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Abstract
Sequential use of alternative treatments for chronic conditions represents a complex intervention pathway; previous treatment 
and patient characteristics affect both the choice and effectiveness of subsequent treatments. This paper critically explores the 
methods for quantitative evidence synthesis of the effectiveness of sequential treatment options within a health technology 
assessment (HTA) or similar process. It covers methods for developing summary estimates of clinical effectiveness or the 
clinical inputs for the cost-effectiveness assessment and can encompass any disease condition. A comprehensive review of 
current approaches is presented, which considers meta-analytic methods for assessing the clinical effectiveness of treatment 
sequences and decision-analytic modelling approaches used to evaluate the effectiveness of treatment sequences. Estimating 
the effectiveness of a sequence of treatments is not straightforward or trivial and is severely hampered by the limitations of 
the evidence base. Randomised controlled trials (RCTs) of sequences were often absent or very limited. In the absence of 
sufficient RCTs of whole sequences, there is no single best way to evaluate treatment sequences; however, some approaches 
could be re-used or adapted, sharing ideas across different disease conditions. Each has advantages and disadvantages, and 
is influenced by the evidence available, extent of treatment sequences (number of treatment lines or permutations), and com-
plexity of the decision problem. Due to the scarcity of data, modelling studies applied simplifying assumptions to data on 
discrete treatments. A taxonomy for all possible assumptions was developed, providing a unique resource to aid the critique 
of existing decision-analytic models.
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1 Introduction

The availability of multiple interventions for the same condi-
tion or indication is increasingly common [1]. To optimise 
treatment outcomes and value for money, a sequence of treat-
ments is likely to be used in such contexts. Policy and clini-
cal decisions based on the optimum sequence rather than 
the effectiveness or cost-effectiveness of discrete treatments 
are becoming increasingly important [2–5]. This is espe-
cially true for chronic diseases, such as depression, diabetes, 
and cancer [5–7], and some infectious diseases where treat-
ment resistance can limit effectiveness, for example human 
immunodeficiency virus (HIV) [8]. However, synthesising 
and interpreting the evidence base to inform such decisions 
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Key Points for Decision Makers 

Treatment sequences, where previous treatment and 
patient characteristics can affect both the choice and 
effectiveness of subsequent treatments, are increasingly 
common in chronic conditions and represent complex 
treatment pathways. Methods for evidence synthesis that 
produce the least biased estimates of treatment sequenc-
ing effects are required to inform reliable clinical and 
policy decision making.

Randomised controlled trials (RCTs) of treatment 
sequences are limited; the use of RCTs of discrete 
treatments may not provide good evidence on treatment 
sequencing effects, and observational studies are suscep-
tible to confounding and bias.

The inclusion of discrete treatments used at different 
points in the treatment pathway may bias a network 
meta-analysis. Meta-regression needs to account for both 
previous treatment and duration of disease.

Modelling studies of treatment sequences often apply 
simplifying assumptions due to the absence of sequenc-
ing trials. This can lead to misrepresentation of the true 
level of uncertainty, potential bias in estimating the 
effectiveness and cost-effectiveness of treatments, and 
the wrong decision.

sequences are few in numbers and do not cover the breadth 
of decision making needed. As the number of available 
treatments increases, the number of unique sequences will 
increase geometrically [4, 25], making it impractical and 
prohibitively costly to evaluate all conceivable sequences 
in RCTs. The time-varying adaptive nature of many 
sequences also means that innovative and novel approaches, 
such as sequential multiple assignment randomised trials 
(SMARTs), are required for developing the dynamic treat-
ment regimens [26–28]. RCTs of discrete treatments, used 
at single points in the treatment pathway, provide robust 
estimates of effectiveness for their specific context, but may 
not provide representative estimates for these treatments 
when used in different contexts, such as the later stages of 
sequences. Participants who enrol into clinical trials and 
are adherent to discrete treatments may also be quite dif-
ferent from subjects in trials of treatment sequences where 
alternative, subsequent treatment options are available [7, 
29–31]. In sequential treatment studies, participants’ deci-
sion to end first-line treatment may be influenced by the 
knowledge there is a second-line treatment readily available 
[21]. Alternative data sources, which can potentially provide 
context-specific estimates of treatment effects in different 
sequences, are longitudinal observational studies, but these 
are subject to selection bias and confounding.

Evidence synthesis methods that produce the least biased 
estimates of treatment-sequencing effects are required to 
inform reliable clinical and policy decision making. Due 
to the limitations of primary data sources outlined above, 
this is likely to require advanced meta-analytic techniques 
[32–36] or mathematical modelling [37]. There is no cur-
rent guidance for best practice in this context. The Decision 
Support Unit (DSU), which is commissioned by the National 
Institute for Health and Care Excellence (NICE) to provide 
a research resource to support the institute’s Technology 
Appraisal Programme has developed a briefing document 
on reviewing sequential treatments and downstream costs 
[38]. This was part of a series of briefing papers and reports 
developed to inform the 2013 update of the NICE meth-
ods guide. The updated methods guide highlighted the fact 
that some technology appraisals may need to consider the 
comparison of treatment sequences. However, neither the 
updated methods guide nor the DSU’s briefing document 
provided guidance on evaluating the clinical effectiveness 
or modelling treatment sequences. We did not find any other 
health technology assessment (HTA) guidance that provided 
information on evaluating treatment sequences. Our paper 
provides a first step in addressing this limitation.

As a step towards informing best practice, a compre-
hensive review of reported quantitative evidence synthesis 
methods was conducted to establish what existing methods 
are available and outline the assumptions they make and 
any shortcomings. It is also hoped that this review will draw 

is not straightforward. Treatment sequencing represents a 
complex intervention pathway where treatment history and 
patient characteristics may influence both the choice and 
the effectiveness of subsequent treatments. Treatment his-
tory represents multiple factors, including, number and type 
of previous treatments [9, 10], carry-over effects of prior 
treatments [11–13], type, level and duration of response to 
previous treatment [14–16], time on treatment [17], intoler-
ance or toxicity [16, 18], development of disease resistance 
[19, 20], and burden of preceding treatments that can impact 
subsequent adherence [7, 21]. Time and disease trajectory 
are also important factors that can influence the effective-
ness of subsequent treatment, the impact of which can be 
both dependent on and independent of previous treatments 
[9, 10, 22, 23]. Subsequent treatment choices include dose 
escalation, add-on therapy, a completely new treatment, or 
re-use of a previously effective treatment. In some instances, 
for example relapsing-remitting multiple sclerosis, previous 
treatments can restrict the choice of allowable follow-on 
drugs [24].

Randomised controlled trials (RCTs) provide the most 
robust estimates of treatment effects to inform policy and 
clinical decision making. However, RCTs of treatment 
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attention to this increasingly important area and encourage 
future methods development.

