
Vol.:(0123456789)

PharmacoEconomics (2020) 38:1153–1164 
https://doi.org/10.1007/s40273-020-00937-z

PRACTICAL APPLICATION

Estimating Transition Probabilities from Published Evidence: A Tutorial  
for Decision Modelers

Risha Gidwani1,2,3  · Louise B. Russell4,5 

Published online: 14 August 2020 
© This is a U.S government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign  
copyright protection 2020, corrected publication 2020

Abstract
This tutorial presents practical guidance on transforming various typesof information published in journals, or available online 
from government and other sources, into transition probabilities for use in state-transition models, including cost-effectiveness 
models. Much, but not all, of the guidance has been previously published in peer-reviewed journals. Our purpose is to collect 
it in one location to serve as a stand-alone resource for decision modelers who draw most or all of their information from 
the published literature. Our focus is on the technical aspects of manipulating data to derive transition probabilities. We 
explain how to derive model transition probabilities from the following types of statistics: relative risks, odds, odds ratios, 
and rates. We then review the well-known approach for converting probabilities to match the model’s cycle length when 
there are two health-state transitions and how to handle the case of three or more health-state transitions, for which the two-
state approach is not appropriate. Other topics discussed include transition probabilities for population subgroups, issues to 
keep in mind when using data from different sources in the derivation process, and sensitivity analyses, including the use 
of sensitivity analysis to allocate analyst effort in refining transition probabilities and ways to handle sources of uncertainty 
that are not routinely formalized in models. The paper concludes with recommendations to help modelers make the best use 
of the published literature.
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1 Introduction

A set of health states, or events, and the probabilities of tran-
sitioning from onestate to others during a specified period of 
time (“transition probabilities”) are the fundamental building 
blocks of decision models. A state-transition model to evalu-
ate cancer interventions, for example, might start with the 
Cancer-Free state and proceed through Local, Regional, and 

Metastatic disease to Death. Transition probabilities would 
describe the probabilities of moving from Cancer-Free to 
Local Cancer, from Local to Regional, from Regional to 
Metastatic, and from any of those states to Death, over, say, 
1 year. Different probabilities would be needed to describe 
the natural (untreated) course of the disease versus its course 
with treatment. The yearly time period, called the cycle 
length, would repeat until an appropriate stopping point was 
reached. The total number of years (cycles) represents the 
model’s time horizon. The usual recommendation is that the 
time horizon should be long enough to capture all significant 
health outcomes, which often requires modeling the remain-
ing lifetimes of patients [1, 2].

There are two common challenges a modeler faces 
when deriving transition probabilities for use in a decision 
model. One challenge is that the data from the published 
and publicly available literature, such as data published by 
the United States (US) Census Bureau or the Centers for 
Disease Control and Prevention, are often not reported as 
probabilities. Rather, evidence that is relevant to the deci-
sion model may be in the form of counts, rates, relative risks 
(RRs), or odds ratios (ORs) that need to be converted into 
probabilities. A second challenge is that when the evidence 
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Key Points 

A set of health states, or events, and the probabilities of 
transitioning from one state to others during a specified 
period of time (“transition probabilities”) are the fun-
damental building blocks of decision models. These are 
often not available in the published literature in a format 
directly suitable for use in decision models.

Procedures for estimating transition probabilities from 
published evidence, including deriving probabilities 
from other types of summary statistics and modifying 
the time frame to which a probability applies, have been 
discussed in disparate places in the literature.

This tutorial article aggregates this information in one 
location, to serve as a stand-alone resource for the deci-
sion modeler. The information is meant to assist decision 
modelers in the practical tasks of building high-quality 
decision models.

derivation process. We then discuss how to derive transi-
tion probabilities from probabilities whose time frames do 
not match the model’s cycle length. We explain the well-
known approach for deriving transition probabilities when 
the model, or model node, has only two state transitions, and 
discuss how to handle three or more possible transitions, for 
which the two-state formulas are not appropriate. Lastly, we 
discuss how to use sensitivity analyses to allocate analyst 
effort to refine probabilities and ways to handle sources of 
uncertainty that are not routinely formalized in models. The 
paper concludes with recommendations to help the modeler 
make the best use of the published literature.

2  The Published Evidence

The International Society for Pharmacoeconomics and Out-
comes Research (ISPOR)—Society for Medical Decision 
Making (SMDM) Modeling Task Force recommends that 
“[t]ransition probabilities and intervention effects should be 
derived from the most representative data sources for the 
decision problem” [3]. Although modelers may find all the 
required data in a single published report, more commonly 
the data come from multiple studies. Some of it may involve 
samples that are small, unrepresentative, or both. Some stud-
ies may be 20 or 30 years old. The task force recommends 
conducting a systematic literature review when multiple 
studies are available to inform the same parameter(s). The 
systematic review can be used to select the study that best 
fits the model, or it could be used as the first step in a meta-
analysis producing a quantitative pooled estimate of the indi-
vidual study-level outcomes [4].

