
Vol.:(0123456789)

PharmacoEconomics (2024) 42:261–273 
https://doi.org/10.1007/s40273-023-01319-x

PRACTICAL APPLICATION

Estimating Costs Associated with Disease Model States Using 
Generalized Linear Models: A Tutorial

Junwen Zhou1  · Claire Williams1 · Mi Jun Keng1 · Runguo Wu2 · Borislava Mihaylova1,2

Accepted: 19 September 2023 / Published online: 10 November 2023 
© The Author(s)  2023

Abstract
Estimates of costs associated with disease states are required to inform decision analytic disease models to evaluate interventions 
that modify disease trajectory. Increasingly, decision analytic models are developed using patient-level data with a focus on het-
erogeneity between patients, and there is a demand for costs informing such models to reflect individual patient costs. Statistical 
models of health care costs need to recognize the specific features of costs data which typically include a large number of zero 
observations for non-users, and a skewed and heavy right-hand tailed distribution due to a small number of heavy healthcare users. 
Different methods are available for modelling costs, such as generalized linear models (GLMs), extended estimating equations 
and latent class approaches. While there are tutorials addressing approaches to decision modelling, there is no practical guidance 
on the cost estimation to inform such models. Therefore, this tutorial aims to provide a general guidance on estimating healthcare 
costs associated with disease states in decision analytic models. Specifically, we present a step-by-step guide to how individual 
participant data can be used to estimate costs over discrete periods for participants with particular characteristics, based on the 
GLM framework. We focus on the practical aspects of cost modelling from the conceptualization of the research question to the 
derivation of costs for an individual in particular disease states. We provide a practical example with step-by-step R code illustrating 
the process of modelling the hospital costs associated with disease states for a cardiovascular disease model.

Key Points for Decision Makers 

Estimates of costs reflecting heterogeneity between 
individual patients are required to inform patient-level 
decision analytical models, but practical guidance on 
their estimation is lacking.

This tutorial provides a step-by-step guide to estimat-
ing costs associated with disease states using individual 
patient data, including dataset preparation, statistical 
model selection, covariate selection and cost model 
utilization.

A practical example of estimating hospital costs of car-
diovascular disease model states and the corresponding 
R code further illustrate the process.

1 Introduction

Decision analytic disease modelling is a common approach 
used in health economic evaluations. Decision models 
typically focus on key disease states, represented by dis-
ease events or stages, to project disease trajectory given 
an individual’s characteristics and risk factor profile at 
entry. To inform economic evaluations, disease models 
require estimates of costs associated with the model states. 
Increasingly, decision analytic models are developed using 
patient-level data with a focus on heterogeneity between 
patients [1–4] and there is a demand for costs informing 
such models to reflect heterogeneity between individuals. 
For example, an economic evaluation of a cardiovascular 
disease (CVD) prevention strategy may employ a micro-
simulation disease model to project cardiovascular disease 
trajectory and survival of patients with particular charac-
teristics. For economic evaluation, this model will also 
need information about the annual costs of these patients 
in each disease model state (e.g. with and without cardio-
vascular event or in year of death). These costs may dif-
fer between men and women and depending on their age, 
lifestyle or previous morbidities. Therefore, cost models 
are employed to estimate the costs associated with disease 
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model states, taking into account such individual charac-
teristics [1, 5–8].

Models of healthcare costs need to recognize the spe-
cific features of costs data, which typically include a 
large number of zero observations for non-users, and a 
skewed and heavy right-hand tailed distribution due to 
a small number of heavy healthcare users [9]. Differ-
ent methods are available for modelling costs, such as 
generalized linear models (GLMs), extended estimating 
equations and latent class approaches [9]. GLMs address 
the issue of linearity between the linear predictor and the 
dependent variable and accommodate the skewness in the 
distribution of the residual error by fitting a link function 
between the linear predictor and outcome and a variance 
function. Extended estimating equations extend the GLM 
by providing more flexibility for the link and variance 
functions, but require larger samples for the estimation. 
Latent class approaches assume each individual belongs 
to one of a set of latent classes, with each class having its 
own density function contributing to the overall density 
function. The approach leads to more robust estimates, 
but its use has been limited by computational complexity 
and inability to accommodate well excess zeros. Gener-
ally, in modelling cost data, it is recommended to use 
simple methods when having large datasets, and address 
the small number of key data issue with smaller datasets 
[10].

Previous tutorials have addressed approaches to dis-
ease modelling [11, 12]. However, there is no such guide 
on how to estimate costs associated with disease model 
states. Although there are textbooks available for mod-
elling healthcare costs [9, 13], they are not specific for 
generating costs evidence for supporting health economic 
models and evaluations. It is still habitual among research-
ers to conduct economic evaluations using published costs 
or crude estimates of costs associated with disease model 
states (e.g. average costs). Therefore, we aimed to present 
a general approach for the modelling of costs of disease 
model states using individual participant data. In this 
tutorial, we focus on the practical aspects of cost mod-
elling from conceptualizing the research question to the 
derivation of costs for an individual in particular disease 
states. Specifically, we present a step-by-step guide to how 
individual participant data can be used to estimate costs 
over discrete periods for participants with particular char-
acteristics, based on the GLM framework [9]. However, 
the concepts and steps of cost modelling are applicable 
regardless of the particular statistical method chosen and 
readers are advised to explore different methods used for 
modelling cost data [9, 10].