The review of methods was conducted with the aim of 
providing guidance for undertaking HTA or similar pro-
cesses, including comparative effectiveness research and 
evidence-based guideline development. We did not aim to 
assess the effectiveness or cost-effectiveness of treatment 
sequences here, rather the methods used to develop summary 
treatment effect estimates of whole sequences or discrete 
treatments conditional on their positioning in the treatment 
pathway. The review considered methods applied within 
both clinical and economic evaluation; however, our focus 
is on the estimation of clinical effectiveness and does not 
consider the impact of treatment sequencing on the estima-
tion of costs or utility values.

2  Methods

2.1  Literature Search

The intention was to identify the breadth of methods devel-
oped for evaluating treatment sequences and not to identify 
every study that used each method.

The breadth of our review, the recognised challenges of 
identifying and selecting methodological research using 
reference databases [39–41], and the fact that the major-
ity of relevant literature would likely be studies reporting 
applicable methods or methodological developments as part 
of a wider applied study, rather than being primarily meth-
odological studies [41], meant that a conventional systematic 
search of reference databases was considered insufficient for 
the current review. A number of approaches and sources 
were therefore used to identify relevant methodological stud-
ies. The following bibliographic databases were searched 
from inception to August 2013: MEDLINE, Embase, and the 
Cochrane Library. The search strategy is provided in Online 
Resource 1 (see the electronic supplementary material). 
This was supplemented by hand-searching the following: 
internet search engines; the websites of specific organisa-
tions, including NICE; electronic journals; the agendas of 
online conference proceedings; the references of existing 
reviews (listed in Online Resource 1) and relevant papers; 
known author searches; and forward citation tracking. The 
reference database searches were not updated, but itera-
tive and purposeful hand searches, including the PubMed 
related citations function, were continued throughout the 
review process. An in-depth review was conducted of rel-
evant studies identified during the initial searches. Potential 
new studies then were then cross-referenced with a list of 
included studies and recorded methods. More recent stud-
ies were only included if they contributed to new methods 
or knowledge. The searches were deemed to be complete 

when further efforts to identify information did not add to 
the analysis [42] (with the most recent study published in 
2016). This is analogous to reaching the point of ‘saturation’ 
in qualitative research [42, 43]. The searches have since been 
supplemented by a recent purposeful and targeted search, 
which incorporated scanning studies included in a recent 
systematic review of economic evaluations in rheumatoid 
arthritis by Ghabri et al. [44].

2.2  Assessing Study Relevance

The review included any disease condition and sequence of 
any type of treatment. It did not consider decision problems 
relating to prevention, screening/prognostic, diagnostics, 
or treatment monitoring. It focused on treatment switching 
based on a clinical assessment. Studies evaluating the effec-
tiveness of planned sequential administration of combined 
therapy were excluded, as this represented a different type 
of decision framework.

The review included studies that applied or developed 
quantitative evidence synthesis methodology as part of sec-
ondary research. Studies that used qualitative or narrative 
evidence synthesis and primary research evaluating treat-
ment sequences were excluded. Any type of meta-analytic 
technique was considered, incorporating, but not limited 
to, pairwise meta-analysis, meta-regression, network meta-
analysis (NMA), and any meta-analysis based on individual 
patient data (IPD). Decision-analytic modelling techniques 
developed to evaluate treatment sequencing, whether con-
ducted as part of an economic evaluation or not, were 
included. Modelling studies that aimed to evaluate the effec-
tiveness of discrete treatments and incorporated the impact 
of downstream treatments were only included if they spe-
cifically modelled sequencing effects. Studies published in 
abstract form were excluded, as were economic evaluations 
based on a single RCT.

3  Results

3.1  Overview of Included Studies

Database searches, after de-duplication, identified 752 refer-
ences, of which 94 were deemed potentially relevant after 
screening titles and abstracts. Twenty-six of these could not 
be further assessed as they were unavailable (n = 2), could 
not be translated (n = 2), or were only published as confer-
ence abstracts (n = 22). A further 28 of those retrieved in 
full were excluded as they were not relevant (Fig. 1). After 
collating studies published in more than one publication, 
the remaining 40 references yielded 36 studies of interest. 
These were included in the review, along with a further 53 
studies identified via internet and hand searches. Recent 
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supplementary targeted searches identified two studies [45, 
46] that contributed a new modelling technique. There were 
91 studies in all.

Forty-nine (54%) studies investigated the use of disease-
modifying antirheumatic drugs (DMARDs), including bio-
logical agents (or biologics), for the treatment of inflam-
matory arthritis, including rheumatoid arthritis, psoriatic 
arthritis, and ankylosing spondylitis. Fourteen (15%) related 
to oncology. The remainder assessed treatments for epilepsy 
(n = 4; 5%), psoriasis (n = 4), depression (n = 3; 3%), glau-
coma (n = 2; 2%), schizophrenia (n = 2), type 2 diabetes 
mellitus (n = 2), HIV (n = 2), neuropathic pain (n = 1), pos-
therpetic neuralgia (n = 1), sciatica (n = 1), fibromyalgia (n 
= 1), chronic hepatitis B infection (n = 1), Crohn’s disease 
(n = 1), onychomycosis (n = 1), and spasticity (n = 1). The 
majority involved sequences of drug treatments, but some 
also considered other interventions, for example, surgery 
for sciatica. Only two studies were primarily methodologi-
cal [14, 47].

Meta-analysis and decision-analytic modelling were 
reviewed as two distinct categories of quantitative evidence 
synthesis methods.

3.2  Meta‑Analytic Methods

Twenty-three studies were included in the evaluation of 
meta-analytic approaches [9–11, 16, 23, 47–64]. However, 
some of these studies were considered relevant in fairly 
broad terms, such as providing examples of how the lim-
ited evidence base precluded the evaluation of treatment 
sequencing, or representing the use of stratified analysis by 
line of therapy, which could potentially provide a building 
block for future methods development. These approaches 
were initially not considered pertinent to the review but 
because of the dearth of relevant methods identified, a 
post hoc decision was made to include them as examples 
of simplifying methods. This provided a more comprehen-
sive list of the approaches pragmatically used for evaluat-
ing treatment sequencing in general, rather than limited to 
novel methods for developing sequence-specific summary 
effect estimates. An overview of the studies, including their 
aims, approaches used, and the data sources, is presented 
in Table 1.