The task force suggests that transition probabilities for 
the natural history of a condition, sometimes called the “Do 
Nothing” model arm, are best drawn from population-based 
epidemiological studies. Studies with longer follow-up times 
are preferred since they allow realistic modeling of the dis-
ease for a larger portion of the model’s time horizon. In cir-
cumstances where the model contains interventions from all 
arms of a single randomized controlled trial (RCT), the trial’s 
control arm can be used to represent natural history, but that 
is less desirable because trial participants are often selected 
using criteria that make them unrepresentative of the popu-
lation to which an intervention will be applied in practice.

For the model’s intervention arms, RCTs represent the 
highest-quality evidence of efficacy, since properly conducted 
randomization balances measured and unmeasured confound-
ers across treatment and control groups. The generalizability 
problem, however, arises here as well. RCTs may not repre-
sent effectiveness in real-world practice for at least two, pos-
sibly offsetting, reasons: (1) trialists work hard to maintain 
the quality and consistency of an intervention and to keep 
patient adherence high, while compliance in actual practice 

is expressed as probabilities, the published probabilities will 
often not match the cycle length of the decision model. For 
example, annual probability data may be published, while 
the decision model has a 3-month cycle length.

This tutorial grew out of a popular VA Health Econom-
ics Resource Center (HERC) cybercourse, which generated 
many requests for the slides and suggestions that they be 
written up. As an example, during the first week the World 
Health Organization defined the COVID-19 crisis as a pan-
demic, modelers from a national US agency read the slides 
and reached out to us for guidance in transforming model 
probability inputs. Responding to those requests, this tuto-
rial presents practical guidance for transforming published 
estimates into appropriate transition probabilities. Much of 
the guidance is already available in peer-reviewed journals. 
Our purpose here is to collect it in one location to serve as a 
stand-alone resource for the decision modeler. Our intended 
audience is decision modelers who find most or all of their 
information in the published literature. The principles pre-
sented to transform summary statistics into probabilities 
apply more widely, but for simplicity, we talk about state-
transition models, often called Markov models. We focus 
on the technical aspects of manipulating published data to 
derive transition probabilities and touch only lightly on how 
to select the most appropriate evidence.

The paper begins by outlining the types of evidence 
available in the published literature. We first discuss how to 
derive transition probabilities from common types of sum-
mary statistics, such as RRs, odds, and ORs, and issues to 
keep in mind when using data from different sources in the 
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may be lower, reducing the intervention’s effectiveness; and 
(2) control groups may benefit from the placebo effect of 
participating in a trial, raising the possibility that the inter-
vention will be more effective in practice than in the trial.

In a model that compares interventions with each other, 
but has no “Do Nothing” or placebo arm, model data should 
maintain randomization within RCTs. For example, suppose 
the model compares interventions A, B, and C and there are 
separate RCTs providing treatment efficacy data for each 
intervention. If each RCT compares active treatment to pla-
cebo, using the relative treatment effect of A versus placebo 
from the first RCT when populating efficacy for A, the relative 
treatment effect of B versus placebo from the second RCT 
when populating efficacy for B, and so on, maintains rand-
omization within trials. This approach is still subject to some 
bias, as patients have not been randomized across studies.

The best approach to maintain randomization within 
RCTs is to conduct a network meta-analysis (also sometimes 
referred to as an indirect treatment comparisons analysis) to 
derive appropriate transition probabilities. A network meta-
analysis can generate the relative treatment effects of two 
or more interventions, such as A, B and C, when the inter-
ventions have not been directly compared in a single RCT: 
A versus B, A versus C, and B versus C. If conducted in a 
Bayesian framework, it provides probabilities for direct use 
in a model. Network meta-analytic estimates are less sub-
ject to selection bias than estimates from observational data 
because relative treatment effects are calculated within RCTs 
prior to the comparison across treatments; again, within-trial 
randomization is maintained. For more information about 
network meta-analyses, see the following excellent introduc-
tory articles: Sutton et al. [5], Jansen et al. [6], Jansen et al. 
[7], Hoaglin et al. [8], and Welton et al. [9].

Table 1 shows the most common ways of reporting data from 
single studies and their definitions. The evidence may be pub-
lished as probabilities, but need to be converted to the model’s 

cycle length. Or it may be published in another form that can 
be used to derive transition probabilities—RRs, ORs, and the 
like—in which case the modeler needs to know best practices 
for deriving probabilities and be aware of pitfalls and limitations. 
Note that some valuable information that is available when all 
the data come from a single study and individual-level data are 
available—such as correlations between probabilities—is not 
available when the data come from different studies.

3  Model Time Horizon and Cycle Length

The modeler must choose an appropriate cycle length for 
the model. Shorter cycles yield more accurate estimates of 
life expectancy and costs, but at higher computational cost. 
When the required cycle length changes over the disease/
intervention pathway, say because events can occur quickly 
in the first month after diagnosis or surgery but are much 
less frequent over the longer term, the model may begin with 
a decision tree, to represent events that can occur within days 
or weeks, and shift to Markov nodes based on a cycle length 
of, for example, 1 year to represent longer-term events [2].

The discount rate recommended by the Second Panel 
on Cost-Effectiveness in Health and Medicine is 3% per 
year [10]. When the model does not have an annual cycle 
length, the discount rate must be modified using the formula 
(1 + annual rate)1/t, where t is the number of model cycles in 
a year, so that it remains 3% across a 1-year period [11]. If 
the model has a 1-month cycle length, for example, and a 3% 
annual discount rate, the formula yields a monthly discount 
rate of 0.247% [derived from (1 + 0.03)1/12].