2  Statistical Modelling of Costs Associated 
with Disease States

To inform decision analytic disease models with the cost 
evidence, our research question is what are the costs associ-
ated with disease states over discrete time periods corre-
sponding to the cycle length of a decision model. The costs 
can be any type of costs such as total healthcare costs (for 
example, primary and/or hospital care costs), patient out-of-
pocket costs or social care costs. The disease states are key 
states related to the disease and/or intervention, which are 
included in the decision analytic model to assess the cost 
effectiveness of the intervention. For example, disease states 
may be disease stages or events, such as cancer progression 
stages or whether experiencing a myocardial infarction (MI). 
The scope of costs, disease states of interest and cycle length 
should be consistent with the choices made while concep-
tualizing the economic evaluation and decision model. In 
addition, key patient characteristics may also be important 
factors in the economic evaluation and thus in developing 
the estimation of costs of disease states using participant-
level data, since they may modify health effects, costs and 
possibly the cost effectiveness of the intervention.

To answer the research question, we will ideally use a 
longitudinal dataset from a cohort of participants reporting 
their healthcare and other resource use and costs and disease 
status over time. This longitudinal data will be used to form 
estimation data, which have multiple records per participant 
with each record including the costs accumulated over the 
periods of interest and the disease state status in the respec-
tive periods. All the records from all the participants will 
be pooled to develop the cost prediction model using par-
ticipants’ profiles and time-updated disease state status. The 
developed cost model will allow the prediction of individual 
patient costs, taking into account participant characteristics, 
model states and the interactions between them.

2.1  Step 1. Preparing the Dataset for Estimating 
Costs of Disease States

2.1.1  Raw Dataset Generation

The first step is to prepare the dataset to support the cost 
estimation analysis. This dataset should include records for 
each participant for discrete time periods over which costs 
are estimated, with each record including the outcome cost 
variable and a number of covariates representing the partici-
pant’s characteristics. For example, if data is available for the 
hospital care costs of an individual over 10 years but we are 
interested in estimating annual hospital care costs, we would 
allocate costs into respective annual periods in chronologi-
cal order and generate 10 records or rows with annual costs 
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for this individual. Each row represents a unique record 
contributing to the analysis. The column of costs over the 
discrete periods (e.g. annual hospital care cost) represents 
the outcome.

Two types of individual characteristics are further needed 
to estimate costs of disease states: the disease states’ indica-
tors and the other individual characteristics associated with 
the costs. The disease states’ indicators are specific to the 
individual and each discrete period of time but can change 
across time periods with an individual’s disease trajectory. 
For example, an individual remains in the ‘without MI’ state 
until they experience an MI, and move into an annual period 
‘had MI in same year’, followed by ‘had MI 1 year ago’ 
etcetera, corresponding to timing of the MI with respect 
to the current time period. In this example, ‘without MI’, 
‘had MI in same year’ and ‘had MI 1 year ago’ represent 
different states and, therefore, distinct columns in the data-
set to support estimation of costs. Distinct disease states 
could be specified by more than one disease state descrip-
tor (e.g. ‘without MI or stroke’ requires both ‘without MI’ 
and ‘without stroke’ descriptors to be met) (Fig. 1). The 
choice of disease state descriptors is pre-specified but could 
be adjusted (e.g. number of temporal categories) alongside 
covariate selection in the model selection step (see step 3). 
The other individual characteristics of interest include, for 
example, individual’s age, sex, and other socio-demographic 
and clinical risk factors that determine the extent of health-
care costs. Ideally, characteristics which are plausible pre-
dictors of healthcare costs given the data availability should 
be prospectively identified prior to cost modelling from pre-
vious evidence. Most of these characteristics are likely to be 
specific to individuals and fixed at entry into the model but 
some, such as age, may be updated over the time periods in 
the dataset.

2.1.2  Handling Censored and Missing Data

Typically, individual patient data is subject to administrative 
censoring (e.g. end of data collection due to end of follow-
up in the study). In our context, death is an event of inter-
est and not a censoring event; all costs in year of death are 
observed. In effect, ‘death in year’ is usually a covariate in 
the cost model as we want to assess its impact on costs. Sim-
ple approaches to handling censored cost data are to (1) add 
a covariate indicating the proportion of period unobserved; 
or (2) exclude all observations with partially observed data 
due to censoring (if sample size is generous).

We may encounter missing costs data, frequently the 
case when costs data is collected from the patients (e.g. 
case report form in a clinical trial) rather than sourced from 
linked routine healthcare data (e.g. hospital or primary care 
data). Generally, multiple imputation under the missing-at-
random assumption is used in this context as single impu-
tation methods overstate precision [10]. Violations of the 
missing-at-random assumption, a particular consideration 
in the presence of substantial attrition in the sample, would 
require further methods [14–16]. Besides, we may also need 
to handle missing values of covariates, which has been dis-
cussed in detail elsewhere [17].

2.1.3  Covariate Specification

For continuous covariates, we will need to specify their 
functional form in the model. If the relationship between the 
covariate and the outcome is known, we can transform the 
covariate correspondingly (e.g. natural logarithm transfor-
mation). Such a relationship can be informed from previous 
studies or preliminary analyses. When the relationship is 
complex, other approaches, including (1) specifying spline 
effects; (2) specifying polynomial effects and (3) categoriza-
tion [16] should be considered.

