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Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection (LRTI) in children, and 
is associated with long-term pulmonary sequelae for up to 30 years after infection. The mainstay of RSV management is 
supportive therapy such as supplemental oxygen. Palivizumab (Synagis™–AstraZeneca), a monoclonal antibody targeting 
the RSV F protein site II, has been licensed for the prevention of RSV in high-risk groups since 1998. There has been recent 
promising progress in preventative strategies that include vaccines and long-acting, high-potency monoclonal antibodies. 
Nirsevimab (Beyfortus™–AstraZeneca/Sanofi), a monoclonal antibody with an extended half-life, has recently been reg-
istered in the European Union and granted licensure by the US Food and Drug Administration. Furthermore, a pre-fusion 
sub-unit protein vaccine has been granted licensure for pregnant women, aimed at protecting their young infants, following 
established safety and efficacy in clinical trials (Abrysvo™–Pfizer). Also, multiple novel antiviral therapeutic options are in 
early phase clinical trials. The next few years have the potential to change the landscape of LRTI through improvements in 
the prevention and management of RSV LRTI. Here, we discuss these new approaches, current research, and clinical trials 
in novel therapeutics, monoclonal antibodies, and vaccines against RSV infection in infants and children.

1 Introduction

Lower respiratory tract infections (LRTIs) are the leading 
cause of death in children under 5 years outside the neonatal 
period, accounting for approximately 12% of global deaths 
in children [1, 2]. Most LRTIs in young children are caused 
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Key Points 

Respiratory syncytial virus (RSV) is the most common 
cause of respiratory tract infections in children.

There are currently only two medications licensed for 
the prevention of RSV infection in infants: palivizumab 
(Synagis™–AstraZeneca) and nirsevimab (Beyfortus™–
AstraZeneca/Sanofi).

Steady progress is being made with regard to new poten-
tial vaccine candidates targeting vaccination of pregnant 
woman and their infants, with the recent licensing of the 
first maternal vaccine against RSV (Abrysvo™–Pfizer).

by viruses (60%), of which respiratory syncytial virus (RSV) 
accounts for the largest portion (31%) [3–5]. RSV is a sin-
gle-stranded, negative-sense ribonucleic acid (RNA) virus, 
which is enveloped by a host plasma membrane-derived lipid 
bilayer. The ten-gene RSV genome encodes for 11 proteins, 
the two most important ones being transmembrane glyco-
proteins: attachment protein (G protein) and fusion protein 
(F protein) [6, 7]. The binding of RSV to the respiratory 
epithelial cell is enabled by the G protein [8–10], while the 
F protein mediates fusion between viral and cell membranes, 
thereby permitting viral penetration into the cell [11]. The 
F protein possesses two unique forms: before binding to the 
host cell, a stable pre-fusion conformation, and after bind-
ing, a highly stable post-fusion conformation [11, 12].

The range of infections caused by RSV extends across the 
whole spectrum of respiratory tract infections from asymp-
tomatic upper respiratory tract infection to severe LRTI, 
and death [13, 14]. The most serious common presenta-
tion of RSV infection is bronchiolitis and pneumonia [13]. 
Most children are infected with RSV during the first year 
of life, and virtually all have been infected at least once by 
2 years of age [15, 16]. RSV most commonly infects term 
infants, and the severity of the resulting disease is deter-
mined through the intensity of the initial infection, such as 
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the initial viral load, and the response of the host to the 
infection [17, 18]. Specific underlying medical conditions 
predispose the infant to an increased risk of severe disease; 
these include prematurity, congenital cardiac disease, and 
bronchopulmonary dysplasia (BPD) [18–23].

In 2019, there were approximately 33.0 million RSV-
associated acute LRTIs, 3.6 million RSV-associated acute 
LRTI hospital admissions, and 66,000–190,000 RSV-
attributable deaths in children aged less than 60 months. 
More than 95% of RSV-associated deaths occur in low- and 
middle-income countries (LMICs), and 50% of deaths occur 
in infants less than 6 months of age [24, 25]. RSV LRTI 
during infancy has been reported to lead to long-term pul-
monary sequelae, with multiple studies reporting an increase 
in recurrent wheezing episodes for at least the first decade 
after infection, and non-bronchodilator responsive obstruc-
tive lung disease [26–36].