Often, the model’s time horizon exceeds the follow-
up time of published studies. For example, a clinical trial 
evaluating drug efficacy may have a follow-up period of 
only 2 years, while the model has a 30-year time horizon. 
There is a large amount of literature on the many methods 
available for extrapolating beyond the available data and a 
small amount of literature on the success of such extrapola-
tions [12–16]. For modelers working with publicly available 

Table 1  Common forms of  
published data and their  
definitions

Statistic Evaluates Range

Probability/risk #of events that occurred in a time period

#of people followed for that time period

0–1

Rate #of events that occurred in a time period

Total time period experienced by all subjects followed

0 to ∞

Relative risk Probability of outcome in exposed

Probability of outcome in unexposed

0 to ∞

Odds Probability of outcome

1 − Probability of outcome

0 to ∞

Odds ratio Odds of outcome in exposed

Odds of outcome in unexposed

0 to ∞



1156 R. Gidwani, L. B. Russell 

data, it may be possible to extrapolate using life tables, or 
mortality rates by cause, available from national vital statis-
tics systems. An important issue for such extrapolations, to 
which we return in the section on uncertainty analysis, is the 
need to increase the variance around the model’s estimates 
to include extrapolation-based error. In addition, in models 
with long time horizons, transition probabilities, including 
probabilities of adverse events, which are too often omitted, 
usually need to be modified as the cohort ages.

4  Relative Risks and Odds Ratios

As noted, published information about disease burden and 
treatment efficacy is often summarized in the form of RRs or 
ORs. Here we discuss how to derive transition probabilities 
from these statistics.

4.1  Using Relative Risks to Derive Transition 
Probabilities for the Treated Group

Investigators often compare the probability of an event in 
people exposed to an intervention or condition to the proba-
bility in those not exposed—the probability of lung cancer in 
smokers versus nonsmokers, for example, or the probability 
of heart attacks in those who take statins versus those who 
do not. A relative risk (RR) (also called a risk ratio) is the 
ratio formed by the probability of the event in the exposed 
group divided by the probability of that same event in the 
unexposed group:

where p1 is the probability of the event in exposed persons, 
and p0 is the probability of the event in unexposed persons.

When the RR is multiplied by the probability of the event 
in unexposed persons, p0, the denominator of the RR cancels 
out, leaving the probability of the event in the exposed, p1:

Use of Eq. 2 necessitates knowing p0. Often, the probabil-
ity of the event in the unexposed is reported in the same arti-
cle that reports the RR. In other cases, this information will 
come from a different source. For example, the probability, 
p0, that an untreated diabetic person develops diabetic retin-
opathy may come from one source (such as the control arm 
of an RCT) and the RR of diabetic retinopathy for treatment 
versus no treatment from another, such as an epidemiologic 
study. The modeler needs to decide whether p0 and the RR 
come from sufficiently similar populations (or whether there 
is reason to believe the RR is similar in all populations) for 

(1)RR =

p1

p0

,

(2)p1 = RR × p0 =

(

p1

p0

)

× p0.

the resulting modeler-derived estimate of p1 to be valid and 
applicable to the population being modeled.

Of note, when the RR reported in the study has been 
adjusted for covariates and the probability of the event in 
the unexposed group has not, the denominator of the RR 
does not cancel out:

The modeler may, for lack of other data, use Eq. 3 any-
way, recognizing that there is an unknown degree of error in 
the resulting estimate of p1. A plausible range of values for 
p1 should be tested in sensitivity analyses to determine the 
likely importance of this error to the analysis.

4.2  Using Relative Risks to Derive Subgroup 
Transition Probabilities

Probabilities are often available for a population, but not 
for subgroups that are important for the model. RRs can 
help in this situation because a population probability is a 
weighted average of subgroup probabilities and RRs pro-
vide the weights. To illustrate, an analysis of the cost-effec-
tiveness of maternal immunization to prevent pertussis in 
infants, which compared maternal immunization plus rou-
tine infant vaccination with routine infant vaccination alone, 
required probabilities of pertussis death in infants by vac-
cination status and age group [17]. Probabilities of pertussis 
death for infants aged 0–1, 2–3, 4–5, 6–8, and 9–11 months 
were available from Brazilian mortality and hospitalization 
data systems. Probabilities that infants in each of those age 
groups had received no, one, or two to three doses of vac-
cine were modeled from survey data [18]. But probabilities 
of pertussis death by vaccination status, needed to estimate 
the impact of vaccination on pertussis mortality in infants, 
were not available.

To derive probabilities by vaccination status, the over-
all probability of pertussis death in each age group was 
expressed as a weighted average of the probabilities of death 
by vaccination status:

pmtotal is the known probability of dying of pertussis for the 
age group as a whole;  pm0,  pm1, and  pm23 are the unknown 
probabilities of dying of pertussis for infants who received 
no dose, one dose, or two to three doses of vaccine. p0, p1, 
and p23 are the known proportions of children of that age 
who had received no dose, one dose, or two to three doses 
of vaccine.