MI, myocardial infarction

MI Stroke
1 1 50 Male Without MI Without stroke Without MI and Without stroke
1 2 51 Male Without MI Had stroke in same year Without MI and Had stroke in same year
1 3 52 Male Had MI in same year Had stroke 1 year ago Had MI in same year and Had stroke 1 year ago
1 4 53 Male Had MI 1 year ago Had stroke 2 years ago Had MI 1 year ago and Had stroke 2 years ago
1 5 54 Male Had MI 2 years ago Had stroke 3 years ago Had MI 2 years ago and Had stroke 3 years ago
2 1 45 Female Without MI Without stroke Without MI and Without stroke
2 2 46 Female Without MI Without stroke Without MI and Without stroke
2 3 47 Female Without MI Without stroke Without MI and Without stroke
2 4 48 Female Without MI Without stroke Without MI and Without stroke
2 5 49 Female Had MI in same year Without stroke Had MI in same year and Without stroke

Disease state descriptor
Patient ID Year Distinct disease stateSexCurrent age

Fig. 1  Schematic of dataset for modelling healthcare costs associated with disease states
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To facilitate model interpretation, we recommend stand-
ardizing continuous covariates and for discrete (binary and 
categorical) covariates to have an explicit choice of reference 
category. For example, for a cohort with mean and stand-
ard deviance of age of 59 and 9 years, respectively, we can 
standardize age by centring at 60 years, a round number 
close to mean, and expressing it per 10 years using a trans-
formation: (age—60)/10; for BMI (kg/m2) categorized into 
underweight (< 18.5), healthy weight (18.5–25), overweight 
(25–30) and obesity (≥ 30), we can choose the healthy BMI 
as the reference category.

2.2  Step 2. Candidate Statistical Models 
for Estimating Costs of Disease States

2.2.1  Common Candidate Statistical Models

The statistical models for modelling costs are chosen based 
on the features of cost data and the features of statistical 
models. A feature of cost data is that the distribution of the 
costs is typically right skewed (long tail at the higher costs), 
which may not be suitable for ordinary linear regression that 
requires normality and homoscedasticity in the residuals (i.e. 
error). Therefore, the GLM framework is often employed by 
specifying a link function g and family distribution, which 
standardize the mean and variance function. Through the 
inverse link function (g−1(.)) , E(y|x) = � , the expected value 
of the cost y given a vector of covariates x, can be calculated 
from the linear predictor (x�):

where � is the vector of the regression coefficients.
In a GLM, � ∝ v(y|x) = �1�

�2

where � , y and x are as above, v is the variance, �1 is 
a constant, and �2 indicates the mean–variance power 
relationship.

�2 = 0 corresponds to a Gaussian error variance, �2 = 1 to 
a Poisson variance, and �2 = 2 to a Gamma variance.

For modelling healthcare costs, three common distri-
butions are Gaussian, Poisson and Gamma distribution. 
Depending on the distribution, common link functions are 
identity, natural logarithm, inverse and the squared root link. 
The most popular ones (combinations of link function and 
distribution) for healthcare costs are linear regression (iden-
tity link with Gaussian distribution) and Gamma regression 
with a natural logarithm link [9].

Another feature of cost data is a large proportion of zero 
observations. This is usually addressed using two-part mod-
els, with the first part, typically a logistic or probit regres-
sion, modelling the probability of incurring any cost, and 

g(�) = x�

� = g−1(x�)

the second part modelling the cost conditional on incurring 
any [9]. The expected cost from the two-part model is the 
product of the expectation of each part:

where y is the cost outcome and x is a vector of covariates.
Both a one-part model (i.e. a single regression equation) 

and two-part model (two regression equations with the first 
modelling the probability of incurring costs and the second 
the costs, conditional on incurring any) should be consid-
ered. We should use six GLM specifications defined using 
the combinations of two link functions (identity and natural 
logarithm link) and three variance functions (Gaussian, Pois-
son and Gamma distribution) as candidate models for the 
one-part model and the second part of the two-part model.

2.2.2  Initial Set of Covariates

For each candidate model specification, the model should be 
fit to the data to aid model selection. Initially, the full set of 
the pre-specified covariates from the prepared dataset could 
be used in every candidate statistical model. We can also 
perform covariate selection (will be mentioned in Step 3) for 
each candidate model before the selection of the promising 
candidate statistical models in the next step.

