assumptions.

3.2 � Identification of Effect Modifiers

Potential effect modifiers should be identified during study 
design [15]. Four classes of effect modifiers should gener-
ally be considered: patient/disease characteristics (e.g. bio-
marker prevalence), setting (e.g. location of and access to 
care), treatment (e.g. timing, dosage, comparator therapies, 
concomitant medications) and outcomes (e.g. follow-up or 
timing of measurements) [14, 21]. Beal et al. have derived 
a checklist for effect modifiers specifically relevant for the 
transportability of data from US electronic health records for 
HTA use in cases in oncology [22]. Although this checklist 
is designed for oncology, many of its components (such as 
differences in baseline demographics, disease and biomarker 
prevalence, disease assessment frequency, concomitant med-
ications and access to supportive care) are relevant in the 
majority of disease areas. However, development of check-
lists for other specific disease areas is warranted.

Directed acyclic graphs represent a simple and trans-
parent approach to identifying potential causal relation-
ships between variables [23], and may be useful both in 
identifying effect modifiers and in communicating sources 
of transportability bias to HTA agencies. This should be 
supplemented with systematic literature searches and elici-
tation of expert opinion. As similar processes are recom-
mended by HTA agencies to identify potential confound-
ers [1, 24], we recommend that confounders and effect 
modifiers are identified concurrently when a RWD study 
is being used to estimate comparative effectiveness. Once 
study and target samples have been selected, the two-step 
approach used to identify transportability outlined above 
could be used to identify effect modifiers relevant to the 
particular study setting.
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3.3 � Choice of Study Sample

The choice of the study sample (e.g. between a RCT and 
a RWD source) should be guided by a trade-off between 
internal validity and external validity. Where a RWD source 
is considered, the choice of a specific RWD source could 
be informed by completion of tools such as EUnetHTA’s 
REQueST tool [25] or the Data Suitability Assessment 
Tool (DataSAT) tool produced by the National Institute for 
Health and Care Excellence [26], which assess data qual-
ity, suitability of use for HTA purposes and appropriateness 
for answering a specific research question. This should be 
supplemented with a checklist similar to that produced by 
Beal et al. [22].

Where possible, a study sample should be chosen that 
both has characteristics ensuring internal validity and draws 
samples directly from the target population (country), avoid-
ing problems with transportability (e.g. RCTs conducted 
within the target population or high-quality local RWD). 
Where prospective studies (either trial or RWD) are used, 

these should be designed to ensure generalisability of the 
study sample, such as the use of pragmatic RCTs or purpose-
ful sampling [14], or where this is not possible designed so 
that relevant effect modifiers are collected.

However, where existing RWD sources are used, manu-
facturers may be forced to use study samples from coun-
tries outside of a decision-maker’s population. This could 
be owing to local data sources either not existing or lacking 
clinical detail or because of an intervention not currently 
being available in the target population. In this case, it is 
important that the study sample is chosen to maximise 
transportability, by choosing a sample that is most similar 
in effect modifiers to the target population and/or collects 
data on all effect modifiers. Importantly, the absence of 
data at a patient level will generally prevent adjustment for 
effect modifiers relating to setting and treatment differences 
across countries, and thus ideally, the study sample should 
be located in a country with a similar healthcare design and 
with similar treatment guidelines for the disease of interest.

Table 1   Summary of the key considerations for the application of transportability methods in HTAs

HTAs health technology assessments, IPD individual patient-level data

Consideration Summary

Defining the target population(s) and estimand 
of interest

Select the target population and estimand based on the decision a study aims to inform
Clearly outline the assumptions required to identify the estimand

Identification of effect modifiers Systematic and transparent approach to identifying effect modifiers during study design using 
directed acyclic graphs, systematic literature searches and expert opinion

Assess effect modification using data from the study sample
Choice of study and target samples Choose a study sample based on a trade-off between internal validity and external validity, 

guided by a tool used to assess data suitability (e.g. Data Suitability Assessment Tool [Data-
SAT] or REQueST tools)

Where HTA dossiers will be submitted to multiple markets, the study sample can be chosen to 
ensure representativeness of a single or set of similar key markets, but should also contain 
information to enable transporting of evidence to other markets

Choose target sample based on availability of IPD, representativeness of the target population, 
availability of effect modifiers, and consistency in the measurement of key variables between 
target and study samples

Choice of methods to identify and adjust for a 
lack of transportability

To identify/measure transportability, global and univariate measures should be used to sum-
marise differences between study and target samples, before testing effect modification using 
the study sample

