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Abstract The need for patient engagement has been rec-

ognized by regulatory agencies, but there is no consensus

about how to operationalize this. One approach is the

formal elicitation and use of patient preferences for

weighing clinical outcomes. The aim of this study was to

demonstrate how patient preferences can be used to weigh

clinical outcomes when both preferences and clinical out-

comes are uncertain by applying a probabilistic value-

based multi-criteria decision analysis (MCDA) method.

Probability distributions were used to model random vari-

ation and parameter uncertainty in preferences, and

parameter uncertainty in clinical outcomes. The posterior

value distributions and rank probabilities for each treat-

ment were obtained using Monte-Carlo simulations. The

probability of achieving the first rank is the probability that

a treatment represents the highest value to patients. We

illustrated our methodology for a simplified case on six

HIV treatments. Preferences were modeled with normal

distributions and clinical outcomes were modeled with beta

distributions. The treatment value distributions showed the

rank order of treatments according to patients and illustrate

the remaining decision uncertainty. This study demon-

strated how patient preference data can be used to weigh

clinical evidence using MCDA. The model takes into

account uncertainty in preferences and clinical outcomes.

The model can support decision makers during the aggre-

gation step of the MCDA process and provides a first step

toward preference-based personalized medicine, yet

requires further testing regarding its appropriate use in real-

world settings.

Key Points for Decision Makers

Healthcare decisions require an assessment of the

value treatments provide for patients. Such

assessments are made under uncertainty and there is

no consensus about how to account for patient

preferences in making these assessments.

This study applies a multi-criteria decision analysis

model where clinical evidence is weighted with

patient preferences. In this way, patient-weighted

treatment values can be estimated in a representative

manner while building on the existing the clinical

evidence.

The probabilistic approach adopted in the model

allows for the simultaneous modelling of

measurement uncertainty and patient-specific

preference variation. Scenario analyses show that the

impact of these different types of uncertainty on

decision uncertainty is substantially different in a

simplified case on HIV treatments.
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1 Introduction

Assessing the relative effectiveness of treatments is an

essential component in regulatory and reimbursement

decisions and is substantiated by strong methodology and

clinical evidence development guidelines. However,

interpretation of clinical evidence is a largely subjective

and opinion-based process and such judgments are rarely

formally included in decision-making processes [1]. Nev-

ertheless, subjective value judgments of stakeholders (in

particular those of patients [1–4]) are an essential part of

what finally determines treatment value [5]. For instance,

in decisions considering two or more equally effective

drugs, the (subjective) relative severity of the associated

adverse events may dominate the final decision. Currently,

subjective value judgments such as the relative severity of

adverse events are mostly considered implicitly in health-

care policy decisions. Patient engagement is increasingly

promoted [5–7], and several mechanisms of patient

engagement have been used, including patient panels and

patient-reported outcomes. Whereas decision makers can

use such implicit viewpoints, these can still be inaccurate

or biased [8, 9]. A potentially more representative and

transparent approach is the use of results from survey-

based stated preference studies [10]. These studies yield

numeric estimates of the relative importance that respon-

dents place on attributes of medical services such as clin-

ical outcomes or other treatment characteristics [1, 2].

Although elicited preferences can be used as a piece of

information in the deliberative process of assessing the

relative treatment value, a more formal approach would

actually use such preferences to weigh clinical endpoints

and, thus, prioritize interventions by explicitly mapping the

benefits and risks. One method that could be used to

structure and analyze decision problems and to explicitly

include patient preferences is multi-criteria decision anal-

ysis (MCDA). The application of MCDA allows decision

makers to structure their decision problem and work on it

in a transparent and consistent way [11, 12]. Importantly,

MCDA is flexible in that it allows multiple stakeholder

groups, including patients, to assign preference weights to

clinical outcomes (which are referred to as criteria in

MCDA). An MCDA process typically comprises several

steps, including (1) definition of the decision problem and

alternatives; (2) identification of the decision criteria; (3)

weighting of the criteria; (4) identification of the perfor-

mance of the alternatives; (5) scoring the performance; (6)

aggregating the results and dealing with uncertainty; and

(7) reporting the results [13].

The use of MCDA in healthcare has grown over the last

few years [14, 15], which has led to the International

Society For Pharmacoeconomics and Outcomes Research

(ISPOR) MCDA Emerging Good Practices Taskforce

publishing guidance on the basic concepts and implemen-

tation of MCDA in healthcare recently [13, 16].

The most commonly used method for aggregating the

criterion weights and performance scores in MCDA is the

linear additive value function. By combining the criterion

weights derived from a group of patients and the actual

clinical performance scores of the therapeutic alternatives,

one can estimate patient-weighted treatment values [17].

This is a relatively straightforward approach but it only

reflects the mean clinical treatment performance for an

average patient and uncertainty in neither the criteria

weights nor performance scores is evaluated.

There are, however, several solutions to include uncer-

tainty in the MCDA model. For instance, Wen et al. [18]

and Chim et al. [19] use probability distributions for clin-

ical evidence and point estimates for preferences. Kaltoft

et al. [20] estimate preference uncertainty by defining

preference subgroups and coupling these to point estimates

for clinical performance. Lynd et al. [21] used point esti-

mates from a discrete choice study to assign utilities to

events in a (probabilistic) discrete event simulation. In two

other methods, probability distributions for clinical evi-

dence is combined with uniform distributions for criterion

weights as a non-informative prior [22, 23]. One common

problem of all these methods is that they do not simulta-

neously combine parameter uncertainty and random vari-

ation in both patient preferences and clinical evidence.