Multiplying the right-hand side by  pm0/pm0 allows the 
equation to be restated in terms of the RRs of death by vac-
cination status:

(3)p1 ≈

(

p1_adjusted

p0_adjusted

)

× p0_unadjusted.

(4)pmtotal =

(

p0 × pm0

)

+

(

p1 × pm1

)

+

(

p23 × pm23

)

,
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or,

RRs were available from Juretzko et al. [19] (albeit for acel-
lular pertussis vaccine, not the whole-cell vaccine used in 
Brazil), and p0, p1, and p23 were obtained from Clark using 
the methods described in Clark et al. [18], so the equation 
could be solved for  pm0. Once  pm0 is known, the RR equa-
tions can be used to solve for  pm1 and  pm23,

Then, employing Eq. 2:

and,

Another example is given in Black et al. [20], where the 
method is used to derive probabilities of survival for non-
smokers, former smokers, and current smokers from the 
2009 mortality tables published by the US National Center 
for Health Statistics.

Combining evidence from studies that investigated dif-
ferent populations, at different times, and/or under different 
conditions may produce unrealistic results, a problem that 
is not always easy to detect. As an example, for an analysis 
of smoking cessation, survival probabilities for smokers, by 
sex, ethnicity, and age, were derived from US life tables. 
Survival probabilities for quitters were initially estimated by 
applying quitter/smoker survival ratios by age from another 
study [21] to the probabilities for smokers, but the resulting 
estimates exceeded 1.0 at some ages in some sex–ethnicity 
groups.

4.3  Deriving Relative Risks from Odds Ratios

The odds of an event, defined as the probability of the event, 
p, divided by 1 minus the probability of that event, can also 
be used to derive a probability:

For example, the odds that a mother reported post-partum 
depression after a live birth in the USA were 0.13 in 2012. 
Thus, the probability of reporting post-partum depression 
was 0.115 [22].

Odds are not commonly reported, but are the basis for a 
frequently encountered summary statistic, the OR, because 

pmtotal = pm0 ×

(

p0 +

(

p1 ×

(

pm1

pm0

))

+

(

p23 ×

(

pm23

pm0

)))

,

pmtotal = pm0 ×

(

p0 +
(

p1 × RR1

)

+

(

p23 × RR23

))

,

RR1 = 0.32 and RR23 = 0.05.

pm1 = 0.32 × pm0,

pm23 = 0.05 × pm0.

(5)Odds =
p

(1 − p)
.

the coefficients of logistic regressions are logged ORs, which 
can be exponentiated to get ORs. The OR is the odds of the 
event in one group, A, divided by the odds of the same event 
in another group, B:

ORs can be converted into probabilities using one of two 
methods (Fig. 1). If one of the outcomes is rare (< 10%) and/
or the OR is close to 1.0, the OR is a reasonable approxima-
tion to the RR [23] and can be inserted directly into Eq. 2, in 
place of the RR, to derive the probability. To see how well 
an OR approximates an RR, readers are referred to Zhang 
and Yu [23] or Grant [24].

If the OR cannot be used to approximate the RR, the RR 
can be derived from the OR using the following equation 
[23, 24]:

where p0 is the probability of the event in the unexposed 
group.

As the equation shows, the same OR produces different 
RRs depending on p0, the probability of the event in the 
unexposed group. For example, an OR of 1.5 yields an RR 
of 1.429 when p0 is 0.1, 1.250 when p0 is 0.4, 1.154 when 
p0 is 0.6, and 1.071 when p0 is 0.8 [24]. Thus, as the prob-
ability of the event in the unexposed group increases, the OR 
becomes a poorer approximation of the RR.

When the OR comes from a multivariable logistic regres-
sion, as it often does, there is no single baseline risk. Within 
a single regression, the baseline risk depends on the values 
of the covariates, and there are as many baseline risks as 
there are combinations of covariate values; for example, 
one baseline risk for a smoker with low blood pressure and 
another baseline risk for a smoker with high blood pressure. 
Regressions based on the same dataset but with different 

(6)Odds ratio =

oddsA

oddsB
.

(7)RR =

OR
(

1 − p0 +
(

p0 × OR
)) ,

Outcome is 
<10% or OR is 

close to 1.0 

Assume the 
OR 

approximates 
a RR

yes

no

Mul ply RR by 
p0 to obtain p1

Obtain p0 from 
data sources as 

similar as possible 
to the ones used 
to derive the RR

Use Equa on 
7 to convert 

the OR to a RR 

Fig. 1  Deriving a transition probability from a reported OR. OR odds 
ratio, p0 probability of the event in unexposed persons, p1 probability 
of the event in exposed persons, RR relative risk
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covariates will yield different baseline risks. And, of course, 
regressions that use different datasets will produce different 
baseline risks [25]. In principle, it is possible to calculate 
an average baseline risk for a specific regression by insert-
ing the means of the covariates into the published logis-
tic regression [24], or to calculate a baseline risk that best 
represents the model population by specifying appropriate 
values for the covariates. In practice, this is usually not pos-
sible because even when authors publish the coefficients for 
all covariates, they rarely include the value of the intercept, 
which is also needed.