2.2.3  Tests to Choose Statistical Model Specification

2.2.3.1 The Hosmer‑Lemeshow test The appropriateness of 
the link function can be tested using the Hosmer-Lemeshow 
test [9, 18]. The test regresses the residual error (e) on binary 
indicators for the deciles of the predicted costs (̂yD1 to ŷD10) , 
and tests the joint significance of the coefficients, with a sig-
nificant test indicating an inappropriate link function

2.2.3.2 The Pregibon link test The appropriateness of the 
link function can also be tested using the Pregibon link test 
[19]. The test regresses the costs from the data (y�) on the 
linear predictor 

(
x′�

)
 and a squared linear predictor [

(
x��

)2
] 

using an identical GLM specification, with a significant 
coefficient for the squared linear predictor indicating an 
inappropriate link function

2.2.3.3 The modified Park’s test The appropriateness of 
the distribution family can be checked using the modified 
Park’s test [20]. The test reflects the relationship between 

E(y|x) = Prob(y > 0|x)E(y|x, y > 0)

e ∼ ŷD1 + ŷD2 + ŷD3 + ŷD4 + ŷD5 + ŷD6 + ŷD7 + ŷD8 + ŷD9 + ŷD10

y� ∼ 1 + x�� +
(
x��

)2
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the variance and the mean for a specific distribution based 
on a power function mentioned above for different GLM 
distributions. The modified Park’s test regresses the natural 
logarithm of the squared residual error (ln(

(
y� − ŷ

)2
)) on the 

natural logarithm of predicted costs (ln
(
ŷ
)
) using a GLM 

specification with gamma distribution and usually a natural 
logarithm link. The coefficient close to 0 indicates Gaussian 
distribution, 1 indicates Poisson distribution, and 2 indicates 
Gamma distribution

Statistical models that demonstrate promise are taken 
forward.

2.3  Step 3. Selecting the Final Model

The model selection thereafter has two parts: selection of 
covariates for each remaining candidate statistical model and 
selection of the statistical model from the final specifications 
of all candidate statistical models.

2.3.1  Covariate Selection

The cost models are intended to predict costs in decision 
models for patients with particular characteristics at entry. 
Therefore, cost models should perform well not only across 
the population but potentially also at the individual patient 
level. Thus, all covariates retained in models should be reli-
ably associated with cost. To minimize the likelihood of spu-
rious associations, the covariates in final cost models, unless 
their inclusion was informed from strong previous evidence 
with consistent estimates in our dataset, are expected to 
reach statistical significance and their inclusion and reten-
tion subject to covariate selection.

Stepwise selection using a pre-specified level of sta-
tistical significance (e.g. 5%) is widely used given its 
simplicity and availability in statistical software [21, 22]. 
However, the stepwise approaches may lead to unstable 
selection and an overfitting issue. Alternative covariate 
selection approaches aiming to address these issues, such 
as bootstrapping stepwise selection and penalised tech-
niques (e.g. least angle selection and shrinkage operator, 
LASSO) have been proposed [15]. The bootstrapping 
approach is an extension of the stepwise approach by per-
forming selection in the bootstrap samples and selecting 
the covariates based on their frequency of being selected. 
It has the potential to address the issue of instability of the 
selection, but has much higher computation burden. The 
LASSO method constrains the regression coefficients and 
shrinks some regression coefficient estimates to zero to 

ln(
(
y� − ŷ

)2
) ∼ ln

(
ŷ
)

optimize covariate selection. This approach may address 
the issue of overfitting, but it may also end up including 
implausible covariates or omitting known predictive fac-
tors [15].

For a two-part model, covariate selection could be per-
formed for each part of the model, as covariates may have 
different impacts on the probability of incurring the costs 
and the costs conditional on any incurring.

2.3.2  Final Model Selection

Finally, the performance of each final statistical model 
specification should be checked against the observed 
costs. The model performance can be assessed with three 
measures: mean error, mean absolute error, and root mean 
squared error. Mean error (ME) is the mean of the residual 
errors, which tests for aggregate bias. Mean absolute error 
(MAE) is the mean of the absolute value of the residual 
errors, which tests for individual level predictive accuracy. 
Root mean squared error (RMSE) is the squared root of the 
mean of the squared of the residual errors, which tests for 
goodness of fit. Smaller values for these measures indicate 
better performing models.

We can also perform a visual inspection of model 
performance by plotting mean predictive error by decile 
of predicted outcome to check for systematic errors not 
detected by ME/MAE/RSME above. Better fitting models 
have smaller errors across deciles of predicted outcomes.

2.3.3  Consideration of Interactions

We can further refine the cost model by considering 
interactions between key covariates. Such considerations 
should be pre-specified to limit data dredging. For the cost 
model of interest, we focus on the interactions between 
acute disease events (e.g. experiencing MI and stroke in 
the same year). The overall impact of co-occurring acute 
disease events on costs may not be a simple addition of the 
impact of each event. However, it is also difficult to assess 
all possible interactions in view of the number of possi-
ble combinations. We suggest a practical criteria for the 
choice of interactions to consider based on (1) the number 
co-occurrences in the same period and (2) the percent-
age of occurrences from the total individual occurrences 

ME = Mean(e)

MAE = Mean(|e|)

RSME =

√
Mean

(
e2
)
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for the respective events. The purpose is to assure suf-
ficient data is available to reliably estimate interactions. 
For example, we may investigate the interaction between 
MI and stroke if (1) the number of cases when both MI 
and stroke occur in the same year is more than 50; and (2) 
both percentages of this number from the total number of 
MIs and strokes are > 5%. The thresholds may be smaller 
if we focus on rarer but costly events. Besides, we may 
also need to consider the interaction between other par-
ticipant characteristics, which has been discussed in detail 
elsewhere [16].

2.4  Step 4. Use of the Cost Model

The final cost model can be used to (1) predict the cost for 
individuals, and (2) derive the mean effects of events on 
costs across particular patient population/s.