Here, parameter uncertainty is uncertainty around an esti-

mated quantity (such as a group mean) which can be

reduced with more measurements [24, 25]. Random pref-

erence variation is the systematic variation of preferences

across the population. This variation can, by definition, not

be reduced by repeated measurements but can only be

better characterized [24, 25]. The importance of including

preference variation is recently recognized in the devel-

opment of personalized medicine based on (variation in)

preferences [26, 27].

The aim of this study was to demonstrate an application

of probabilistic MCDA that would allow a joint analysis of

patient preferences and clinical evidence for treatments,

taking into account uncertainty in both preferences and

clinical evidence. The proposed model can be applied

during the aggregation step of a value-based MCDA and is

able to handle three sources of uncertainty: random pref-

erence variation, parameter uncertainty in preferences, and

parameter uncertainty in clinical evidence. The model is

designed to yield value distributions that enable explicit

probabilistic statements about which treatments are pre-

ferred. The model is illustrated using a simplified case

study of highly active antiretroviral therapies (HAART) for

HIV patients.
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2 A Proposed Multi-Criteria Decision Analysis
(MCDA) Method for Capturing the Value
of Treatments Under Uncertainty

2.1 Building the Value Function and Defining

Sources of Uncertainty

We adopted a value-based MCDA method. The value of a

particular treatment i, denoted Vi, i ¼ 1; . . .; n was assumed

to be a linear additive function of K criteria (Eq. 1):

Vi ¼
XK

k¼1

bkXki ð1Þ

where bk denotes the preference weight of criterion k, and

Xki is the performance of treatment i on criterion k. We

assumed that patients prefer treatments with a higher value

to treatments with a lower value, that preference weights

and the clinical performances were not correlated, and that

the clinical performances were measured on an interval

scale.

To introduce random preference variation, suppose each

patient q has his/her own preference weight bkq for each

criterion k (Eq. 2):

Viq ¼
XK

k¼1

bkqXki ð2Þ

The term bkq in this equation is composed of population

mean preference weight bk and a patient-specific random

effect hkq (Eq. 3):

bkq ¼ bk þ hkq ð3Þ

with (Eq. 4):

hkq �N 0; r2k
� �

: ð4Þ

2.2 Parameter Estimators

There are different methods for obtaining preference

weights, such as swing weighting. However, in this study

the required parameter estimators b̂k and r̂2k were obtained

by analyzing patient-level data from stated preference

studies. Parameter uncertainty in these estimators across all

criteria is reflected in the covariance matrices
P

b̂ and
P

r̂2 .

The estimator for clinical performance Xki is denoted x̂ki
and can be obtained from clinical trial reports.

2.3 Sampling Framework

We assumed that the vectors b̂ ¼ b̂1. . .b̂K
� �

and r̂ ¼
r̂1. . .r̂Kð Þ were both distributed according to multivariate

normal distributions. We denoted the value distribution of

treatment i across the population with wi, assuming that the

individual values Viq were identically distributed for

patients q. In a probabilistic model all uncertain parameters

are varied at the same time, and this implies that the

probability distribution wi is a complex and analytically

challenging combination of the distributions for b̂k, r̂k and
x̂ki. We therefore approximated wi with Monte-Carlo sim-

ulations (Fig. 1). The Monte-Carlo simulations were pro-

grammed as follows. In each simulation run t, we first

sampled a population mean preference weight bt ¼
b1t. . .bKtð Þ from MVN b̂;

P
b̂

� �
and a standard deviation

rt ¼ r1t. . .rKtð Þ from MVN r̂;
P

r̂2
� �

. From that we

obtained a respondent qt using Eqs. 3 and 4 (Eq. 5):

bqt �MVN bt;
X

r2t

0

@

1

A; ð5Þ

with
P

r2t
a diagonal covariance matrix with r2t ¼

r21t; . . .; r
2
Kt

� �
on the diagonal. This means that in every

simulation run t a hypothetical patient qt with a particular

vector of preferences bqt ¼ b1qt . . .bKqt
� �

was obtained. The

probability distribution of x̂ki was denoted with Fki and

chosen for each criterion depending on what best modeling

practices recommend for that type of clinical performance

[24]. From Fki we sampled Xkit in each simulation run. The

preference sample was combined with samples from the

probability distributions Fki for each criterion k to calculate

the value for each treatment i in the simulation run with

(Eq. 6):

Viqt ¼
XK

k¼1

bkqtXkit: ð6Þ

The Monte-Carlo simulation process was repeated a

large number of times T and was programmed in R [28].