If the modeler does not have access to the complete 
original regression, Grant recommends establishing a range 
of baseline risks and calculating the corresponding range 
of RRs, then conducting one-way sensitivity analysis to 
determine the influence of that range on the model’s results 
[24]. A plausible range can be based on previous published 
research or on expert opinion.

5  Converting Probabilities to the Model’s 
Cycle Length

Once the evidence is in the form of probabilities, it may need 
to be converted to the model’s cycle length. For example, a 
trial may report outcomes at 2 years’ follow-up, while the 
model has an annual cycle length. For a model node with 
only two branches, that is, two possible state transitions, the 
relationship between probabilities and rates provides a sim-
ple way to derive probabilities that match the model’s cycle 
length. Recall that a probability is the number of events in a 
time period divided by the total number of people followed 
for that time period, and ranges from 0 to 1.0. A rate is the 
number of events divided by the total time at risk experi-
enced by all people followed, and ranges from 0 to infinity. 
Thus, probabilities and rates for the same event are differen-
tiated by their denominators: the calculation of a rate takes 
into account the time spent at risk, while the calculation 
of a probability does not [26]. See Appendix for a detailed 
example and the assumptions involved in the formula.

5.1  The Probability‑Rate Equations when there are 
Two State Transitions

Equations 8 and 9 show the relation between a probability 
(p), rate (r), and time (t) [11, 26–28].

To convert a probability from one time frame to another, 
the modeler can use Eqs. 8 and 9, which are the ones most 
frequently found in published articles, or the equivalent 
Eq. 10 [11].

The Appendix demonstrates both approaches for a hypo-
thetical example.

As a real-world example, consider the 12-month prob-
ability, 10.8%, that a child under age 6 living in Milwaukee, 
Wisconsin is newly diagnosed with elevated blood lead lev-
els (defined as ≥ 5 mcg/dL of blood) in 2016 [29]. If the 
model has a 3-month cycle length, a 3-month probability is 
needed. Using Eq. 8, we convert the 12-month probability 
to a 12-month rate. Since the time period does not change, 
the denominator is 1,

Next, using Eq. 9, we convert this 12-month rate to a 
3-month probability,

The 3-month probability is thus 0.0282 (alternatively, we 
could have converted the 12-month probability to a 3-month 
rate, and then the 3-month rate to a 3-month probability). 
Using Eq. 10 yields the same 3-month probability:

(8)r =
−ln(1 − p)

t
,

(9)p = 1 − exp(−rt).

(10)p = 1 − (1 − p)
1∕n.

12 month rate =
−ln(1 − 0.108)

1
= 0.114289.

3 month probability = 1 − exp
(

−0.114289 ×
1

4

)

= 1 − 0.97183 = 0.0282.

Table 2  Markov model of 
elevated lead levels

A B C D
Children tested Elevated lead 

levels
Cumulative elevated 
lead levels

Sum of persons in all 
health states by cycle 
(A + C)

Baseline 10,000.00 0 0 10,000.00
End of cycle 1 9718.32 281.68 281.68 10,000.00
End of cycle 2 9444.58 273.75 555.42 10,000.00
End of cycle 3 9178.54 266.03 821.46 10,000.00
End of cycle 4 8920.00 258.54 1080.00 10,000.00
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The 3-month rate can be verified by using it to calculate 
the probability that a child will be diagnosed over a year 
(Table 2, especially column C, end of cycle 4).

5.2  Changing Cycle Length When There are Three 
or More State Transitions

The conversion procedure for two state transitions 
(Eqs. 8–10) does not yield correct probabilities when three 
or more state transitions can occur in a cycle, a common 
situation [11, 26, 28, 30]. The problem is illustrated in 
Table 3, which is based on a study of patients with severe 
congestive heart failure evaluated for a heart transplant [31]. 
Panel A depicts the transition probability matrix of a Markov 
model. Among those considered good candidates for heart 

3 month probability = 1 − (1 − 12 month p)
1∕n

= 1 − (1 − 0.108)1∕4 = 1 − 0.8921∕4

= 1 − 0.97193 = 0.0282.

transplant and followed for 3 years, there are three possible 
transitions: remain a good candidate, receive a transplant, or 
die. The two-state formula will give incorrect annual transi-
tion probabilities for this row.

Panel B shows the study data applicable to the first row of 
the transition matrix; study outcomes, 3-year probabilities 
calculated from the study outcomes, and (incorrect) annual 
probabilities derived from the 3-year probabilities using the 
two-state method. Panel C shows the results of a Markov 
model that used the incorrect annual probabilities to pro-
ject health outcomes for a baseline cohort of 124 patients 
(124 chosen to match the source study and facilitate com-
parisons). The correct numbers, calculated using the 3-year 
probabilities from the study, are shown in bold in the last 
row of panel C. The annual probabilities derived using the 
two-state method substantially overestimate the number of 
good candidates remaining at 3 years and underestimate the 
other two health states.