The evidence to inform treatment sequencing was broadly 
considered in two ways: a one-step-at-a-time evaluation 
based on a series of discrete treatments and a comparison of 
whole sequences. No novel meta-analytic methods (beyond 
the use of conventional pairwise meta-analysis [32]) were 
identified for evaluating treatment sequences, and none 
directly aimed at developing a summary estimate of effect 
conditional on positioning in the sequence. Most approaches 
were developed for addressing excessive heterogeneity or 
specific gaps in the RCT evidence when evaluating discrete 

treatments at single points in the pathway. For example, 
in rheumatoid arthritis, RCTs of initial biological therapy 
investigated the use of these drugs in both early disease, 
where patients have not previously received any DMARD 
therapy, and as add-on therapy for established disease in 
patients with an inadequate response to previous conven-
tional DMARDs, representing a heterogeneous patient popu-
lation. The first-generation biologics include tumour necro-
sis factor-α (TNF) inhibitors. Most RCTs of second-line 
biologics investigated other types of biologics in participants 
with an inadequate response to previous TNF inhibitors; few 
RCTs evaluated the sequential use of first-generation TNF 
inhibitors, whist registry data show that these are often used 
in practice as second- or subsequent-line therapy [47]. The 
current meta-analytic approaches, which can potentially be 
used in a clinical evaluation of a health technology, are sum-
marised below.

3.2.1  Meta‑Analysis of Studies Evaluating Whole 
Sequences

This approach is hampered by the limited number of avail-
able RCTs of treatment sequences, which also makes it dif-
ficult to establish a closed network for implementing NMA 
[56]. Observational studies can be used as alternative data 
sources, but are subject to confounding and bias. The type 
of observational studies used included the comparison of 
participants who had received a predefined sequence of two 
drugs [11], the evaluation of second-line treatment where 
generic first-line treatment is used [52], and the comparison 
of the outcomes of first- and second-line treatments [9, 47]. 
The comparison of treatments used during an earlier ver-
sus a later part of the treatment pathway ignores the likely 
effect of disease trajectory, issues relating to treatment 
choice, changes in pathophysiology with time, and other 
confounding factors. The types of bias and limitations of 
non-randomised studies that are specific to the evaluation 
treatment sequences, and identified as part of the review, 
are listed in Box 1.

3.2.2  Subgroup Analyses to Explore the Impact 
of Treatment History when Evaluating Treatment 
Sequences in a Piecemeal Fashion

The subgroups can be defined in two ways: by splitting all 
studies into two or more groups, also referred to as stratified 
analysis (e.g. early- vs late-stage disease, or failed previous 
TNF inhibitor ‘yes’ vs ‘no’) [63, 64], or by taking partial 
data from included studies (e.g. participants switching to 
a second TNF inhibitor due to intolerance, lack of efficacy, 
or loss of efficacy) [58]. A summary of the methods used is 
provided in Online Resource 2 (see the electronic supple-
mentary material). Stratified analysis is also applied when 
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Fig. 1  Flow diagram showing the number of references identified, publications retrieved, and studies included in the methodology review
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conducting separate meta-analysis for each line of therapy 
(e.g. first- or second-line biologics) [62, 64] or for different 
patient populations (e.g. participants with no previous his-
tory of biologic therapy  or participants with an inadequate 
response to previous TNF inhibitors) [10, 60]. The main 
limitation of using subgroup analyses is that it only allows 
for the comparison of two subgroups at a time, with or with-
out one covariate. All other covariates are pooled, and each 
analysis is confounded by other variables [65].

3.2.3  Meta‑Regression to Adjust for the Previous Treatment

This approach was not generally used for the sole purpose of 
evaluating treatment sequences, but was used to account for 
the heterogeneity within the meta-analysis or NMA. A sum-
mary of the methods used is provided in Online Resource 
2. The covariate representing previous treatment was often 
dropped from the final analysis due to non-significant find-
ings [54, 61], possibly due to lack of power, as previous 
treatment was generally poorly reported in primary studies 
[10, 54]. However, lack of variability between studies can 
also contribute to non-significant findings, especially when 
the meta-analysis is used to compare treatments applied at a 
single point in the pathway, or where the ordering of treat-
ments is much the same in a given disease. To avoid prob-
lems with insufficient power, a limited number of covari-
ates are incorporated in the meta-regression. This frequently 
included disease duration. For example, a study, which com-
bined the use of NMA and meta-regression to account for 
the significant heterogeneity between studies of biologics for 
rheumatoid arthritis, included only two study-level covari-
ates in the meta-regression, disease duration and a measure 
of baseline disability [57]. The analysis included RCTs of 
participants who were DMARD naive and RCTs of partici-
pants with an inadequate response to these drugs lumped 
together. Disease duration could potentially be considered as 
a proxy for previous treatment use, as the likelihood of fail-
ing prior treatments will increase with increasing duration. 
However, there is also justification for including treatment 
history as a covariate, especially when pooling (lumping 
together) studies across different treatment lines [10, 23]. 
The inclusion of both covariates could help to disentangle 
whether long standing disease per se is associated with a 
poor response to treatment, or whether failure on previous 
treatments predicts response to subsequent treatment [22]. 
The use of IPD is likely to enhance the application of this 
approach [10], but studies that used such data were still ham-
pered by the poor reporting of previous treatment [23].

A further limitation of conducting an NMA of all discrete 
treatments irrespective of where they are used in the path-
way is that previous treatment(s) can both have an impact 
on treatment effect, acting as an effect modifier, resulting in 
heterogeneity, and be associated with the type of treatment 

comparison, acting as a confounding factor and lead to 
inconsistency in the network. For example, in an NMA of 
sciatica treatments, non-invasive treatments were more likely 
to be used as initial treatments and invasive treatments were 
used after the failure of other treatments in patients with a 
more long-standing and less responsive condition [66].

3.2.4  Network Meta‑Analysis Incorporating Multiple 
Treatment Lines, for Example, First‑ and Second‑Line 
Treatments, as Separate Treatment Nodes

This approach was not developed for evaluating treatment 
sequences as such, but rather to evaluate methods for incor-
porating real-world data in evidence synthesis of second-line 
treatment. In particular, the approach sought to optimise an 
evidence base using first-line evidence to inform second-line 
effectiveness estimates. The methods were applied as part 
of the GetReal project case study of biologics in rheuma-
toid arthritis [47]. The authors had access to IPD from two 
national registries and five RCTs (two investigated second-
line treatment). A series of Bayesian univariate and bivariate 
NMA was conducted that incorporated both treatment lines. 
The data from RCTs provided separate networks of evidence 
for first- and second-line biologics. No RCT reported on 
both treatment lines; thus the exchangeability assumption 
was needed to connect the two networks by assuming all 
treatment effects have a common distribution. The univari-
ate analysis utilised the registry data as data, whereas the 
bivariate analyses used the registry data to inform the prior 
distribution for the correlation parameter between first- and 
second-line treatments. In the univariate analysis, relative 
effect estimates for first- versus second-line treatment were 
obtained from the registry, allowing the two networks to 
be connected and for treatment comparisons (e.g. drug A 
in first line vs drug A in second line) to be obtained. The 
use of multivariate analysis allows separate outcomes to be 
modelled simultaneously, using the correlation to borrow 
information across multiple outcomes or time points. Here, 
the treatment effect for first-line treatment was modelled as 
outcome 1 and second-line treatment as outcome 2, and the 
correlation was that of between treatment lines. The initial 
bivariate NMA was conducted using RCTs of first- and sec-
ond-line treatments. The correlation estimate was obtained 
by conducting standard pairwise meta-analysis, based on 
registry data split into first- and second-line response, and 
monitoring the correlation. In a second bivariate analysis, 
the registry data were used as part of the NMA by being split 
into multiple pairwise studies. This allowed for modelling 
between-study correlation between the lines of therapy. A 
third analysis used data from the registries, reporting treat-
ment effect estimates on both lines, which allowed for relax-
ing the exchangeability assumption on the average level. 
The biggest challenge here was developing an estimate of 
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correlation between first- and second-line treatments to con-
duct the analysis. The assumptions of consistency and simi-
larity, across the pairwise contrasts, within the NMA may 
also be difficult to justify, as discussed above in the NMA 
of sciatica treatments example. The limitations of relying 
on observational studies comparing first- and second-line 
treatment are discussed in Sect. 3.2.1 and Box 1.