The mechanism of transmission of RSV is droplet spread, 
either via airborne particles or contact with contaminated 
surfaces. Inoculation occurs through the nasopharyngeal 
mucosa or conjunctival membranes [37], with an incubation 
period of 3–5 days, followed by viral spread to the smaller 
airways [37–40], with subsequent destruction of the epi-
thelium and loss of ciliary motion, as well as indirect host 
immune response effects [41].

2  Immunology of RSV

An understanding of the immunology involved during an 
RSV infection is imperative in understanding the host’s 
response to an RSV infection, the mechanisms that RSV 
employ to evade the host’s immune system, and the poten-
tial targets for prevention and treatment of RSV infection.

Cytotoxic T cell immune responses are essential for the 
resolution of RSV infection. CD4+ T cells stimulate B 
cell antibody production, and CD8+ T cells are cytopathic 
to RSV-infected cells [42]. Acquisition of specific immu-
nological memory, including humoral immune responses, 
results in neutralizing antibodies and production of RSV-
specific cytotoxic T cells, resulting in a lower likelihood of 
severe disease following subsequent RSV infections [43].

Serum neutralizing antibodies against RSV are asso-
ciated with a reduced risk of RSV infection progress-
ing to LRTI. However, neutralizing antibodies acquired 
through natural RSV infection are generally transient [44, 
45]. Maternal acquired RSV antibodies, gained through 
transplacental and breastmilk transfer, confer some pro-
tection, with a lower risk of RSV during early infancy; 
however, this is also transient [46–48]. Transplacental 
antibody transfer is less efficient during the early stages 
of pregnancy, and this contributes greatly to the severity 

of infection experienced in prematurely born children [49, 
50].

RSV employs multiple mechanisms to decrease the 
effectiveness of the host’s immune response: NS1+NS2 
(non-structural proteins) inhibition of interferon responses 
[51], interference in the Toll-like receptor (TLR) signaling 
pathway through the binding of protein F to TLR 4 [52], 
and CX3CR1 (fractalkine) binding by secretory protein G 
binding, thereby altering chemotaxis, as well as acting as 
a decoy for antibody binding [8, 53].

Six main antigenic epitopes are found on the RSV F 
protein surface (Ø and I–V). Sites Ø, III, and V are only 
exposed during the pre-fusion F protein conformation, 
while I, II, and IV are exposed on both the pre- and post-
fusion F protein conformations [11, 12, 54]. The F pro-
tein is the main target for interventions such as vaccines 
and monoclonal antibodies. This is due to the number of 
exposed surface epitopes, its requirement for cell penetra-
tion, and the fact that it is highly genetically conserved. 
Epitopes II and IV are the main neutralizing epitopes, and 
whilst they do not prevent viral attachment to the affected 
cells, they effectively block fusion of the viral and host 
cellular membranes [54]. The G protein is a less efficient 
neutralization antigen than the F protein.

Treatment of RSV infection is largely symptomatic, 
with few specific treatment options available. Therefore, 
the management of RSV has focused mainly on prevention 
of the disease, through two approaches: passive and active 
immunization. The purpose of this review is to give an 
update on progress made in the prevention and treatment 
of RSV infection in children.

3  Passive Immunization

Passive immunization involves administration of antibod-
ies targeting a specific pathogen, and is used in instances 
where immediate protection is required or where timeous 
production of antibodies is not possible, such as in newborns 
and during early infancy. Prevention of RSV through pas-
sive immunization involves administration of polyclonal or 
monoclonal RSV-neutralizing antibodies (Table 1).