There are three possible solutions to the problem of 
deriving model transition probabilities when more than two 

Table 3  Example of the three-state problem

Source: Anguita 1993 [31], Fig. 1
a The rows represent the state a person can transition “from”; the columns represent the state a person can transition “to”
b pgct proportion of good candidates who receive a transplant during cycle t, pgcd proportion of good candidates who die from all-cause mortality 
during cycle t, ptd proportion of transplanted patients who die during cycle t
c This probability is not derived from the formula. It is 1 minus the probabilities of transitioning to transplant or dead. See panel A, first row
d Applying annual transition probabilities derived by the two-state formula results in incorrect numbers experiencing health-state transitions, as 
shown by the differences between the last two rows: 23 projected good candidates vs. the correct 9, 85.4 transplants vs. 92, and 15.5 deaths vs. 
23 (see the values formatted in bold)

Health states for 124 patients with severe congestive heart failure who were good candi-
dates for heart transplant

Good candidate (gc)b Transplant (t) Dead (d)

Panel A: The transition probability  matrixa

 Good candidate (gc) 1 − pgct − pgcd pgct pgcd

 Transplant (t) 0 1 − ptd ptd

 Dead (d) 0 0 1
Panel B: Study data and (incorrect) transition probabilities derived by the two-state formula for the first row of the transition matrix (panel A), 

for the study cohort of 124 people
 Study outcomes at 3 years 9 92 23
 3-year probability from study 0.0726 0.7419 0.1855
 Annual probability, derived using the two-state 

formula
c 0.3633 0.0661

Projection end of year Good candi-
dates (A)

Transplants (B) Cumulative trans-
plants (C)

Dead (D) Cumulative 
dead (E)

Sum of 
health states 
(A + C + E)

Panel C: Results of a Markov model using the annual two-state probabilities in panel B to project 3 years of outcomes for a cohort of 124 
 personsd

 1 70.7494 45.0543 45.0543 8.1963 8.1963 124
 2 40.3667 25.7061 70.7604 4.6765 12.8728 124
 3 23.0316 14.6669 85.4273 2.6682 15.5411 124

Correct numbers 9 92 23 124
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transitions can occur within a cycle. The first is to revise the 
model structure so that each node has only two branches 
(two transitions). This would be easy to do in the heart trans-
plant case if the diagnostic pathway led from “good candi-
date/heart transplant indicated” to transplant/no transplant, 
and then each of those branches led to survive/die (Fig. 2).

If the model cannot easily be reduced to a series of two-
state branches, because of the nature of the states or because 
it becomes too “bushy,” eigendecomposition methods offer 
a second possible solution. Eigendecomposition consists 
of decomposing the transition probability matrix into a 
set of eigenvectors and eigenvalues [11, 28, 30, 32]. To 
employ eigendecomposition, a modeler must have a single 
data source to inform the transitions from an initial health 
state, or have data from multiple studies that each have the 
same follow-up time (Chhatwal, personal communication). 
These conditions are rarely met. For example, a rheumatoid 
arthritis model in which treatment efficacy and side effects 
are obtained from a single RCT may still require all-cause 
mortality data from another source due to the short follow-
up time of the trial. If this second source has a different 
follow-up period, the eigendecomposition approach cannot 
be applied. For this reason, eigendecomposition may also be 
inapplicable for models in which scenario analyses are con-
ducted on cohort subgroups, with multiple sources providing 
probability data. In addition, technical problems having to 
do with the nature of the data may make eigendecomposition 
impossible or produce values that do not meet the conditions 
required of transition probabilities. For example, eigende-
composition may produce negative numbers or complex 
numbers (combinations of real and imaginary numbers). 
A full exposition of these complex methods is beyond the 
scope of this paper. Interested readers can consult the arti-
cles cited earlier in this paragraph [11, 28, 30, 32].

Lastly, in cases where (1) there are only three health state 
transitions possible, (2) two of the published probabilities 
are very small, and (3) the model cycle length is shorter than 
the published probability, the error in using the two-state for-
mula to convert probabilities to the appropriate cycle length 
will be small. If all three of these conditions are met, and the 

resulting probabilities are not a major driver of the model 
results, modelers may wish to consider using this approach.

6  Sensitivity Analyses

The purpose of sensitivity analyses is to understand how 
uncertainty about parameter values, including transition 
probabilities, affects a model’s results. Each parameter has 
some error, which should be represented and evaluated in the 
decision model [1]. The error is represented by a plausible 
range around the base-case value, based on 95% confidence 
intervals or expert opinion if formal estimates of uncertainty 
are lacking. Arbitrary ranges should be avoided. If the base-
case estimate of a parameter required conversion from the 
study time period to the model’s cycle length, the same pro-
cedure can be used to transform the bounds of its range to 
the appropriate cycle length. For example, the upper and 
lower bounds of the reported 95% confidence interval for 
a probability can also be transformed to the model’s cycle 
length using Eqs. 8–10.

The two main ways to evaluate the effects of uncertainty 
on model results are deterministic sensitivity analyses and 
probabilistic sensitivity analyses (PSAs). Deterministic sen-
sitivity analyses entail varying the value of one parameter 
(one-way sensitivity analysis) or a few parameters (multi-
way sensitivity analysis) while holding all other parame-
ters at their base-case values. A series of one-way sensi-
tivity analyses plotted in a tornado diagram shows which 
parameters have the most influence on the model’s results. 
If the ranges in the tornado diagram reasonably represent 
the parameters’ uncertainty, the diagram points to the most 
influential parameters. These are the parameters that require 
the most attention and effort to reduce uncertainty and the 
possibility of bias in the model’s results. Thus, sensitivity 
analyses conducted early in model development can be a 
useful guide for allocating effort for further refinement of 
parameters.