3.2.5  Developing a Specific Multiplication Factor that Can 
be Applied to the Summary Effect of a Treatment 
Used as First Line in Order to Represent Its Use 
at a Later Point in the Pathway

This approach is not a meta-analytic method as such, but 
was used to adapt the findings of meta-analysis of discrete 
(first-line) treatments to represent sequencing effects. The 
optimal approach for developing a multiplication factor 
is yet to be established. Current methods incorporate two 
approaches [16, 48]. One study, investigating TNF inhibi-
tors for psoriatic arthritis, obtained modifying factors from 
an observational study comparing the class of drugs used as 
first-line and subsequent treatment for rheumatoid arthritis. 
A different multiplication factor was developed, depending 
on whether the initial TNF inhibitor was discontinued due 
to inefficacy or adverse effects [16]. A second study devel-
oped a reduction factor based on the data available for one 
antiepileptic drug for which there was an RCT of its use at 
two different time points, first-line monotherapy and later as 
an add-on therapy [48]. Modification factors were primar-
ily used by modelling studies, with most not reporting the 
methods used for developing them [18, 67–72]. Most used 
estimates based on available evidence, mainly an observa-
tional or previous modelling study, the choice of which was 
frequently not justified. The reduction factor used in the 
most recent (2020) economic evaluation [45] was obtained 
from a pragmatic RCT of non-TNF-targeted biologic ver-
sus a second TNF inhibitor to treat rheumatoid arthritis in 
patients with insufficient response to their first anti-TNF-
inhibitor (Gottenberg et al. [73]).

3.3  Decision‑Analytic Modelling

3.3.1  Decision Modelling Methods

Seventy-two modelling studies were reviewed and fifty-two 
distinct models identified [14–18, 45, 46, 48, 53, 56, 67–72, 
74, 74–101, 101–127]. An overview of the included model-
ling studies is provided in Online Resource 3 (see the elec-
tronic supplementary material). Most modelling studies were 
conducted as part of an economic evaluation. A wide range 
of modelling techniques were used to address a broad spec-
trum of treatment-sequencing decision problems (Box 2), 
which included identifying the optimum sequence; adding a 

new drug to an established sequence; comparing ‘step-up’ or 
‘step-down’ treatment approaches; comparing different treat-
ments used at the same point within a sequence; evaluating 
a drug used at different points within a sequence; and com-
paring predefined sequences. The sequence of treatments 
being modelled ranged from a fixed sequence of a limited 
number of treatment lines to variable treatment algorithms 
where patient history and characteristics dictate the choice 
of subsequent treatments.

Two published taxonomies developed for categorising dif-
ferent modelling techniques according to their key features 
[128, 129], along with other guides and algorithms that have 
been developed to aid the selection of an appropriate mod-
elling technique (or structures) for economic evaluation in 
general [97, 128–140], were used to categorise the included 
studies and inform the data extraction. The advantages and 
disadvantages of each modelling approach were assessed as 
part of the review. The choice of an appropriate modelling 
approach depends on the complexity of the underlying deci-
sion problem, the extent of the treatment sequences being 
investigated, and the disease condition. Table 2 provides an 
abbreviated summary of the overall findings of the review 
of modelling studies, including how treatment sequences 
were conceptualised within different modelling approaches 
(column 2); and the type of the additional attributes in the 
decision problem (beyond the sequencing of individual 
treatments) and disease condition that were captured by the 
included models (column 3). A more detailed summary of 
the methods and findings of the review of modelling studies 
is provided in Online Resource 4 (see the electronic supple-
mentary material). The modelling techniques used included 
deterministic decision tree, stochastic decision tree, Markov 
cohort model, partitioned survival cohort model, semi-
Markov cohort model, individual-patient simulation state 
transition models, discrete event simulation, discretely inte-
grated condition event (DICE) simulation, non-terminating 
population-based simulation, terminating population-based 
simulation, and dynamic Markov cohort model. No study 
compared any of these alternative approaches for evaluating 
treatment sequences to assess, for example, how sensitive 
results were to the type of model used. A number of stud-
ies did report choosing a discrete event simulation over a 
state transition model due to the improved computational 
efficiency [48, 68, 104, 122]. The level of complexity in 
the decision problem accounted for in the models varied 
quite considerably, even when evaluating similar treatment 
sequences within the same disease condition. The decision 
problem was also simplified by modelling a limited num-
ber of treatment lines, streamlining the disease process, and 
using a short time horizon. For example, some studies used a 
2–5 year time frame, rather than a lifetime horizon, for mod-
elling treatment sequences for rheumatoid arthritis, because 
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a longer time horizon implied too many assumptions [71, 78, 
79, 84, 112, 113, 124].

3.3.2  Simplifying Assumptions Regarding Sequences 
of Treatment

Treatment sequences were often modelled as a series of 
discrete treatments, each requiring a summary effect esti-
mate conditional on positioning in the treatment pathway. 
The scarcity of data to inform such estimates meant that 
simplifying assumptions were often applied to the avail-
able data on discrete treatments used at a single point in the 
pathway. A range of simplifying assumptions used to rep-
resent treatment-sequencing effect estimates was identified, 
which were used to develop a novel taxonomy of all possible 
assumptions (Table 3). The most common assumptions were 
that treatment effect is independent of positioning in the 
sequence, or that treatment effect is dependent on the num-
ber of previous treatments (treatment line), but independent 
of the type of treatments used (Table 4). These assumptions 
were frequently not validated; nor was their impact on the 
overall results assessed. Forty-nine studies (72%) assumed 
that the effect of either all or some of the treatments used 
after the first treatment modelled (or decision point) were 
independent of treatment sequence. Only six studies (9%) 
evaluated the impact of applying this assumption in sensitiv-
ity analyses, by reducing the effect of treatments used later 
in the sequence using a factor based on evidence [67, 69], 
an arbitrary amount [15, 93, 110], or expert consensus [14]. 
The assumption that treatment effect is dependent on line of 
therapy was often used in conjunction with the assumption 
of treatment independence, applied to treatments adopted 
later in the sequence.