2.4 Model Outcomes

From the Monte-Carlo simulations the mean value of each

treatment in the population was obtained, calculated as the

posterior mean, Vi ¼
PT

i¼1
Viqt

T
. This metric can be inter-

preted as the mean perceived value of the treatment’s

clinical performance according to patients. Since we

assumed that patients prefer treatments with a higher value

to treatments with a lower value, the treatment value

should only be interpreted relative to the value of other

treatments. The degree to which the value distributions of

two treatments overlap indicates how uncertain we are

about selecting the treatment with the highest value. More

concretely, to make probabilistic statements about the

degree to which we are sure about which treatment has the
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highest value in each simulation, t treatments were ranked

from the first (highest value) rank to the last (lowest value)

rank based on their respective viqt . The rank achieved by

treatment i in simulation run t was denoted with rit. We

denoted the rank of treatment i with Ri. The probability that

this rank equals y was estimated with the percentage of

simulations treatment i had rank y (Eqs. 7 and 8):
PT

t¼1 1y ritð Þ
T

ð7Þ

where

1y ritð Þ ¼ 1; ifrit ¼ y

0; otherwise

�
ð8Þ

Since we assumed patients prefer treatments with a

higher value to treatments with a lower value, the treatment

with the highest estimated probability of being ranked first

was considered the most preferred treatment. One minus

the probability that the most preferred treatment is ranked

first is the rank reversal probability for the first rank. The

rank reversal probability for the first rank is used as a

measure of decision uncertainty, because it is the

probability that the most preferred treatment (according

to our model) turned out not to be the most valuable

treatment.

2.5 An Illustration of the Proposed Approach

on a Simplified HIV Case

To illustrate the proposed model, it is applied to the case of

HIV treatments. The MCDA was designed according to the

guidelines as proposed by the ISPOR taskforce [13].

Although the data used comes from real studies, the main

purpose of this paper is to illustrate the modeling approach.

The simulation results presented in this paper can therefore

not be used to inform clinical HIV decisions. All data used

(with references) as well as the R script can be found in the

Electronic Supplementary Material to replicate our results.

2.6 Identification of Treatment Alternatives

and Decision Criteria

The example is about the comparison of the relative value

of HAARTs for HIV-positive patients from a regulatory

perspective. Treatments under consideration are those

recommended by the US National Institutes of Health

(NIH) for treatment-naı̈ve patients [29]. A HAART con-

sists of an active drug component and one of two back-

bones (abacavir/lamivudine [AL] or tenofovir/

emtricitabine [TE]). The treatments included in the case

study were four combination treatments

Fig. 1 Overview of the Monte-

Carlo simulation method used in

the model. i ¼ 1. . .n the

treatment, and t ¼ 1. . .T the

Monte Carlo simulation run
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(dolutegravir ? AL/TE,1 efavirenz ? AL, ralte-

gravir ? TE, atazanavir/ritonavir ? TE, elvitegravir/co-

bicistat ? TE, and darunavir/ritonavir ? TE) plus two

backbone-only treatments (AL and TE). For simplicity we

denote combination treatments only by their active drug

component (e.g., dolutegravir instead of dolute-

gravir ? AL/TE, etc.) in the remainder of this paper.

In the MCDA model we used the same criteria as

identified in an earlier preference study [30], namely

probability of virologic failure (pviro), probability of

allergic reaction (pall), probability of bone damage

(pbone), and probability of kidney damage (pkid) [30]. All

probabilities were all defined over a 52-week time

horizon.

2.7 Measuring Performance of the Alternatives

The clinical performance of the treatments on the

included criteria was obtained from clinical trial reports

(for an overview of the included trials see the NIH

guideline [29]). All criteria were represented as proba-

bilities. For each treatment we therefore retrieved from

the clinical trial reports the number of events ðeþk Þ and

number of non-events (e�k Þ per criterion k. The perfor-

mance estimates for each criterion k were then calcu-

lated with
eþ
k

eþ
k
þe�

k

. For studies that reported time horizons

other than 52 weeks, we used linear extrapolation to

obtain performance estimates for a 52-week time hori-

zon. We used a linear partial value function for each

criterion. No rescaling of the performances was needed

for the partial value functions since probabilities are

already naturally constrained between 0 and 1. For cri-

teria measured on other scales, such a rescaling to the

0; 1½ � range using a predefined lower and upper level

would be required [31].

Plasma HIV RNA of more than 50 copies/mL 52 weeks

after treatment start was considered a virologic failure

event. Reported incidence of rash was used as a surrogate

measure for the TE-induced allergic reaction event.

Reported fractures in the clinical trials were considered to

constitute bone damage events. However, this was not

reported for TE; therefore, decreases in bone mineral

density of more than 6% were used as a surrogate endpoint.

Because of the diagnostic and treatment options available,

we limited our model to include only treatable bone

damage [29, 32]. Reported cases of renal failure were

considered to be kidney damage events, and we therefore

limited our model to include only non-treatable kidney

damage [33].

2.8 Input for Criteria Weights: Results

from a Previously Published Discrete Choice

Experiment

The present methodological study did not elicit criteria

weights itself, but used the results from a previous stated

preference study to inform the preference weights. In that

study by Hauber et al. [30], 147 treatment-naı̈ve HIV-

positive African Americans gave their preferences for four

criteria relevant for HIV treatment. The study employed a

discrete choice study design with 24 choice tasks. In the

choice tasks the criteria were defined as the probability of

the event in the next 52 weeks. An overview of the pref-

erence data is given in Table 1.