2.4.1  Cost Prediction Given Individual’s Characteristics

To predict costs of an individual in a particular time period, 
we should prepare the individual’s characteristics to corre-
spond to respective characteristics in the model’s specifica-
tion. Thereafter, for one-part models, we can use the pre-
pared individual’s characteristics together with the model’s 
parameter estimates to generate the predicted cost. For two-
part models, we should use the prepared individual’s char-
acteristics together with parameter estimates of each part 
of the model, with the first part generating the probability 
of incurring any costs (ProbabilityP1) and with the second 
part generating the costs conditional on incurring any costs 
(CostP2) . With the predictions from both parts, we can gener-
ate the predicted costs with the following formula:

If logistic regression is used for the first part of the two-
part model, ProbabilityP1 can be calculated with the odds 
of incurring any costs (OddsP1) from the logistic regression 
using the following formula:

2.4.2  Effect of a Disease State on Costs

Entry into a disease state is often associated with a change 
in healthcare costs. Cost models can inform changes in 
healthcare costs associated with a disease state by calculat-
ing the marginal effect of disease states in the cost model. 
For a one-part model with identity link, the marginal effect 
is represented by the corresponding coefficient in the cost 

Predicted costs = ProbabilityP1 × CostP2

ProbabilityP1 = OddsP1∕(1 + OddsP1)

model. For a one-part non-linear model or a two-part model, 
marginal effects can be derived using recycled prediction. 
It includes the following two steps: (1) run two scenarios 
across the target population by setting the disease state of 
interest to be (a) present (e.g. recurrent cancer) or (b) absent 
(e.g. no cancer recurrence); (2) calculate the difference in 
mean costs between the two scenarios. Standard errors of 
the mean difference can be estimated using bootstrapping.

3  Illustrative Example: Modelling Hospital 
Costs Associated with Cardiovascular 
Events

We will illustrate the modelling process by taking readers 
through an exercise of modelling hospital costs associ-
ated with cardiovascular events in the UK using individual 
patient data. The original analyses [8] used the data from the 
500,000-large UK Biobank, with rich participant baseline 
data and linked data from national databases on hospital 
admissions, cancers and deaths. UK reference costs were 
used to cost hospital episodes [23] with costs inflated to year 
2020 using the NHS cost inflation index [24].

For the purpose of this tutorial, we focus on modelling 
annual hospital care costs of people without previous CVD. 
We created a synthetic analytical dataset with 10,000 par-
ticipants having 10 annual periods for each participant based 
on the summary data from the published study [8] for the 
illustration (Supplementary Section 1, see electronic sup-
plementary material [ESM]). Figure 2 shows the summary 
of the steps for modelling healthcare costs associated disease 
states with the illustrative example.

3.1  Step 1. Preparation of Dataset

As the focus is on estimating annual costs associated with 
disease states, annual periods from entry into the study were 
formed containing the respective annual hospital care costs. 
The disease events of interest were incident MI, stroke, vas-
cular death and non-vascular death. Each event except death 
was specified using a categorical variable with values of 
‘without event’, ‘year of event’, ‘year following event’, ‘two 
years following event’, and ‘three or more years following 
event’; vascular death and non-vascular death were binary 
variables indicating whether there was such a death in the 
year.

Further candidate covariates included age, sex, ethnic-
ity, quintile of Townsend deprivation index, smoking sta-
tus, physical activity, diet quality, body mass index (BMI), 
low density lipoprotein (LDL) cholesterol, high density 
lipoprotein (HDL) cholesterol, serum creatinine, systolic 
blood pressure (SBP), diastolic blood pressure (DBP), 
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antihypertensive treatment, history of diabetes, history of 
cancer and of severe mental illness.

In our example, age and disease status (or state) were 
updated annually, with disease states updated depending on 
the timing of the event’s occurrence. All the other covari-
ates remained at their baseline values for the purpose of the 
intended model (in which only disease progression was mod-
elled). For illustration, we used the same way of specifying 
baseline covariates as those from the published study (Code 
S2, Supplementary Table S1, see ESM).

3.2  Step 2. Candidate Statistical Models

We chose both one- and two-part models as candidate statis-
tical models. For the two-part model, we chose six models, 
all of which had the same first part using a logistic regres-
sion modelling the probability of incurring any costs, but a 
different second part using different GLMs modelling the 
costs conditional on any incurring. These were the follow-
ing common GLMs (Distribution–Link): ‘Gaussian–Iden-
tity’, ‘Gaussian–Log’, ‘Poisson–Identity’, ‘Poisson–Log’, 
‘Gamma–Identity’, ‘Gamma–Log’. For the one-part model, 
we chose only the ‘Gaussian–Identity’ GLM, since fitting 
GLMs other than linear regression (Gaussian–Identity GLM) 
to the data with a high proportion of zero-cost observations 
requires extra effort in finding initial coefficients to fit the 
model, which is not the focus of this tutorial. Although there 
was no process for selecting GLM for the one-part model, 
the process could be reflected from the process of selecting 
GLM for the second part of the two-part model.

For ease of illustration, we did not perform covariate 
selection for each candidate model for parsimonious model 
construction at this step. Instead, we retained all the covari-
ates in the candidate models (Code S3).