Available methods are dependent on access to IPD on the target sample
Doubly robust methods have been suggested as the base-case method for adjusting for a lack of 

transportability when IPD on the target sample available
Use of complex methods should consider the trade-off between potential benefits and draw-

backs relating to reduced accessibility to investigators and HTA agencies
Integrating transportability into the HTA sub-

mission and decision process
Transportability methods should be pre-specified in a study protocol and statistical analysis 

plan
Early engagement with HTA agencies and other key stakeholders crucial to ensuring alignment 

on appropriate approaches
HTA agencies should provide clear guidelines for transportability analysis
Need for demonstration studies and methods development relating to dynamic treatments
Primary responsibility for implementing transportability methods often lies with the manufac-

turer. However, without a manufacturer-submitted analysis, HTA agencies should consider 
conducting their own simple transportability analysis
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We must also recognise that manufacturers typically seek 
reimbursement in multiple markets, resulting in separate tar-
get populations for each HTA agency. As it is unlikely that 
separate study samples will be chosen to estimate compara-
tive effectiveness in each market, manufacturers are likely 
to choose a single study sample. This could be chosen to be 
similar in effect modifiers to a population in a single key 
market, or chosen to be representative as possible to multiple 
key markets (with the caveat that this may mean the sam-
ple is not representative of any market). In each case, data 
should be available to apply methods to transport evidence 
to other markets.

A special case is where RWD is used to derive an exter-
nal control arm for a single-arm trial; a case increasingly 
common in HTA submissions [9]. If either the single-arm 
trial or the external control arm is sampled from a country 
outside of the target population, external validity (in addition 
to internal validity) requires transporting absolute effects, 
and therefore requires an assumption of no differences in 
unmeasured prognostic variables across two countries (in 
addition to no differences in unmeasured effect modifiers). 
Where arms are sourced from different countries both not 
located in the target population, adjustment would need to 
ensure a balance of all prognostic variables both between 
treatment arms and between each arm and the target popula-
tion, and would require a stronger assumption of no differ-
ences in unmeasured prognostic variables across three coun-
tries. Given the limited plausibility of these assumptions in 
this setting, the use of methods to assess the sensitivity of 
results to unobserved confounding and effect modification 
will be crucial, although residual uncertainty surrounding 
results is likely to be unavoidable in these cases.

3.4 � Choice of Target Sample

The target sample, if data are available, should be chosen 
with representativeness of the target population in mind, 
otherwise transporting results to the target sample may not 
ensure identification of the PATE. A RWD source will typi-
cally be used as the target sample. Unless a census forms the 
target sample (meaning the target sample equals the target 
population), representativeness is not guaranteed and will 
need to be assessed.

To enable identification and adjustment for a lack of 
transportability, the target sample should report data on all 
effect modifiers. For interventions where many effect modi-
fiers are plausible, sources that include detailed information 
on patient/disease characteristics, such as registries or elec-
tronic health records, may be most appropriate. Where plau-
sible effect modifiers are restricted to commonly recorded 
patient characteristics, less rich data sources such as claims 
databases may be sufficient. If the general population is 
the target population, data from censuses could serve as 

the target sample, although analysis would be restricted to 
methods that only require aggregate data. All else equal, a 
target sample with IPD available should be preferred over 
aggregate data on the target population, as this allows a 
more robust adjustment for effect modification. Effect modi-
fiers must also be defined similarly to in the study sam-
ple, and must be reported with sufficient completeness and 
accuracy.

3.5 � Methods to Identify and Adjust for Barriers 
to Transportability

Determining the most appropriate transportability methods 
in practice is not trivial. Here, we provide some important 
considerations in an HTA setting.

3.5.1 � Identifying/Measuring Transportability

As it is unlikely that outcomes of all treatments will be avail-
able in the target sample, the two-step approach that first 
examines differences in characteristics between the target 
and study samples before assessing treatment effect het-
erogeneity in the target sample will be most appropriate. 
Multiple methods should be used, including standardised 
mean differences of propensity scores, and examinations of 
propensity score distributions alongside formal diagnostic 
tests to identify the absence of an overlap [14]. Univariate 
standardised mean differences and tests can then be used to 
examine drivers of overall differences. With only summary 
target sample data available, analysis could include comput-
ing simple differences in averages, alongside standardised 
mean differences and univariate tests if standard deviations 
are reported.

Parametric models with treatment-covariate interactions 
can be used to detect effect modification. Where small study 
samples result in power issues or where unknown functional 
forms increase the risk of model misspecification, machine 
learning techniques such as Bayesian additive regression 
trees could be considered, and the use of directed acyclic 
graphs may be particularly crucial for selecting effect modi-
fiers in this case.