2.9 Aggregating Scores and Performance

In the base-case analysis we assumed an additive value

function. The value of treatment i for patient q (Eq. 2)

could therefore be specified as Eq. 10:

Viq ¼ pviro;ibviro;q þ pall;iball;q þ pbone;ibbone;q þ pkid;ibkid;q:

ð10Þ

The mean population preferences and the random

preference variations were assumed to be normally

distributed. The parameter estimates for these

distributions were obtained from a (mixed logit [34])

analysis of the used preference study (Table 1). The

performances of each treatment are probabilities and

were therefore modeled with beta distributions [24]. Beta

distributions require two input parameters (a1 and a2) and
these were estimated from the clinical trials cited in the

NIH guideline. A complete overview of the clinical trials

used in this study can be found in the Electronic

Supplementary Material. We used the number of reported

events eþk as a1 and the number of non-events e�k as a2. In
total, 100,000 Monte-Carlo simulations were performed.

2.10 Handling Uncertainty: Scenario Analyses

A scenario analysis was employed to illustrate the effect of

the different sources of uncertainty on the treatment value

distributions. The base-case scenario described previously

considered all types of uncertainty simultaneously, i.e.,

parameter uncertainty in preferences, random preference

variation, and parameter uncertainty in clinical evidence.

Each of the other scenarios tested for one specific source of

uncertainty. This means that each scenario included one

source of uncertainty while the other two sources were

assumed to have no uncertainty and were thus fixed at a

particular value. In the first scenario, only parameter

uncertainty in preferences (as parameterized by the1 Either AL or TE.
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covariance matrix
P

b̂) was taken into account. Therefore,

hkq was set to zero for all criteria and individuals, and all

clinical performances were set to the mean clinical per-

formance of treatments as found in Table 2. In the second

scenario, only random preference variation was included.

This means that the
P

b̂ was set to be a zero matrix, all

clinical performances were set to the mean clinical per-

formance of treatments as found in Table 2, and hkq was

distributed as in the base case. In the third scenario, only

parameter uncertainty in clinical performance was inclu-

ded. This means that hkq was set to zero for all criteria and

individuals,
P

b̂ was set to be a zero matrix, and perfor-

mances Xki were distributed with Fki as in the base case.

3 Examination and Discussion of Findings

3.1 Outcomes of Case Study

The model outcome was a value distribution for each

included HAART (Fig. 2). In the base case, dolutegravir

has the highest patient-weighted estimated mean value of

-0.39 with an empirical 95% confidence interval (CI)

running from -1.25 to 0.48. The backbone-only treatments

AL and TE had the lowest mean values (-1.49 and -1.86,

respectively). In all scenario analyses, mean treatment

values were similar to the base-case results (Fig. 2;

Table 3) and the most likely rank order of treatments did

not change. The width of the CIs did vary between the base

case and the scenarios. When only random preference

variation was considered in the second scenario, the CIs

were only slightly narrower than those of the base case. In

the two other scenarios that considered parameter uncer-

tainty the CIs were substantially narrower.

In 49.1% of the simulations, dolutegravir was ranked

first (Table 4). This implies that in 50.9% of simulations,

another treatment was preferred. Atazanavir/ritonavir had

the highest probability of being ranked second (40.0%) and

efavirenz had the highest probability of being ranked third

(40.3%). The narrower value distributions in the scenarios

are reflected in the rank probabilities. The rank probabili-

ties in the scenario that considered only parameter uncer-

tainty in preferences were higher: the probability of

dolutegravir attaining first rank and atazanavir/ritonavir

attaining second rank were both more than 90%. This

means that we were confident about the ranking of treat-

ments for the first and second rank. Similarly, the first and

second rank probabilities for dolutegravir and atazanavir/

ritonavir are more than 75% in the scenario that considers

Table 1 Preference data used from Hauber et al. [30]. All b̂ are per

percentage point probability of the event occurring in the next

52 weeks, i.e., the partial value of a 2% probability of allergic

reaction in the next 52 weeks is -0.12. Note that the covariance
P

b̂

and
P

r̂2 are not presented here for brevity but can be found in the

Electronic Supplementary Material. Both b̂k and r̂k are assumed to be

distributed with a multivariate normal distribution

Levels used in DCE (%) [21] b̂ SEðb̂Þ r̂k SE r̂kð Þ

Virological failure prevented 96.0, 85.0, 79.0 -0.05 0.01 0.05 0.02

Allergic reaction 0.0, 1.0, 8.0, 12.0 -0.06 0.01 0.06 0.02

Bone damage (treatable) 0.0, 1.0, 5.0, 10.0 -0.01 0.02 0.06 0.06

Kidney damage (not treatable) 0.0, 1.0, 5.0, 10.0 -0.22 0.04 0.21 0.05

DCE discrete choice experiment

Table 2 Clinical evidence used. For references to all included

clinical trials, see the National Institutes of Health guideline [29]

and the Electronic Supplementary Material. All performances were

defined over a 52-week time horizon and assumed to be distributed

with beta distributions

HAART regimen Probability of virological

failure (95% CI)

Probability of allergic

reaction (95% CI)

Probability of bone

damage (95% CI)

Probability of kidney

damage (95% CI)