We performed the model specification tests for the six 
candidate GLMs for the second part of the two-part model 

(Code S4). The slopes from the modified Park’s test for all 
the GLMs were close to 2, indicating that the Gamma dis-
tribution was the most plausible for the variance function. 
At the significance level of 5%, almost all the p values from 
the Hosmer-Lemeshow test and from Pregibon’s test were 
not significant, indicating identity and Log link were both 
acceptable link functions (Table 1). Therefore, the two-part 
models using ‘Gamma–Identity’ and ‘Gamma–Log’ GLMs 
as the second part were the most promising candidate two-
part models.

3.3  Step 3. Model Selection

3.3.1  Covariate Selection

Covariate selection was performed for all the promising 
candidate one-part and two-part models using stepwise 
backward selection at the 5% significance level (Code S5). 
Table 2 shows the final selected covariates and the detailed 
selection process for them.

Fig. 2  Summary of the steps 
for modelling healthcare costs 
associated with disease states in 
the illustrative example

*This step is beyond the scope of this tutorial. The readers can just run the code to generate the synthetic datasets for the use 
of later steps. 

Step 0. Generation of synthetic dataset* (CodeS1)
Step 1. Preparation of dataset
Specify covariates (CodeS2) [Table S1]
Step 2. Candidate statistical model
Construct candidate statistical models with initial set of convariate (CodeS3)
Perform test to select promising candidate models (CodeS4) [Table 1]
Step 3. Model selection
Covariate selection for promising models (CodeS5) [Table 2, Table S2]
Test for selection within one-part and two-part model respectively (CodeS6) [Table 3, Fig.3a]
Test for selection between one-part and two-part model (CodeS7) [Table 3, Fig.3b, Table 4]
Step 4. Use of developed model
Predict cost for individual (CodeS8) [Fig.4]
Estimate marginal effect of a disease state (CodeS9) [Table 5]

Table 1  Model specification tests for the second part of the candidate 
two-part model

GLM generalized linear model

GLM model 
(Distribution–
Link)

Slope from 
modified Park’s 
test

p value from 
Hosmer-Leme-
show test

p value from 
Pregibon’s test

Gaussian–Iden-
tity

1.97 0.12 0.91

Gaussian–LOG 1.96 0.04 0.74
Poisson–Identity 1.98 0.59 0.91
Poisson–LOG 2.00 0.22 0.35
Gamma–Identity 1.98 0.83 0.99
Gamma–LOG 1.99 0.67 0.45
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However, the stepwise approach may result in selection 
of unstable predictors. Therefore, we illustrate the use of 
bootstrapping stepwise selection approach with 60% cut-
off criteria (e.g. we retain covariates if selected in > 60% 
bootstrap samples) for the Gamma-Identity GLM of costs 
conditional on any being incurred (Supplementary Table S2, 
CodeS5, see ESM), which excluded systolic blood pressure, 
a nuisance predictor previously included in this model.

3.3.2  Statistical Model Selection Within One‑Part Models 
and Within Two‑Part Models

As the ‘Gaussian–Identity’ GLM was the only one-part 
model we considered, this was the final one-part model. 
For the two promising candidate two-part models (with the 
second part using ‘Gamma–Identity’ and ‘Gamma–Log’), 
further specification tests were performed for the second 
part of them after covariate selection. The specification 
tests results were similar to before, with no definitive 
evidence that one outperformed the other, and model 

performance tests found similar performance between the 
two models (Table 3). Plotting the mean prediction error 
by deciles of predicted costs did not help discern a supe-
rior performance either (Fig. 3a). As the GLM using iden-
tity link is easier to interpret than those using log link, we 
selected the two-part model using ‘Gamma–Identity’ GLM 
as the second part of the final two-part model (Code S6).

3.3.3  Statistical Model Selection Between One‑Part 
and Two‑Part Models

Model performance tests were conducted for the final one-
part and two-part models, and found they had similar per-
formance (Table 3). Plots of the mean prediction error by 
deciles of predicted costs showed the final two-part model 
was consistent across most deciles, whereas the final one-
part model did not perform well in the first two deciles 
(Fig. 3b). Therefore, the final two-part model was selected 
as the final model (Table 4) (Code S7).

Table 2  Covariate selection results

GLM generalized linear model, HDL high density lipoprotein, LDL low density lipoprotein, MI myocardial infarction, NVD non-vascular death, 
VD vascular death
a At each step, the previous dropped covariates were added back to the model one by one to test whether they should be added back, but in the 
illustrative example none was added back

Model Two-part model—Part 1 Two-part model—Part 2 GLM One-part GLM

Logistic regression Gamma–Identity Gamma–Log Gaussian–Identity

Selected covariates

Age, sex, prior diabetes, MI, stroke, 
NVD

Age, sex, systolic blood pressure, 
MI, stroke, VD, NVD

Age, sex, systolic blood pressure, 
MI, stroke, VD, NVD

Age, sex, antihypertensive treated, 
MI, stroke, NVD

Covariate selection process

 Step Covariate to be  droppeda p value Covariate to be  droppeda p value Covariate to be  droppeda p-Value Covariate to be  droppeda p value