The available evidence to inform treatment-sequenc-
ing effects impacts the type of assumptions required. The 
review focused on modelling studies that evaluated treat-
ment sequences, but economic evaluations often focus on the 
comparison of discrete treatments and model downstream 
costs of subsequent treatments. The findings demonstrated 
that priority was often given to matching the evidence for 
the decision point, for example, comparing first-line biolog-
ics, rather than considering treatment sequences as a whole. 
Economic evaluations undertaken by, or on behalf of, manu-
facturers of health technology tended to focus on a specific 
decision point reflecting treatments used in pivotal RCTs 
matching the licence indication, for example, comparing a 
TNF inhibitor to a conventional DMARD [74, 80, 101], or 
a non-TNF-inhibitor biologic to a TNF inhibitor [101]. The 
data sources used alongside the simplifying assumptions 
for treatments used beyond the decision point varied, even 
when considering the same decision problem and address-
ing the same evidence gap. For example, data sources used 
to inform sequential TNF inhibitors included the following: 

RCTs of TNF inhibitors used as first-line biologics [45, 67, 
72, 83, 87, 89, 92, 96, 101, 109], a national patient regis-
try [81, 101, 104, 115, 122], a large, uncontrolled, open-
label study of a specific TNF inhibitor in patients who had 
previously discontinued TNF inhibitors [78, 79, 84, 107, 
112, 113], and an RCT of a non-TNF-inhibitor biologic in 
participants with an inadequate response to TNF inhibitors. 
The effects of treatments administered later in the treatment 
pathway were also handled in different ways. For example, 
in a technology appraisal of TNF inhibitors for rheumatoid 
arthritis [83], the initial treatment response for each sub-
sequent conventional DMARD was explicitly modelled, 
whilst in another technology appraisal of TNF inhibitors 
for psoriatic arthritis [16], the economic model assumed 
that patients experienced a steady long-term deterioration 
after the failure of the TNF inhibitor. Therefore, fluctuations 
caused by response to subsequent conventional DMARDs, 
which were considered to be administered as part of pallia-
tive care, were ignored. The uncertainty in the quality of the 
alternative evidence to inform sequencing effects was not 
investigated in depth.

Decision models that start at the point of diagnoses are 
more likely to reflect the complete sequence of treatments 
used in chronic conditions, for example, some studies of 
biologics in rheumatoid arthritis developed the decision 
population within the actual model, with patients entering 
the model being newly diagnosed with early disease [67, 
75, 83, 85, 99, 122]. However, the likelihood that there is 
no matching evidence is increased, and more assumptions 
are required. Another approach is to model the initial treat-
ment used prior to the decision point (e.g. when comparing 
second-line biologics), and apply the assumption that the 
entire patient population on entering the model have an inad-
equate response to the first modelled treatment (e.g. first-line 
biologic). This approach was used in the Advanced Simu-
lation Model, to allow the initial treatments to be costed 
appropriately, reflecting treatment sequences used in practice 
[71, 78, 79, 84, 112, 113]. However, the evidence used to 
inform the treatment effects of the second TNF inhibitor 
did not match the prior TNF inhibitor failed (first treatment 
modelled). The third and most common approach was to 
include a patient population entering the model that reflected 
the decision problem in terms of the number of previous 
treatments used, for example, patients receiving their first 
biologic therapy. Modelling studies that only consider the 
impact of subsequent treatments when, for example, com-
paring first-line biologics [71, 72, 74, 75, 83, 89, 101, 120, 
123, 127] are generally based on the assumption that the 
sequences being compared are starting from a level playing 
field. The potential impact of this is not generally considered 
within the sensitivity analysis, as it is not part of the cost-
effectiveness estimates.
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A frequent problem when evaluating the introduction of a 
new treatment to an established sequence is the lack of data 
to inform the ‘displaced effect’. For example, when adding 
a new drug (e.g. non-TNF-biologic agent) to an established 
sequence (e.g. starting with a TNF inhibitor), the existing 
drug is displaced lower down the sequence (Box 2), and is 
generally modelled as both the comparator (e.g. first-line) 
treatment in the baseline sequence and the subsequent (sec-
ond-line) treatment, after the new drug, in the intervention 
sequence. The same treatment effect is generally applied to 
the existing drug, irrespective of whether it is used early or 
later in the sequence (and disease trajectory), with no RCT 
data available on its effect in patients with an inadequate 
response to the new drug.

4  Discussion

4.1  Summary of the Findings

The review identified a range of quantitative evidence syn-
thesis methods used for evaluating the effectiveness of alter-
native treatment sequences. The findings demonstrated the 
following:

i Reviewing the evidence on treatment sequencing is nei-
ther trivial nor straightforward.

ii In most cases, treatment sequences represent complex, 
multifaceted, dynamic intervention pathways, which 
will require advanced methods of quantitative evidence 
synthesis, especially if evaluated using a ‘one-step-at-
a-time’ approach.

iii Prospective sequencing trials are few in numbers and 
do not cover the breadth of decision making needed. 
The evidence synthesis would likely need to consider 
the inclusion of diverse study designs, including non-
randomised studies.

iv The problem has largely not been addressed using evi-
dence synthesis methodology for clinical effectiveness, 
but is usually dealt with at the decision modelling stage.

v. There is no single best way to evaluate treatment 
sequences; rather there is a range of approaches and, as 
yet, no generalised methodology that encompasses the 
different assumptions used.

vi Each approach has advantages and disadvantages and is 
influenced by the evidence available and decision prob-
lem.

vii When using a one-step-at-a-time approach, previous 
treatment is an important effect modifier, and subsequent 
treatments can confound long-term outcomes, such as 
survival.

viii The reason for discontinuing treatment (lack of effect, 
loss of effect, or intolerance) has a differential effect on 

the effectiveness (and choice) of subsequent treatment, 
and is poorly reported in primary studies.

ix The extent and type of sequences being evaluated tended 
to reflect the available research evidence, rather than 
clinical practice.