Dolutegravir ? TE/AL 7.61% (6.10–9.25) 0.24% (0.01–0.90) 0.09% (0.00–0.34)

Atazanavir/ritonavir ? TE 5.25% (3.94–6.77) 1.72% (0.74–3.10) 1.29% (0.48–2.5%) 0.43% (0.05–1.21)

Elvitegravir/cobicistat ? TE 13.52% (10.17–17.34) 2.02% (0.83–3.77%) 0.87% (0.18–2.12)

Efavirenz ? AL 13.67% (12.32–15.13) 1.86% (1.21–2.66) 2.12% (1.41–2.98%) 0.29% (0.11–0.56)

AL (backbone) 16.3% (13.74–18.99) 2.32% (1.01–4.18) 4.57% (3.02–6.38%) 2.50% (1.47–3.75)

TE (backbone) 20.41% (17.58–23.39) 1.01% (0.28–2.19) 2.19% (1.18–3.52%) 3.84% (2.56–5.36)

AL abacavir/lamivudine, CI confidence interval, HAART highly active antiretroviral therapy, TE tenofovir/emtricitabine
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only parameter uncertainty in clinical performances. From

the fourth until last rank, there is slightly more decision

uncertainty in the scenario that considers parameter

uncertainty in preferences than there is in the scenario that

considers parameter uncertainty in clinical performances.

3.2 Implications of the Modeling Framework

for Personalized Medicine

The main objective of this study was to develop a novel

methodology. The HIV case was used to demonstrate the

concepts and cannot be used for guidance on HIV treat-

ment decisions. However, the modelling framework does

allow an exploration of its usefulness for other applica-

tions: assessing the impact of uncertain parameters (clinical

evidence and preferences) on decision uncertainty and

personalizing treatment based on preferences. The assess-

ment of the impact of the uncertainty in model parameters

on decision uncertainty is important for identifying the

value of additional research: it is most worthwhile to fur-

ther investigate model parameters where more information

would most likely reduce decision uncertainty. In the

presented case, there is a clear difference between the

impact of the sources of uncertainty. When only parameter

uncertainty in either preferences or performances was

considered, one treatment was clearly the most valuable

treatment. However, when random preference variation

was considered, there was considerable overall decision

uncertainty. The value of additional clinical research may

therefore not be high but decision aids (that help patients

think about their preferences, reducing their individual

preference uncertainty) may be valuable.

Fig. 2 Barplots of the regimen values with 95% confidence intervals across the four analysis scenarios. Purple dolutegravir, dark blue

elvitegravir/cobicistat, light blue atazanavir/ritonavir, green efavirenz, yellow abacavir/lamivudine, red tenofovir/emtricitabine

Table 3 Values (with 95% confidence intervals) for the included highly active antiretroviral therapy regimens across the four analyses

HAART regimen Base case Scenario analyses

All three types of

uncertainty

Only parameter uncertainty

in preferences

Only patient-specific

preference variation

Only parameter uncertainty

in performances

Dolutegravir ? TE/AL -0.39 (-1.25 to 0.48) -0.38 (-0.57 to -0.19) -0.39 (-1.24 to 0.47) -0.38 (-0.48 to -0.30)

Atazanavir/ritonavir ? TE -0.46 (-1.2 to 0.24) -0.45 (-0.62 to -0.28) -0.45 (-1.14 to 0.23) -0.45 (-0.64 to -0.32)

Elvitegravir/cobicistat ? TE -0.83 (-2.52 to 0.8) -0.82 (-1.22 to -0.42) -0.83 (-2.41 to 0.74) -0.83 (-1.13 to -0.59)

Efavirenz ? AL -0.83 (-2.4 to 0.77) -0.82 (-1.19 to -0.44) -0.83 (-2.41 to 0.76) -0.82 (-0.92 to -0.73)

AL backbone -1.49 (-3.77 to 0.83) -1.47 (-2.06 to -0.89) -1.48 (-3.7 to 0.75) -1.48 (-1.79 to -1.20)

TE backbone -1.86 (-4.68 to 1.07) -1.85 (-2.54 to -1.17) -1.85 (-4.64 to 0.94) -1.86 (-2.21 to -1.55)

AL abacavir/lamivudine, HAART highly active antiretroviral therapy, TE tenofovir/emtricitabine
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This relates to the second application for which our

work may be used: personalized medicine. Although most

research in that field has focused on personalizing treat-

ment based on clinically measurable patient characteristics

such as genetic differences, there is an increasing interest

in personalizing treatment based on patient preferences

[26]. Our model could help decision makers to make the

first steps toward such a personalization by showing to

what extent (uncertainty in) patient preferences influences

the choice of treatment. A next step to formalize the

assessment of the extent to which differences in prefer-

ences are relevant would be to calculate metrics such as the

value of heterogeneity [35]. This metric shows the mar-

ginal population-wide value gained from having patients

choose between more than one treatment. This value will

be low if there is a clear most valuable treatment for all

patients, but it will be high if there is clinical equipoise

and/or much patient-specific preference variation. An

important outstanding research issue here is how values

derived from an MCDA can be contrasted with financial

costs [36]. Further research could also be directed toward

the integration of patient-specific clinical outcome mea-

sures; that is, introducing a patient-specific performance

distribution that yields estimates of the performance of a

specific treatment for a specific patient. For the HIV case

this could, for example, be operationalized by estimating

the treatability of kidney damage based on respondent

characteristics such as level of kidney functioning at

treatment start. Such a holistic view of patient-specific

variation in both preferences and clinical outcomes would

Table 4 Ranking probabilities for all included regimens across the four analyses

Dolutegravir

? TE/AL (%)