 1 Severe mental illness 0.96 Diet quality 0.87 Diet quality 0.98 Smoking status 0.93
 2 VD 0.95 Diastolic blood pressure 0.81 Diastolic blood pressure 0.93 Severe mental illness 0.87
 3 Systolic blood pressure 0.88 Townsend score 0.79 LDL cholesterol 0.90 HDL cholesterol 0.79
 4 HDL cholesterol 0.69 LDL cholesterol 0.81 Severe mental illness 0.81 Diet quality 0.73
 5 Smoking status 0.67 Severe mental illness 0.72 Townsend score 0.71 Serum creatinine 0.62
 6 Diet quality 0.59 Serum creatinine 0.64 Serum creatinine 0.67 Prior cancer 0.48
 7 Physical activity 0.55 HDL cholesterol 0.61 HDL cholesterol 0.57 Physical activity 0.46
 8 Diastolic blood pressure 0.50 Antihypertensive treated 0.58 Antihypertensive treated 0.44 Diastolic blood pressure 0.42
 9 Serum creatinine 0.46 Smoking status 0.48 Smoking status 0.44 Systolic blood pressure 0.39
 10 Ethnicity 0.41 Prior diabetes 0.33 Prior diabetes 0.35 LDL cholesterol 0.39
 11 LDL cholesterol 0.31 Physical activity 0.22 Physical activity 0.30 Ethnicity 0.39
 12 Townsend score 0.30 Ethnicity 0.21 Ethnicity 0.21 Townsend score 0.25
 13 Prior cancer 0.14 Body mass index 0.16 Body mass index 0.10 VD 0.14
 14 Body mass index 0.09 Prior cancer 0.09 Prior cancer 0.09 Body mass index 0.05
 15 Antihypertensive treated 0.06 Prior diabetes 0.06



269A Tutorial on Estimating Costs Associated with Disease Model States

3.4  Step 4. Use of Developed Model

3.4.1  Individual Predictions

The developed model can be used for individual predic-
tions. Code S8 presents the annual hospital cost predic-
tions using the final model for an individual with the fol-
lowing profile: a 50-year old female, with systolic blood 
pressure of 120 mmHg, diagnosed with diabetes mellitus, 
had a MI in the year, a stroke 1 year ago, without other 
incident cardiovascular or other events modelled. The pre-
dicted probability of incurring any costs in the year was 
0.92, and the costs conditional on any incurring totaled 
7413; therefore, the predicted annual cost for that year 
was 6783 (0.92 × 7413). A more detailed illustration of 
the individual predictions process can be found in the pub-
lished analyses [8]. Overall, the prediction model resulted 
in similar estimates of overall average costs for each 
disease state as the crude average estimate and allowed 
the impact of age on the costs to be incorporated, which 
could be extended to also include the other model covari-
ates (e.g. sex, lifestyle factors and previous morbidities) 
(Fig. 4).

3.4.2  Marginal Effect Estimation

Of interest is the marginal effect of the disease state, that is, 
the excess costs associated with a particular (temporal his-
tory of) disease/event compared with no disease/event. The 
developed model can be used to estimate the mean marginal 
effect of the disease state on costs. We firstly estimated the 
mean effect by recycled prediction. For example, to estimate 
the marginal effect of ‘Had MI in same year’ on annual hos-
pital costs, we (1) modified the analytical dataset, setting 
the covariate of ‘MI’ to (a) ‘Had MI in same year’ and then 
(b) ‘None’ in turn for each of the annual periods to cre-
ate two versions of the dataset; (2) predicted the costs with 
each modified dataset and (3) calculated the mean differ-
ence between the two predicted costs. The mean difference 
was the marginal effect of the ‘Had MI in same year’. The 

standard error of the marginal effect was estimated using 
1000 bootstrapped samples. For the population represented 
by the synthetic analytical dataset, the marginal effect of 
the ‘Had MI in same year’ on annual hospital care costs (£, 
95% confidence intervals) was 4326 (3801–4851). The mar-
ginal effect for the other disease states was also estimated 
(Table 5) (Code S9).

4  Discussion

4.1  Summary

In this tutorial, we provided a step-by-step guide to mod-
elling healthcare costs associated with disease states with 
an illustrative example of modelling cardiovascular disease 
costs from a published study. We presented the detailed pro-
cess and practical illustration of such modelling after the 
conceptualization of the research question, which includes 
the analytical dataset preparation, detailed model develop-
ment and utilization of the developed model. The process 
we used addressed the issues related to the nature of costing 
data, with lots of zero observations and highly right skewed 
distribution among the non-zero observation, and was rela-
tively easy to implement and interpret. Although the illustra-
tive example applied such modelling only in the context of 
cardiovascular disease, the approach is general and can be 
applied to any disease area [5, 7, 25].