Where tests indicate no differences in characteristics 
across target and study samples or that characteristics are not 
effect modifiers, comparative effectiveness can be estimated 
using the study sample without adjustment for transport-
ability, noting that unobserved effect modification is always 
possible. If assessments of no overlap suggest methods to 
adjust for a lack of transportability that cannot be applied, 
investigators could consider changing the target population 
[27]. For example, whilst evidence may not be transportable 
to all patients with a condition, they may be transportable 
to specific patient subgroups, which may still be of interest 
to HTA agencies.
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3.5.2 � Adjusting for Barriers to Transportability

Where IPD is available for the target sample, existing 
reviews suggest that doubly robust methods should be used 
as the base case, as they are unbiased if only either the pro-
pensity model or outcome model is misspecified [15]. Nor-
malised inverse odds weights are recommended in the event 
of variable weights. Machine learning could be explored to 
select functional forms in outcome/propensity models when 
sample sizes are small and/or where functional forms are 
unknown. Standardised mean differences between study and 
target samples should be compared before and after weight-
ing to test for balance. Doubly robust or regression-based 
methods may be preferable in cases of a limited overlap in 
characteristics between study and target samples, as they 
allow for adjustment using extrapolation beyond the com-
mon support.

Where study samples are derived from RWD, pre-pro-
cessing using matching/weighting to ensure balance on 
observed confounders across treatment arms should be con-
ducted, with newer methods that simultaneously correct for 
confounding and transportability also considered [20]. Given 
existing simulation studies have been primarily conducted 
by creators of these methods, “neutral comparisons” could 
be useful in assessing the relative performance of methods 
that are free from potential investigator bias [28, 29]. Further 
targeted simulation studies that explore relative performance 
in scenarios similar to where methods would be used in prac-
tice could also be warranted.

Where only aggregate data are available on the target 
sample, the adapted inverse odds weighting approach should 
be considered if data are available on the joint distribution of 
covariates. If only univariate statistics are available, methods 
for population-adjusted indirect comparisons can be used, 
with existing guidelines informing method selection [30]. 
However, the potential for residual bias when using these 
methods must be noted.

Accessibility by HTA agencies could also be considered. 
Recognising existing concerns regarding the acceptability of 
RWD methods by HTA agencies [31], some argue that the 
potential benefits of complex approaches such as machine 
learning should be compared against the potential reduc-
tion in the ability to communicate findings [32]. However, 
a counter argument is that the optimal methods should be 
used with the onus on decision makers to ensure knowledge 
of these methods.

Unadjusted results should also be presented as a com-
parison to demonstrate the impact of adjustment. For effect 
modifiers relating to setting and treatment differences across 
countries, where data will generally be absent, their impact 
must primarily be argued qualitatively, minimised through 

a careful choice of the study sample and explored in a sen-
sitivity analysis.

3.5.3 � Sensitivity Analysis

Consistent with latest HTA guidance for estimating com-
parative effectiveness using RWD [1], sensitivity analyses 
should explore the impact of uncertain decisions made dur-
ing an analysis, and explore the impact of violations of key 
assumptions. Results using alternative methods for adjusting 
for transportability could be presented alongside those using 
doubly robust methods. However, Bayesian model averaging 
approaches, which have been recommended for addressing 
model uncertainty more generally in health decision models, 
could be explored rather than presenting decision makers 
with numerous alternative treatment effects [33].

A sensitivity analysis assessing a potential unob-
served effect modification should always be conducted, 
and approaches specifically designed for this purpose, 
such as the Nguyen et al. and bias function approaches, 
should be considered [18, 19]. Quantitative bias analysis 
methods addressing unobserved confounding, such as the 
E-value, are receiving increased attention in HTAs, and 
allow analysts to either (1) examine the size of bias required 
to change a result (e.g. treatment effect relative to some 
decision-making threshold) or (2) estimate the direction, 
magnitude and uncertainty of bias associated with treatment 
effects [34, 35]. However, to our knowledge, these have not 
yet been applied in this setting. Additional analyses may 
include comparing transported treatment-specific outcomes 
to outcomes in the target sample, if these outcome data are 
available in the target sample. A country-specific subgroup 
analysis may also be useful where a multi-country RCT 
forms the study sample, noting that reduced sample sizes 
will lead to a loss of power and will break randomisation 
unless the trial design ensured random treatment allocation 
within countries.