Atazanavir/

ritonavir ? TE (%)

Elvitegravir/

cobicistat ? TE (%)

Efavirenz

? AL (%)

AL backbone

(%)

TE backbone

(%)

Base case

All three types of uncertainty

1 49.07 34.21 4.95 4.28 1.92 5.57

2 36.12 39.98 10.53 7.54 4.08 1.75

3 5.56 8.69 40.25 40.31 3.27 1.92

4 3.46 8.47 39.96 39.00 5.69 3.42

5 4.60 3.52 3.76 4.96 69.52 13.64

6 1.19 5.13 0.55 3.91 15.52 73.70

Scenario analyses

1: Only parameter uncertainty in preferences

1 90.42 9.58 0.00 0.00 0.00 0.00

2 9.58 90.26 0.14 0.02 0.00 0.00

3 0.00 0.11 46.26 53.63 0.00 0.00

4 0.00 0.05 53.60 46.35 0.00 0.00

5 0.00 0.00 0.00 0.00 100.00 0.00

6 0.00 0.00 0.00 0.00 0.00 100.00

2: Only patient-specific preference variation

1 53.28 32.25 2.34 5.32 1.59 5.22

2 33.77 46.18 8.50 6.43 3.93 1.19

3 4.68 5.81 42.71 42.69 2.07 2.04

4 2.76 8.52 44.4 37.84 3.69 2.79

5 4.41 2.46 1.90 3.49 79.51 8.23

6 1.10 4.78 0.15 4.23 9.21 80.53

3: Only parameter uncertainty in performances

1 77.2 22.79 0.01 0.00 0.00 0.00

2 22.8 76.41 0.68 0.11 0.00 0.00

3 0.00 0.74 51.00 48.26 0.00 0.00

4 0.00 0.06 48.19 51.63 0.12 0.00

5 0.00 0.00 0.12 0.00 95.2 4.68

6 0.00 0.00 0.00 0.00 4.68 95.32

AL abacavir/lamivudine, TE tenofovir/emtricitabine, TE/AL either tenofovir/emtricitabine or abacavir/lamivudine

266 H. Broekhuizen et al.



be a step toward combining the two current viewpoints on

personalized medicine [26].

4 Strengths, Weaknesses, and a Comparison
to the Existing Literature

The first strength of the current study is that it has

demonstrated a methodological approach for combining

preference data and clinical data into one value metric,

which may contribute to the ongoing attempts to integrate

patient preference research in health technology assess-

ment and market approval. A second strength of the study

is that the developed model allows for the simultaneous

consideration of the impact of three sources of uncertainty,

i.e., random preference variation and parameter uncertainty

in both clinical and preference estimates.

The developed model uses results from stated preference

studies to inform value judgements in policy decisions

from one of the most important stakeholders in healthcare:

the patient. By including stated preference studies in the

model, the patient preferences are incorporated in an

explicit, structured and representative manner. Many dif-

ferent types of preference elicitation methods exist. In this

study we used results from a discrete choice study, but in

theory our model is able to handle preference weights

obtained from a wide range of preference elicitation

methods as long as a value function can be constructed and

probability distributions can be assigned to weights.

Finally, the possibility of including preference studies with

large sample sizes allows for the investigation of variation

and uncertainty in preferences. The impact of these was

investigated by assigning informative probability distribu-

tions, which sets our study apart from earlier studies that

have used point estimates [18–21] or non-informative

(uniform) distributions [22, 23].

The decision to use a probabilistic approach in the

present study follows from a recent review identifying five

approaches to deal with uncertainty in MCDA [25]. The

approach adopted in this study seems most advantageous

for our aims for a number of reasons. It is the approach that

is best suited for dealing with the preferences of a group of

stakeholders and is most able to consider multiple uncer-

tain parameters [25]. Another advantage is that it is pos-

sible to implement Monte-Carlo simulations as a flexible

method that can combine all types of parametric and non-

parametric probability distributions [24]. For these reasons,

decision makers could apply the method during the

aggregation and uncertainty steps of the MCDA process

described in the recent ISPOR taskforce report [13]. This

would be especially advantageous in policy decisions

where the patient perspective is considered explicitly and

where various sources of uncertainty are relevant to

consider.

Even though the model may be appropriate given our

aims, a limitation of all studies that use results from stated

preference research is that a person’s stated preference may

not be the same as their revealed preference [37]. A limi-

tation specific to the illustrative case study was that treat-

ment value is assumed to be linearly related to the clinical

performance. This assumption implies that we assumed we

could extrapolate linearly beyond the performance levels

originally included in the preference study to calculate

partial values. The linearity specification could not be

rejected in the preference study but this could also have

been due to the sample size [30]. A related limitation is that

we assumed that we could extrapolate performance mea-

sures to conform to the 52-week time horizon used in the

preference study. Furthermore, another limitation is that

random preference variation was assumed to be normally

distributed. Although this is practical and a commonly

made assumption in patient preference research [38], in our

study it resulted in a small percentage of Monte-Carlo

simulations having sign reversals for the preference

weights, mainly for the virologic failure criterion. In a

larger patient sample it may have been possible to estimate

a more specific functional form for the value function [39].