4.2  Comparison with Existing Reviews

We identified three existing reviews of methods for evalu-
ating treatment sequences. This included two systematic 
reviews of economic evaluations [4, 141] and one review of 
published UK NICE technology appraisals [3]. Mauskopf 
et  al. analysed treatment-sequencing assumptions after 
failure of the first biologic in cost-effectiveness models of 
psoriasis, and compared the modelled sequences with the 
most recent treatment guidelines [141]. They concluded 
that models of first-line biologics either do not include 
subsequent treatments or include only some of the regimes 
recommended in current guidelines, and that cost-effec-
tiveness results may be sensitive to the assumptions about 
treatment sequencing, and choice and efficacy of subse-
quent treatment sequencing regimens. Tosh et al. assessed 
and critiqued how sequential DMARDs for rheumatoid 
arthritis have been modelled in economic evaluations [4]. 
They found that reporting of the methods and evidence used 
to assess the effect of downstream treatments was gener-
ally poor; when lifelong models and treatment sequences 
were considered, evidence gaps were identified. They con-
cluded that methods were not applied consistently, leading 
to varied estimates of cost-effectiveness, and that treatment 
sequences were not fully considered and modelled, poten-
tially resulting in inaccurate estimates of cost-effectiveness. 
Zheng et al. investigated approaches used to model treatment 
sequences in NICE appraisals to provide practical guidance 
on conceptualising whether and how to model sequences in 
health economic models [3]. They concluded that the big-
gest challenge is the scarcity of clinical data that capture 
the long-term impacts of sequences on efficacy and safety. 
Three commonly used assumptions to bridge the evidence 
gap were identified, but each had its own limitations. These 
included the assumption that the efficacy of a treatment 
stayed unchanged regardless of line of therapy, the use of 
data from trials in different lines of therapy to directly model 
a treatment sequence, and the use of retrospective studies of 
clinical registries or databases. The findings of these reviews 
were consistent with ours, though their scope was more lim-
ited in that they focused on either a single condition or UK 
NICE appraisals.

4.3  Strengths and Limitations of the Review

This is the first review of methods to investigate the evalu-
ation of treatment sequencing across all clinical scenarios, 
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and to include both meta-analytic techniques and decision-
analytic modelling. It represents an extensive in-depth 
review of current methods used to evaluate the clinical 
effectiveness of treatment sequences, representing a broad 
and disparate area of research.

A potential limitation of our review is that the reference 
database searches were not updated. However, targeted hand 
searches were continued during the review process and stud-
ies published beyond 2013 have been included. Neverthe-
less, more recent studies were only included if they contrib-
uted new findings, and the searches stopped when no new 
information was being found. This means that the review 
could have potentially missed new methods developed in 

the last few years. Updated targeted hand searches identified 
a new modelling technique (DICE) that was not previously 
included in our review. This has since been included. How-
ever, the methods used to conceptualise treatment sequences 
and the level of reality captured in the DICE model did not 
change the findings and recommendation of our review. The 
methods used to develop treatments sequencing effect esti-
mates and the accompanying simplifying assumptions made 
within the new studies [45, 46] were also the same as those 
included in our review. The assessment of recent studies 
included in a new systematic review of economic evalua-
tion of sequences of biological treatments for patients with 
rheumatoid arthritis, published in 2020, did not identify any 

Box  1  Potential bias or limitation in non-randomised, real-world observational studies that are specific to the evaluation of treatment 
sequences

i. Selection (allocation) bias results in systematic differences in prognostic factors between individuals in treatment and control groups, 
e.g. a cohort of patients receiving their first tumour necrosis factor (TNF)-inhibitor compared with a cohort receiving a second or 
subsequent TNF-inhibitor. Patients in the second group are likely to have worse prognoses and show limited responses to all treatments 
[9, 175]. Adjustment for both baseline and post-baseline prognostic factors is necessary, to ensure the comparability of treatment groups 
[166].

ii. Channelling bias favours patients with more severe disease. New treatments create expectations of improved effectiveness and tolerabil-
ity; early, post-marketing users are likely to be those who experienced little or no benefit from existing drugs and may therefore respond 
to the new drug in a way that is not representative of the eventual user population [176].

iii. Regression to the mean occurs because patients tend to be treated with a second or subsequent treatment at the height of their disease 
activity, where there is a greater than 50–50 likelihood that the condition will start improving after the intervention purely by chance [22].

iv. Confounding by disease duration occurs in conditions such as sciatica and rheumatoid arthritis, where the longer the disease duration, 
the less likely that patients will respond to any treatment [14]. Treatment history can be both correlated with disease duration [10] and act 
as independent effect modifier [10].

v.Enrichment of successive treatment use with refractory patients A small proportion of patients have refractory disease that will 
not respond to any treatment [14]. Populations receiving second-line or subsequent treatments are more likely to be enriched with such 
patients. This is related to class effect bias (vii). Patients who fail initial treatment due to a tolerability or safety issues are likely to have 
the same problem with any alternative drug from the same class,  increasing the risk for developing an adverse event in patients who 
switched due to an adverse event [16].

vi. Immortal time bias occurs in studies that limit inclusion to patients who are receiving a specific line of treatment (e,g, third-line 
chemotherapy) [52] or have completed a predefined sequence, and overlook patients who are continuing the initial treatment, or lost to 
follow-up after first-line treatment due to lack of efficacy, clinical deterioration, death or drug acceptability issues [52]. It is particularly 
relevant for treatments of advanced cancer where a large proportion of patients may not complete the sequence, or receive multiple treat-
ment lines [52].

vii. Class effect bias, which is the possibility that the comparison between drug classes may be confounded by differences in the type of 
patients treated with each class [52].

viii. Aggregate data collection is a limitation of real-world observational studies that do not report individual treatment or drug-level 
data. Any subsequent evidence synthesis has to be based on pooled data across treatments at class level, even when there is evidence that 
individual drug effects can vary within a class [11]. Class level treatment effects are often reported even when access to individual patient 
data is available [82].

ix. Missing or inaccurate data may be obtained from real-world practice. Patient registers and administrative databases are rarely set up 
for evaluating treatment-sequencing, and may not involve a high level of rigour in recording events [52].

x. Variability in how the same outcome measure is conceived across different studies is a particular issue in oncology when using pro-
gression free survival (PFS) to evaluate the impact of a sequence of treatments (e.g. using the sum of the progression free survival period 
for each treatment line). PFS is a composite endpoint, which may or may not incorporate a treatment free period before the next treatment 
resulting in a differential impact on the results; this needs to be accounted for in any pooled analysis [11]. Importantly, the use of PFS 
associated with each successive treatment line to inform treatment-sequencing assumes that all treatment effect from each treatment line 
stops on progression [11]. Alternative endpoints that have been proposed for evaluating a fixed sequence of treatments [183] include: 
Duration of disease control (DDC) and Time to failure of strategy (TFS).

NB The type of biases listed here may not be mutually exclusive and the descriptors may not be consistently used in the published litera-
ture, for example the phenomenon described as `regression to the mean’ can also be representative of both a class effect and a channelling 
bias, favouring patients with more severe disease [180].
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studies reporting methods or simplifying assumptions not 
already incorporated in our review [44].