4.2  Further Remarks

In this tutorial we presented a general approach to estimat-
ing costs of disease states using individual patient data. It 
is good research practice to pre-specify many of the ele-
ments of these analyses prior to conducting the analysis to 
minimize potential biases [26]. These include the disease 
state indicators, individual patient characteristics, types of 
statistical models to consider and the approaches to selec-
tion of covariates. In the illustrative example, we used step-
wise backward elimination for covariate selection, a simple, 

Table 3  Tests for the promising 
candidate two-part models and 
for the selected one-part and 
two-part models

GLM generalized linear model, ME mean error, MAE mean absolute error, RMSE root mean squared error

Candidate model Model specification test Model performance test

Modified 
Park's test

Hosmer-Leme-
show test

Pregibon's test ME MAE RSME

Second part of the promising candidate two-part model
 Gamma–Identity 2.00 0.22 0.96 0 856 1115
 Gamma–LOG 2.01 0.22 0.39 − 1 856 1122

Selected one-part and two-part models
 One-part using Gaussian–Identity GLM 0 458 826
 Two-part (Part 1: logistic regression; Part 2: Gamma–Identity) 0 458 825



270 J. Zhou et al.

Fig. 3  Mean prediction error by decile of predicted costs for candidate model selection. GLM generalized linear model
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widely available and still widely used approach. However, 
the stepwise approach may result in selection of unsta-
ble predictors. We illustrated one approach of addressing 
this instability using the bootstrapping stepwise selection 
approach with high cut-off criteria but other approaches for 
covariate selection may be considered [15].

4.3  Advantage of the Tutorial

Our tutorial provides a general approach to developing 
healthcare cost models using individual patient data, which 
is frequently called upon in the field of health economic 
evaluation. Although a number of cost models have been 
reported, the rationale behind the modelling process is usu-
ally not fully explained. In this tutorial, based on our expe-
rience [1, 5–7], we propose a number of steps researchers 
can employ to justify their choices. Our illustrative example 

takes the users through the practicalities of implementing 
the steps in R, which fills a gap in this area.

4.4  Limitation of Tutorial

We only listed a few frequently used options at each mod-
elling step (e.g. statistical model choice, covariate selec-
tion, model selection), but they are not exhaustive sets of 
options. Therefore, this tutorial could be considered an 
introduction into cost modelling. To avoid distracting the 
readers, we did not discuss in detail alternative methods at 
different stages of the modelling process. Instead, we pro-
vided key references comparing these methods for readers 
to explore further. The use of the UK Biobank dataset 
requires a specific application process, and the dataset can-
not be shared externally. To enable sharing of our work-
ings in the illustrative example, we used a synthetic data-
set. Therefore, the estimated relationships in this tutorial 

Table 4  Annual hospital care costs (£) model: two-part model (part 1: logistic regression; part 2: generalized linear model with Gamma distribu-
tion and identity link function)

To predict the annual costs using the two-part model, please follow the following steps
(1) predict the odds of incurring any costs in the year ( OddsP1 ) from the first part: OddsP1 = expln(Intercept)+

∑n

1
(ln(ORi)∗Xi)

(2) predict the annual costs assuming such were incurred in the year ( CostP2 ) from the second part: CostP2 = Intercept +
∑n

1
(Meani ∗ Xi)

(3) calculate the predicted annual costs using this formula: OddsP1/(OddsP1+1) * CostP2
Where Xi is the value of the  ith covariate (excluding the intercept term)
CIs confidence intervals, OR odds ratio
a The intercept terms represent the respective values for an individual in the reference categories of the covariates (odds for part 1 model and cost 
for part 2 model); other coefficients represent the added effect for that category of the covariate compared with the reference category (odds ratio 
for part 1 model and additional cost for part 2 model)
b Covariate was excluded during the selection procedure (not statistically significant)

Covariate Category Part 1: Probability of incurring 
cost
OR (95% CIs)

Part 2: Cost, if any incurred
Mean (95% CIs)

Intercepta 0.13 (0.12–0.13) 2177 (2152–2201)
Baseline characteristics
 Sex (ref: female) Male 0.93 (0.9–0.97) −81 (−118 to −45)
 Systolic blood pressure (centred at 140; per 

20 mmHg)
b 22 (3–41)

 Prior diabetes (ref: no) Yes 1.11 (1.01–1.22) b

Time-updated characteristics
 Current age (centred at 60; per 10 years) 1.37 (1.34–1.4) 158 (136–179)
 Myocardial infarction (ref: no) Same year 36.83 (24.07–56.37) 3421 (2949–3893)

1 year ago 2.04 (1.34–3.11) 841 (323–1359)
2 years ago 1.87 (1.17–2.97) 332 (−125 to 789)
≥3 years ago 1.34 (1.01–1.77) 372 (87–657)

 Stroke (ref: no) Same year 38.7 (24.72–60.59) 4697 (4059–5335)
1 year ago 2.87 (1.91–4.31) 1995 (1377–2612)
2 years ago 2.26 (1.42–3.58) 488 (16–961)
≥3 years ago 1.62 (1.28–2.05) 924 (635–1213)

 Vascular death (ref = no) Yes b 4786 (2639–6933)
 Non-vascular death (ref = no) Yes 9.56 (7.44–12.29) 4984 (4502–5466)
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are for illustration purpose only. Interested users in models 
of costs associated with cardiovascular events can refer 
to our original study on this topic [8]. In this tutorial we 
also do not illustrate the approaches to deal with missing 
data or functional form of continuous covariates, which 
are dealt with elsewhere [16]. The illustrative example, 
however, shows all the key stages of cost modelling using 
individual patient data to inform economic evaluation.

5  Conclusion

To our knowledge, this is the first tutorial for modelling 
healthcare costs associated with disease states in decision 
analytic models using individual patient data. We hope it 
is a useful starting point for researchers who plan to con-
duct such an analysis.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40273- 023- 01319-x.
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