Performance samples for virologic failure all fell outside of

the range for which preferences were elicited, which may

have biased the value estimates.

5 Conclusion

In an attempt to explore new approaches for increasing

patient engagement in healthcare policy decisions, the

current paper presents a probabilistic MCDA model in

which treatment values were estimated by weighting clin-

ical trial evidence with results from a patient preference

study. The model outcomes were patient-weighted proba-

bility distributions of relative treatment value and the

respective rank probabilities. The developed model was

illustrated using a simplified case study. The adopted

probabilistic approach integrates random preference vari-

ation and parameter uncertainty in patient preferences with

parameter uncertainty in clinical evidence using a Monte-

Carlo simulation method. Further research about the use of

the modelling approach for non-simplified cases and the

match to decision maker needs is required.
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A, Regier DA, et al. Constructing experimental designs for dis-

crete-choice experiments: report of the ISPOR Conjoint Analysis

Experimental Design Good Research Practices Task Force. Value

Health. 2013;16:3–13.

11. Keeney R, Raiffa H. Decisions with multiple objectives. Cam-

bridge: Cambridge University Press; 1976.

12. Belton V, Stewart TJ. Multiple criteria decision analysis: an

integrated approach. 2nd ed. Dordrecht: Kluwer Academic; 2002.

13. Marsh K, IJzerman M, Thokala P, Baltussen R, Boysen M, Kalo

Z, et al. Multiple criteria decision analysis for health care deci-

sion making—emerging good practices: report 2 of the ISPOR

MCDA Emerging Good Practices Task Force. Value Health.

2016;19:1–13.

14. Diaby V, Campbell K, Goeree R. Multi-criteria decision analysis

(MCDA) in health care: a bibliometric analysis. Oper Res Health

Care. 2013;2:20–4.

15. Marsh K, Lanitis T, Neasham D, Orfanos P, Caro J. Assessing the

value of healthcare interventions using multi-criteria decision

analysis: a review of the literature. Pharmacoeconomics.

2014;32:1–21.

16. Thokala P, Devlin N, Marsh K, Baltussen R, Boysen M, Kalo Z,

et al. Multiple criteria decision analysis for health care decision

making-an introduction: report 1 of the ISPOR MCDA Emerging

Good Practices Task Force. Value Health. 2015;19:1–13.

17. Hummel JM, Volz F, van Manen JG, Danner M, Dintsios CM,

IJzerman MJ, et al. Using the analytic hierarchy process to elicit

patient preferences. Patient. 2012;5:1–13.

18. Wen S, Zhang L, Yang B. Two approaches to incorporate clinical

data uncertainty into multiple criteria decision analysis for ben-

efit-risk assessment of medicinal products. Value Health.

2014;17:619–28.

19. Chim L, Salkeld G, Stockler MR, Mileshkin L. Weighing up the

benefits and harms of a new anti-cancer drug: a survey of Aus-

tralian oncologists. Intern Med J. 2015;45:834–42.

20. Kaltoft M, Turner R, Nielsen J, Cunich M, Salkeld G, Dowie J.

Addressing preference heterogeneity in public policy by com-

bining cluster analysis and multi-criteria decision analysis. Health

Econ Rev. 2014;5:1–11.

21. Lynd LD, Najafzadeh M, Colley L, Byrne MF, Willan AR,

Sculpher MJ, et al. Using the incremental net benefit framework

for quantitative benefit-risk analysis in regulatory decision-mak-

ing—a case study of alosetron in irritable bowel syndrome. Value

Health. 2009;13:1–7.

22. Tervonen T, van Valkenhoef G, Buskens E, Hillege HL, Postmus

D. A stochastic multicriteria model for evidence-based decision

making in drug benefit-risk analysis. Stat Med. 2011;30:1419–28.

23. Caster O, Norén GN, Ekenberg L, Edwards IR. Quantitative

benefit-risk assessment using only qualitative information on

utilities. Med Decis Making. 2012;32:E1–15.

24. Briggs AH, Weinstein MC, Fenwick EA, Karnon J, Sculpher MJ,

Paltiel AD; ISPOR-SMDM Modeling Good Research Practices

Task Force. Model parameter estimation and uncertainty: a report

of the ISPOR-SMDM Modeling Good Research Practices Task

Force-6. Value Health. 2012;15:835–42.

25. Broekhuizen H, Groothuis-Oudshoorn CGM, van Til JA, Hum-

mel JM, IJzerman MJ. A review and classification of approaches

for dealing with uncertainty in multi-criteria decision analysis for

healthcare decisions. Pharmacoeconomics. 2015;33:445–55.

26. Rogowski W, Payne K, Schnell-Inderst P, Manca A, Rochau U,

Jahn B, et al. Concepts of ‘‘personalization’’ in personalized

medicine: implications for economic evaluation. Pharmacoeco-

nomics. 2015;33:49–59.