PSAs entail replacing the base-case values for all model 
parameters with probability distributions. Each distribution 
represents the range of values the parameter can take and the 
likelihood of each value. The model is run multiple times, 
say 1000 times, and each iteration plucks a new set of param-
eter values from the distributions. The results for the 1000 
iterations show the uncertainty in the output, such as the 
cost-effectiveness ratio, due to uncertainty in all parameters. 
Since PSAs vary all parameters simultaneously, some transi-
tion probabilities may need to be linked to ensure that the 
values selected in a single iteration are congruent. Model-
ers who are running their own regressions to obtain model 
input parameters can use the variance–covariance matrix to 
specify the correlation between two or more model param-
eters [33]. When the modeler does not have access to the 

No Transplant

Transplant

Die

Survive

Heart Transplant 
Indicated

Die

Survive

Fig. 2  Conditional nodes for decision models
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individual-level data, this linkage can be done through other 
mechanisms. For example, in a model evaluating multiple 
lines of treatment for cancer, it may be necessary to link the 
probability of response to second-line treatment to the prob-
ability of response to first-line treatment, perhaps by defin-
ing the probability for second-line treatment as a fraction of 
the probability for first-line treatment. If the two values are 
left independent, the PSA can produce implausible model 
iterations.

Another source of uncertainty derives from the time 
frame of the original statistic. Consider again the probability 
of new mothers reporting post-partum depression symptoms, 
11.5%. This outcome was reported for a mean follow-up 
time of 125 days, approximately 4 months, after delivery 
[22]. To derive a transition probability, the modeler may 
treat the value of 11.5% as the probability for 4 months and 
use Eqs. 8 and 9, or Eq. 10, to transform it to the cycle length 
of the model. But because not everyone was followed for at 
least 4 months (the mean follow-up was 4 months), this is 
not correct, and the probability has not only the usual sam-
pling error, but also an additional error associated with the 
time frame. While this remains an area for future research, 
modelers should test the impact of this measurement error 
by conducting a series of one-way deterministic sensitiv-
ity analyses using values associated with varying the time 
frame—for example, transition probabilities derived using 
the mean, median, minimum, and maximum follow-up times 
reported for the statistic. If the model results are sensitive 
to the difference, modelers may wish to contact the study 
investigators for data stratified by follow-up time or explore 
alternative sources of data.

An important issue, for which there is as yet no good 
solution, is how to represent the uncertainty involved in 
extrapolating transition probabilities beyond the time hori-
zon of the available data. When the modeler has access to 
the original data, the standard approach is to fit a variety 
of parametric models to the data, and, using a goodness-
of-fit statistic such as the Akaike and/or Bayesian informa-
tion criterion, choose the best-fitting model to extrapolate 
beyond the original data, even though goodness-of-fit to 
the observed data is not an appropriate test of the fitted 
model’s ability to extrapolate accurately. Negrin et al. [34] 
and Latimer [16] suggest conducting sensitivity analyses by 
comparing, say, the cost-effectiveness results for the best-
fitting model with results based on those that fit less well. 
This approach shows whether an intervention deemed cost-
effective (or not) using the best-fitting model remains so 
when other models are used and focuses attention on the 
effects of the extrapolation method on decision uncertainty. 
Another approach is to fit parametric models to different 
subperiods within the observed data to explore the stability 
of the estimated parameters and, rather than using the single 
best-fitting model, use Bayesian model averaging to combine 

models for extrapolation [34]. Modelers who are limited to 
the published data will not be able to use these approaches, 
but should consider widening the range around extrapolated 
probabilities to reflect the additional uncertainty associated 
with extrapolation. The importance of the problem is illus-
trated by an analysis of artificial hips that found extrapola-
tions based on the 8 years of follow-up data available at the 
time of the original analysis turned out, once 16 years of 
follow-up became available, to have identified the wrong 
artificial hip as the most successful and cost-effective [15].

7  Discussion

There are many complex issues to be addressed in the pro-
cess of developing a decision model. Here, we summarize 
some best practices for using data from the published litera-
ture that may mitigate downstream challenges.

First, as Miller and Homan warned more than 2 decades 
ago, statistics are not always correctly described in the origi-
nal source [27]. Modelers should carefully review whether 
the reported statistic is actually a probability, an RR, a rate, 
or something else; sometimes statistics reported as rates are 
actually probabilities. As noted earlier, one clue to the dif-
ference is that a rate has time at risk explicitly stated in the 
denominator, (e.g., ten events per 100 person-years) while 
a probability does not (e.g., ten events per 100 persons). 
Another clue is that for a probability, persons must be fol-
lowed for the entire time period, whereas for a rate, persons 
are followed only until the event occurs [26].