4.4  Recommendations for Practice

4.4.1  Primary Study Design

The available evidence base for evaluating new treatments is 
often driven by the requirements for regulatory approval, and 
thus focuses on discrete treatments used at a defined point in 
the pathway [142, 143]. The lack of data on the effectiveness 
of these treatments when used at another point in the path-
way is a barrier to making policy decisions about the optimal 
positioning of new treatments or treatment sequences. The 
GetReal project (Sect. 3.2.4) included a stakeholder engage-
ment workshop to solicit views on the usefulness and accept-
ability of their analytic approach [144]. Interestingly, the 
regulators considered it to have limited usefulness because 
the evidence requirements for marketing authorisation 
in rheumatoid arthritis is line specific, whilst the pharma 
research and development representatives considered it use-
ful in principal, to better understand the gaps in the evidence 
across lines of therapy and aid the design of future clinical 
trials [144]. The focus of primary research on discrete treat-
ments is unlikely to change unless the regulatory authorities 
specify the importance of treatment sequencing or optimal 
positioning of new treatments. The reimbursement agencies 
and HTA bodies should also make recommendations on the 
nature of the clinical evidence required to inform treatment 
sequences [145, 146].

4.4.2  Health Technology Assessment

It is important to identify the relevance of, or the need to 
consider, treatment sequencing early on in the technology 
assessment process, and incorporate both the clinical and 
economic evaluation. Treatment sequencing was often con-
sidered as part of the economic evaluation only, and not 
considered in the clinical evaluation [17, 67, 83, 85, 95, 99, 
106, 116, 126, 147]. A previous review of NICE technology 
appraisals also identified a lack of integration or direct use 
of the systematic review to inform the economic evaluation, 
and the need to consider the data requirement of the eco-
nomic model at an early stage [148].

The development of an initial analytic or conceptual 
framework [40, 149] provides an essential tool for the plan-
ning and evaluation of treatment sequences. It can be used 
to consolidate the requirements of the clinical and economic 
evaluation; assist in communication within the research 
team and with a range of stakeholders; ‘think through’ the 
multiple components of the treatment pathways and dis-
ease-specific events in context; enhance the transparency 
of underlying assumptions; and inform choices about the 

level of structural complexity required by the model [40, 
139, 150–153]. For some chronic diseases, it may be useful 
to create a disease-specific conceptual framework that can 
serve as a foundation for developing future HTAs and eco-
nomic models of current and novel treatments [154], thus 
potentially allowing for greater stakeholder feedback and 
future improvement. There is also a need to depict treat-
ment sequences as a tree, rather than a linear sequence of 
treatments, thus accounting for the complex and dynamic 
intervention pathways that they represent. Although methods 
were developed that accounted for the fact that the reason for 
treatment discontinuation (e.g. loss of effectiveness, adverse 
events, non-adherence) might determine the average effec-
tiveness for the next line of therapy, the reality is that this 
may also affect the choice of therapy for the next line. A 
tree structure is adopted in the SMART design, which is a 
multistage trial designed to develop and compare treatment 
pathways that are adapted over time based on individual’s 
response and/or adverse effects [28].

The time and resource constraints of HTA, accompanied 
by limited evidence, may render an extensive model unreal-
istic. It may therefore be tempting to simplify the treatment-
sequencing decision problem. However, a model based on 
an oversimplification of the decision problem and clinical 
practice is also unlikely to be useful for decision makers. 
An alternative approach would be to develop a model that is 
designed to address any/multiple decision problems, rather 
than a single use model. This may be relevant, not only for 
chronic disease, but also in the introduction of new treat-
ments in a rapidly changing clinical field, such as oncology 
[5]. The likelihood that the available data to inform sequenc-
ing effects may improve over time also supports develop-
ing a model that is easily updated. This is consistent with 
recent calls for the use of disease-specific reference models 
[155], pre-verified modules [156], and open-source mod-
els [157] to improve the accuracy of economic evaluations. 
Our review identified some good examples where a model 
was further developed over time to address multiple reim-
bursement decisions (e.g. Birmingham Rheumatoid Arthritis 
Model [BRAM] [75, 158], Tran-Duy model [68, 122], Shef-
field rheumatoid arthritis models [159], and the Advanced 
Simulation Model [78]). However, each was developed by 
the same research group. An important challenge here is the 
need to make sufficient detail on the original model openly 
available.

A mathematical challenge for comparing multiple per-
mutations of sequences is to determine the proper starting 
point of the model. This is also relevant when using a model 
designed for multiple uses, which may start at the point of 
diagnosis [75], a key point in the treatment pathway (e.g. 
initiating DMARD therapy [122] or biologic therapy [78]), 
or the point at which the decision is made (Sect. 3.3.2). All 
evaluations should start at the point of divergence (i.e. the 
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point at which a decision might be made) [75]. Models used 
for comparing multiple permutations of sequences often 
include the same first one, two, or three lines of treatment. 
This will essentially ’dilute’ the true incremental effects 
(and costs) of treatment since some patients will have died 
(and left the model) before the point of divergence. Thus, 
when calculating the incremental outcomes per patient, the 
denominator will be greater than should have been used, 
meaning that the incremental results will underestimate the 
true effects.

A number of studies developed a model based on an 
existing approach. Existing modelling approaches could 
also, potentially, be adapted for use in a different disease 
condition. However, when using an existing model, it is 
important to consider what underlying assumptions regard-
ing treatment sequences were applied. For example, the York 
psoriasis model [126], which has subsequently been used by 
multiple studies evaluating treatment sequences in psoria-
sis [141, 160, 161], is based on the underlying assumption 
of treatment independence. The underlying assumptions of 
some existing modelling approaches mean that they will not 

be suitable for assessing the treatment sequences for some 
chronic conditions.

4.5  Taxonomy of Simplifying Assumptions Relating 
to Treatment‑Sequencing Effects

The taxonomy of simplifying assumptions (Table 3) pro-
vides a unique and important resource to inform future 
practice and has the potential to be an important tool for 
clarifying the extent to which treatment-sequencing effects 
have been accounted for within a decision model. It can 
be used as a checklist by modellers to help them consider 
whether treatment sequencing should be modelled, and what 
implicit assumptions they may be making. It can also be 
used by reviewers or policy decision makers to appraise or 
better understand an existing model. However, to apply the 
taxonomy, better reporting of the simplifying assumptions 
made is required.