3.6 � Integrating Transportability into the HTA 
Submission and Decision Process

Considerations regarding the choice of study and target 
samples and use of transportability methods should be pre-
specified in a study protocol and statistical analysis plan. 
Where it is anticipated that transportability will form a key 
part of a submission, early engagement with HTA agencies 
and other key stakeholders will be crucial to ensure align-
ment on whether transportability is a concern and how trans-
portability methods can help address that. To support this, 
HTA agencies should provide clear guidelines on transport-
ability methods, including whether they should be used in 
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the base-case or as a sensitivity analysis in cost-effective-
ness models. A review of RWD guidelines highlighted that 
only two HTA guidelines discuss transportability, and none 
describes methods to adjust for a lack of transportability 
[21]. Guidelines should also explicitly outline a hierarchy 
of study designs, recognising the trade-off between internal 
and external validity in the use of RCTs.

As with other evidence-generation activities for HTA, pri-
mary responsibility for carrying out transportability analysis 
will often lie with the manufacturer. However, where a man-
ufacturer does not provide consideration of transportability 
in a submission, it may be prudent for HTA bodies to utilise 
simple methods to examine the likely impacts on results, 
noting any limitations. This could include the identifica-
tion of effect modifiers from targeted reviews and/or expert 
elicitation, comparisons of summary statistics between the 
study sample and aggregate data on an easily accessible tar-
get sample, followed by a conservative sensitivity analysis. 
Knowledge that a default conservative approach would be 
applied in the absence of more considered approaches may 
incentivise manufacturers to conduct a thorough investiga-
tion addressing transportability.

As with evidence from non-randomised studies, accept-
ance of results transported from other countries by HTA 
agencies will depend on their confidence that transportabil-
ity methods sufficiently address potential bias. We note that 
in many cases, providing HTA agencies with this confidence 
may be difficult. Unlike methods for correcting other biases, 
transportability methods require data from a second suit-
able data source (the target sample) to be identified. Often, 
the lack of appropriate data to conduct an analysis within 
the target population will be the reason such methods are 
needed. As a result, the applicability of these methods is 
likely higher when transporting data to a country with high-
quality RWD in the disease of interest, but where the lack 
of adoption of the key treatment prevents the use of this data 
source for assessing comparative effectiveness. Even when 
an appropriate target sample is available, concerns over 
residual bias from unobserved effect modifiers will remain. 
As when addressing confounding, a sensitivity analysis will 
be crucial for highlighting and quantifying uncertainty in 
study findings to HTA agencies. However, the bar is argu-
ably higher when adjusting for effect modification (across 
study and target samples) compared with when addressing 
confounding (between patients on different treatments), 
as the absence of patient-level data on important potential 
effect modifiers relating to treatment and setting characteris-
tics will generally prevent adjustment (Sect. 3.3). Transport-
ability methods will therefore be most suitable where differ-
ences in these effect modifiers can be minimised through a 
careful choice of the location of the study sample.

Given these threats to validity, building on applied studies 
in a generalisability setting [36] and examples transporting 
absolute effects [37], applied demonstration studies are needed 
to highlight that relative treatment effects can be transported 
across borders with minimal bias. To date, no such appli-
cation exists. Replication studies, similar in style to RCT 
DUPLICATE and other initiatives that assess the ability of 
non-randomised studies to replicate RCT evidence [38], are 
warranted. Such studies would use published treatment effects 
as a benchmark and aim to replicate these effects by applying 
transportability methods to data from other countries. Contin-
ued methods development is also required, as methods are cur-
rently not available for transporting dynamic treatment effects.

4 � Conclusions

A variety of methods are available to adjust comparative-
effectiveness evidence to attempt to improve transportability, 
and are applicable using either patient-level or aggregate 
data. These methods require good data on the target popu-
lation, which may not always be available, and the use of 
a sensitivity analysis to explore a likely unmeasured effect 
modification. Nevertheless, transportability methods can 
play an important role in ensuring that comparative-effec-
tiveness evidence is appropriately considered in HTAs.

This article highlights several methodological and practi-
cal considerations that must be examined if these methods 
are to be successfully used in the HTA setting. These points 
include the choice of target population and study and target 
sample based on the relevant decision and decision maker(s) 
an analysis aims to inform, careful identification of effect 
modifiers and methods to adjust for them, and considerations 
on how these methods can be integrated into existing HTA 
evidence frameworks. Clear methodological guidelines on 
the application of transportability methods in the HTA set-
ting, alongside further simulation studies to identify optimal 
methods and demonstration studies applying these methods, 
will facilitate their wider uptake.
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