Once the published data relevant to the decision model 
are correctly identified, the methods described in this paper 
can be used to derive transition probabilities appropriate to 
the model. Our purpose here has been to collect the meth-
ods available in the literature in a single place to make the 
process of derivation easier for modelers. We have described 
how RRs can be used to derive transition probabilities for 
disease or for treatment efficacy, or can serve as weights 
for deriving transition probabilities for population sub-
groups. We described how to derive probabilities from the 
frequently-reported OR, including in situations where the 
event is not rare. Probabilities derived from summary sta-
tistics such as RRs or ORs will be affected by the accuracy 
and suitability of additional elements required by the deriva-
tion, such as the probability of an event in the unexposed, 
and we have discussed how modelers can incorporate the 
uncertainty introduced by these elements.

We have discussed several types of statistics that are of 
direct use for estimating transition probabilities for decision 
models. There are other statistics that, while not directly 
useful, are excellent leads to sources of the statistics needed 
for models. The population attributable fraction (PAF) is 
one such example [35, 36]. Since it shows the maximum 
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amount of disease or mortality that can be attributed to a 
condition, such as obesity [37], it is not directly useful for 
cost-effectiveness analysis models, which evaluate specific 
interventions and need measures of the effectiveness of those 
interventions. However, the calculation of PAF is based on 
prevalence and risk ratios, from which transition probabili-
ties can be derived, so articles about PAFs can lead to good 
sources for those statistics. They also often provide helpful 
discussions of the appropriateness and consistency of the 
statistics for particular populations, so can help the modeler 
decide which statistics to use in the model.

Modelers will often need to modify a published prob-
ability to match the cycle length of the model. When there 
are only two possible transitions within a model cycle, the 
conversion is straightforward, as described in Eqs. 8 and 9 
or Eq. 10. When three or more transitions can occur within a 
single model cycle, modelers can avoid the need to use more 
complex methods for deriving appropriate probabilities by 
creating two-branch, conditional nodes, as suggested for the 
heart transplant example. In other cases, such conditional 
nodes may not be appropriate, or may result in a model with 
a confusingly large number of branches, and modelers can 
instead consider eigendecomposition to obtain model tran-
sition probabilities for nodes with three or more branches. 
Regardless of the approach used, the resulting probability 
values are estimates only and therefore contain uncertainty 
additional to that which is present in reported probabili-
ties, which should be considered in the analysis. For fur-
ther reading on the appropriateness of creating conditional 
two-branch nodes, see Sendi and Clemen, who point out 
that two-branch nodes can sometimes complicate sensitivity 
analyses [38].

Aspects of the model’s structure can be chosen to accom-
modate the available data or to simplify the process of using 
it. Modelers may choose, for example, to match the model’s 
cycle length to the follow-up time for the data considered 
most important to model results. Whatever the cycle length, 
the discount rate needs to be adapted to match it.

Sensitivity analyses are a standard part of reporting model 
results. They can also be useful early in model development 
to help allocate effort to the refinement of parameters. Deter-
ministic sensitivity analyses and, specifically, the tornado 
diagram produced from a series of one-way deterministic 
sensitivity analyses are an excellent mechanism for deter-
mining the importance of model parameters to results. An 
iterative process may be useful in which plausible place-
holder values are entered, a tornado diagram is run, and the 
results are used to allocate further effort in proportion to 
each parameter’s effects on the model. Attempting to derive 
“perfect” probabilities for every branch in the model delays 
the model’s completion while adding little to its ultimate 
quality and usefulness.

8  Conclusion

Decision modelers populating their models with transition 
probabilities based on published data face numerous chal-
lenges, ranging from finding only comparative statistics 
(such as RRs or ORs) from which to derive probabilities to 
needing to convert published data to match the model’s cycle 
length. We present here guidance, based on current thinking 
and literature, to help modelers populate their models with 
high-quality transition probabilities.
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Appendix: Probabilities and rates

Suppose a study followed 100 people with congestive heart 
failure for 4 years. At the end of the 4 years, 40 had died.

The probability of death over 4 years is 40/100 = 0.40.
A rate takes into account the time each person was at 

risk. The 60 people who survived were at risk the entire 4 
years and contributed 60 × 4 = 240 years at risk. Once a per-
son dies, he/she is no longer at risk. When a study does not 
report time at risk, the conventional assumption is that the 
events were spread evenly over the time period. Using this 
assumption, the average time at risk for the 40 who died was 
2 years, adding 40 × 2 = 80 years at risk. Total time at risk 
for the cohort of 100 people is 320 person-years, and thus, 
the rate is 40/320 = 0.125 deaths per person-year at risk.

Suppose the decision model requires an annual probabil-
ity of death. Starting with the published 4-year probability, 
use Equation 8 to convert the probability to an annual rate on 
the assumption that the deaths occurred evenly throughout 
the study period. (Note that the answer is close to the manu-
ally calculated rate above, but not quite the same.)
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Then use Eq. 9 to convert this rate to a probability. 

Since Eq. 8 already divided by t = 4 to adjust to 1 year, 
t = 1 in Eq. 9. (Alternatively, the 4-year probability could 
first be converted to a 4-year rate and then the 4-year rate to 
an annual probability. In this case, t = 1 in Eq. 8 and t = ¼ 
in Eq. 9. The results are the same.)

Instead of using Eqs. 8 and 9, Eq. 10 yields the same 
annual probability in a single step,

That this is the correct annual probability can be verified 
by using it to calculate the number of survivors at 4 years.
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