27. Ho MP, Gonzalez JM, Lerner HP, Neuland CY, Whang JM,

McMurry-Heath M, et al. Incorporating patient-preference evi-

dence into regulatory decision making. Surg Endosc.

2015;29:2984.

28. R Development Core Team. R: a language and environment for

statistical computing. Vienna: R Development Core Team; 2015.

http://www.r-project.org. Accessed 30 June 2016.

268 H. Broekhuizen et al.

http://www.emea.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2010/01/WC500069634.pdf
http://www.emea.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2010/01/WC500069634.pdf
http://www.emea.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2010/01/WC500069634.pdf
http://www.r-project.org


29. Panel on Antiretroviral Guidelines for Adults and Adolescents.

Guidelines for the use of antiretroviral agents in HIV-infected

adults and adolescents. Department of Health and Human Ser-

vices; 2014. http://aidsinfo.nih.gov/ContentFiles/Adultand

AdolescentGL.pdf. Accessed 26 May 2014.

30. Hauber AB, Mohamed AF, Watson ME, Johnson FR, Hernandez

JE. Benefits, risk, and uncertainty: preferences of antiretroviral-

naı̈ve african americans for HIV treatments. AIDS Patient Care

STDS. 2009;23:1–6.

31. Dodgson J, Spackman M, Pearman A, Phillips L. Multi-criteria

analysis: a manual. London; 2009. http://eprints.lse.ac.uk/12761/

1/Multi-criteria_Analysis.pdf. Accessed 30 June 2016.

32. Walker Harris V, Brown TT. Bone loss in the HIV-infected

patient: evidence, clinical implications, and treatment strategies.

J Infect Dis. 2012;205(Suppl):S391–8.

33. Molitoris B. Acute kidney injury. In: Goldman L, Schafer A,

editors. Goldman’s Cecil medicine. 24th ed. Philadelphia:

Saunders Elsevier; 2011.

34. McFadden D, Train K. Mixed MNL models for discrete response.

J Appl Econometrics. 2000;15:447–70.

35. Basu A, Meltzer D. Value of information on preference hetero-

geneity and individualized care. Med Decis Making.

2009;27:112–27.

36. Thokala P, Duenas A. Multiple criteria decision analysis for

health technology assessment. Value Health. 2012;15:1172–81.

37. Kjær T. A review of the discrete choice experiment - with emphasis

on its application in health care. Syddansk Universitet (Health

Economics Papers; Nr. 1). 2005. http://findresearcher.sdu.dk/portal/

da/publications/a-review-of-the-discrete-choice-experiment–with-

emphasis-on-its-application-in-health-care(07c6f140-e09c-11db-96

28-000ea68e967b).html. Accessed 7 Nov 2016.

38. Hauber AB, González JM, Groothuis-Oudshoorn CG, Prior T,

Marshall DA, Cunningham C, et al. Statistical methods for the

analysis of discrete choice experiments: a report of the ISPOR

Conjoint Analysis Good Research Practices Task Force. Value

Health. 2016;19:300–15.

39. Van Der Pol M, Currie G, Kromm S, Ryan M. Specification of

the utility function in discrete choice experiments. Value Health.

2014;17:297–301.

Weighting Evidence with Patient Preferences 269

http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf
http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf
http://eprints.lse.ac.uk/12761/1/Multi-criteria_Analysis.pdf
http://eprints.lse.ac.uk/12761/1/Multi-criteria_Analysis.pdf
http://findresearcher.sdu.dk/portal/da/publications/a-review-of-the-discrete-choice-experiment--with-emphasis-on-its-application-in-health-care(07c6f140-e09c-11db-9628-000ea68e967b).html
http://findresearcher.sdu.dk/portal/da/publications/a-review-of-the-discrete-choice-experiment--with-emphasis-on-its-application-in-health-care(07c6f140-e09c-11db-9628-000ea68e967b).html
http://findresearcher.sdu.dk/portal/da/publications/a-review-of-the-discrete-choice-experiment--with-emphasis-on-its-application-in-health-care(07c6f140-e09c-11db-9628-000ea68e967b).html
http://findresearcher.sdu.dk/portal/da/publications/a-review-of-the-discrete-choice-experiment--with-emphasis-on-its-application-in-health-care(07c6f140-e09c-11db-9628-000ea68e967b).html

	Weighing Clinical Evidence Using Patient Preferences: An Application of Probabilistic Multi-Criteria Decision Analysis
	Abstract
	Introduction
	A Proposed Multi-Criteria Decision Analysis (MCDA) Method for Capturing the Value of Treatments Under Uncertainty
	Building the Value Function and Defining Sources of Uncertainty
	Parameter Estimators
	Sampling Framework
	Model Outcomes
	An Illustration of the Proposed Approach on a Simplified HIV Case
	Identification of Treatment Alternatives and Decision Criteria
	Measuring Performance of the Alternatives
	Input for Criteria Weights: Results from a Previously Published Discrete Choice Experiment
	Aggregating Scores and Performance
	Handling Uncertainty: Scenario Analyses

	Examination and Discussion of Findings
	Outcomes of Case Study
	Implications of the Modeling Framework for Personalized Medicine

	Strengths, Weaknesses, and a Comparison to the Existing Literature
	Conclusion
	Open Access
	References