Our taxonomy focused on the simplifying assumptions 
made regarding the initial treatment effect (of discrete 
treatments conditional on their position in the treatment 

Box 2  Illustration of the different types of treatment-sequencing decision problems

As part of the review of modelling studies, a coding scheme was developed for categorising modelling studies according to the type of deci-
sion problem relating to treatment sequences that was evaluated. The codes used are illustrated below. Some studies include more than one 
decision problem type.

a). ‘Optimum sequences’
Identifying the best sequence out of all conceivable sequences (as opposed to comparing predefined sequences, thus selecting a manageable 

number of sequences for comparison in advance)
b) ‘Predefined sequences’
A - B - C
B - A - C
X - Y - Z
Comparison of pre-specified sequences; also incorporates the following:
c) ‘Disease approach’
A - B
B - A
or
X - A - B
A - B - X
Comparison of ‘step-up’ vs ‘step-down’ approaches, or the use of new drugs first vs starting with older, established drugs.
d) ‘Single point’
A - B - C - D
A - B - X - D
Comparison or decision point = C vs X. Treatment C is replaced by X in the second sequence
e) ‘Different points’
X - B - C - D
A - X - C - D
A - B - X - D
A - B - C - X
Comparison of X used at different points in the sequence
f) ‘Adding’ a new treatment to an established sequence
A - B - C - D
A - B - X - C - D
Comparison or decision point = C vs X. Treatment C is displaced by X in the second sequence
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pathway). This incorporates the impact of previous treat-
ment, differential reason for discontinuing previous treat-
ment, and increasing disease duration. However, the tax-
onomy did not consider the assumptions made about the 
long-term effect of treatment. Many treatments of chronic 
conditions, such as rheumatoid arthritis, result in an initial, 
short-term improvement, followed by a period of waning 
effect. In some models, when patients move quickly through 
the sequence of treatments (for example, early discontinu-
ation due to adverse effects), simulated patients can actu-
ally benefit from having multiple ’short-term’ benefits from 
different treatments, thus gaining an additive effect. Some 
included models of inflammatory arthritis attempted to over-
come this problem by introducing a ’rebound’ effect, which 
automatically returns the patient to their starting severity 
(used in, for example, the Diamantopoulos model [89]), or 
following some natural, background increase (as used in the 

BRAM [158]). Although the evidence to support this type 
of assumption is weak, it is arguably better than the false 
benefits generated by models otherwise. Similarly, the issue 
of accumulating short-term benefit can also be problematic 
where there is an asymmetry in the sequences being com-
pared, for example, the ‘adding’ decision problem illustrated 
in Box 2. A false benefit can be introduced when model-
ling a sequence plus new treatment, in comparison to the 
model without the added treatment, simply by allowing more 
’short-term’ effects of treatments.

4.6  Recommendations for Research

An important outcome of the review is the gaps identified 
in the research evidence. More research is needed to estab-
lish when it is necessary to evaluate treatment sequences, 
and how best to make this decision. This is likely to be a 

Table 3  Taxonomy of simplifying assumptions relating to treatment-sequencing effects used by studies included in the review

Simplifying assumptions taxonomy

Treatment independence Treatment effect is independent of positioning in treatment sequence
Treatment effect is dependent on the number of previous treatments 

used, but independent of the type of treatments used
Substitution with another treatment effect Treatment effect is the same as an alternative treatment from the same 

class, or a generic class effect—irrespective of positioning in the 
sequence (generic effect)

Treatment effect is the same as an alternative treatment from the same 
class, or a generic class effect—matching the same position in the 
sequence (positional generic effect)

Treatment effect is the same as an alternative (substitute) treatment from 
a different class of treatments, used at the same point in the sequence 
(substitute treatment)

Modification of treatment effect Treatment effect is reduced/increased, in line with a multiplier (multi-
plication factor), when used at a later point in the sequence. (Here, the 
specific multiplication or reduction factor used to modify the effect is 
informed by the available evidence that is also relevant to the treat-
ment of interest.)

Treatment effect decrements by the same pre-set amount with each 
successive treatment (decrementing effect). (Here, the same generic 
proportional reduction, used to represent the diminishing effects, is 
applied at each point in the sequence irrespective of the treatment 
used. The proportion is not necessarily based on a specific evidence 
base.)

Treatment effect is reduced with disease duration, and treatments are 
not as effective when they are used in late disease

Impact of time since previous treatment Treatment effect is not affected by previous treatments if patients 
have been in long-term remission, and thus can re-use the same 
treatment(s)/class of treatment(s) as that which achieved the prior 
remission

Displacement effect ignored A single treatment effect does not differ when it is displaced (i.e. its 
position in the sequence is changed) by the addition of a new prior 
treatment (displacement ignored)

The use of uncontrolled/observational studies without bias adjustment Uncontrolled trials or observational studies provide an un-biased esti-
mate of treatment (sequencing) effects

Expert consensus provides an un-biased estimate of treatment-sequenc-
ing effects
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condition-specific endeavour, but the methods will be rel-
evant across different clinical scenarios.

Further research is needed to identify how best to develop 
a summary treatment effect of whole sequences or discrete 
interventions conditional on positioning in the sequence. 
This requires improved reporting on previous and subse-
quent treatment within primary studies, including better data 
on reasons for discontinuing or switching treatment. Access 
to individual patient-level data is also key here [35, 162].

Real-world disease-specific data sources can provide 
essential follow-up data on entire treatment sequences, and 
potentially be used to emulate a pragmatic randomised trial 
of dynamic treatment sequences [27, 163–165]. If these 
data sources are going to be useful, treatment sequences 
need to be considered during the planning and development 
stages. They will also need to go through many high-quality 
validation studies [164]. The evaluation of whole treatment 
sequences using real-world data also needs to take into 
account the potential biases listed in Box 1.

Finally, little reference was made within existing research 
on the potential, or actual role, of incorporating patient per-
spectives into the evaluation of treatment sequences. Further 
work is needed to develop the optimal approach for involv-
ing members of the public in HTA of treatment sequences, 
which should be informed by existing guidance and recent 
research on patient and public involvement in systematic 
reviews and economic evaluations [166–171]. As experi-
enced-based experts, patients can contribute essential knowl-
edge that is complementary to that of other key stakeholders, 
such as clinicians and policy makers. Their involvement, on 
an equal basis to other stakeholders, is likely to be relevant 
to all stages of the HTA, including refining the scope and 
decision problem, the evidence synthesis, evidence inter-
pretation and integration, and dissemination and application 
[172].

5  Conclusions

The review illuminates a significant gap in methods devel-
opment. It also demonstrates important limitations in the 
primary studies, which tended to focus on the evaluation 
of discrete treatments, with poor reporting of any previous 
or subsequent treatments. The increasing use of NMA in 
HTA demonstrates an acknowledgment that clinical and 
policy decision making should account for the multiple treat-
ments available for many chronic conditions. However, the 
sequential use of these treatments has yet to be accounted 
for within clinical evaluations, with most meta-analysis 
being conducted of discrete treatments that may or may not 
be stratified by line of therapy. The economic modelling 
exposes the need to consider treatment sequences, but this 
is often based on the simplifying assumption of treatment 

independence. This can lead to misrepresentation of the true 
level of uncertainty, potential bias in estimating the effec-
tiveness and cost-effectiveness of treatments, and eventually 
the wrong decision.

In summary, there has been no co-ordinated approach 
to the important issue of evaluating the effectiveness and 
cost-effectiveness of treatment sequencing. This is a major 
shortfall at a time when the cohort of people with com-
plex chronic conditions, requiring sequential treatments, 
is increasing. The findings of the review will help policy 
makers and researchers gain traction in answering questions 
about the effectiveness of different treatment sequences.
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