The first commercially available preparation was RSV 
immune globulin intravenous (RSV-IGIV) (RespiGam™) in 
1992. This preparation contained purified polyclonal anti-
bodies from donors with high-titer RSV neutralizing activ-
ity [55]. Administered monthly to at-risk children under 2 
years, RSV-IGIV resulted in a decreased risk of RSV LRTI, 
severe RSV LRTI, and RSV hospitalization and decreased 
the duration of RSV-associated intensive care unit (ICU) 
admission [56, 57]. RSV-IGIV did result in an increase in 
hypersensitivity reactions, but not more than was reported 
for standard intravenous immunoglobulin preparations [58].
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Palivizumab (Synagis™–AstraZeneca) is a human-
ized monoclonal antibody directed at RSV protein F site II 
epitope, and until recently, it was the only licensed treatment 
for the prevention of RSV LRTI [59]. In a randomized, dou-
ble-blind, placebo-controlled trial in high-income countries 
(HICs) (IMpact-RSV), children at high risk for severe RSV 
LRTI (prematurity or BPD) received either monthly pal-
ivizumab or placebo for 5 months [60]. Children receiving 
palivizumab with prematurity and no BPD had a 78% risk 
reduction for hospitalization, whilst a 39% risk reduction 
was shown for children with prematurity and BPD.

The high cost of palivizumab restricts its use, even in 
HICs such as the USA, where the cost runs to approximately 
$1700–12,500 per RSV season [61–63]. This has led to 
specific restrictive recommendations being applied even in 
those countries and regions where it is available, such as the 
USA, Europe, and Australasia [64–66].

The development of next-generation, single-dose, long-
acting monoclonal antibodies was facilitated through the ini-
tial introduction of a triple YTE mutation (M252Y/S254T/
T256E) into the  CH2 domain of the Fc portion of MEDI-524 
(IgG1), resulting in motavizumab (Numax™–MedImmune, 
Inc.) [67, 68]. This addition enhances Fc receptor binding, 
with a subsequent increase of up to four times the half-life, 
with this increase not being due to interactions with serum 
components, as well as an increase in serum levels, not due 
to alteration in distribution. Importantly, the YTE mutation 
resulted in no discernable structural changes to the IgG mol-
ecule, nor any functional impairment. Motavizumab pro-
vides 20 times higher in vitro neutralization activity, due to it 
having 70 times the affinity for the RSV F protein compared 
with palivizumab [69]. Motavizumab was non-inferior to 
palivizumab in a large, phase 3, randomized, double-blind 
study comparing outcomes in children born before 36 weeks 
gestation, either younger than 6 months or younger than 2 
years with chronic lungdisease. Motavizumab was associ-
ated with a relative risk reduction of 26% and 50% for RSV 
hospitalization and acute, medically attended (MA) LRTI 
(MALRTI), respectively [70]. However, due to an increase 
in cutaneous hypersensitivity reactions in recipients, motavi-
zumab was not granted licensure by the US Food and Drug 
Administration (FDA), and further development has been 
discontinued [71].

Suptavumab (Regeneron Pharmaceuticals, Inc.), a long-
acting monoclonal antibody with affinity for the F protein 
pre-fusion site IV epitope, was discontinued after failing 
to show protection against RSV-associated hospitalization 
or outpatient illness in a phase 3 efficacy trial in healthy 
preterm infants less than 6 months of age [72]. This failure 
was likely due to a novel genetic strain of RSV B harboring 
target epitope site mutations.

Nirsevimab (Beyfortus™–AstraZeneca/Sanofi), a recom-
binant human IgG1 monoclonal antibody that targets the 

highly conserved site Ø of the pre-fusion RSV F protein, can 
be administered as a single dose prior to the RSV season, 
intramuscularly [73]. Nirsevimab inhibits the fusion of the 
RSV and the respiratory epithelium, thereby inhibiting viral 
entry into the cell, and is equally effective against both RSV 
A and RSV B strains. In a phase 2b, randomized, placebo-
controlled trial in healthy premature infants (< 37 weeks 
gestation), a single dose of nirsevimab was reported to have 
a 70% and 78% vaccine efficacy (VE) against RSV MALRTI 
and RSV LRTI hospitalization [74]. Furthermore, in late 
preterm (> 34 weeks gestation) and term infants, the VE was 
74% and 62% against RSV LRTI and hospitalization for RSV 
LRTI, respectively, through to 180 days post-enrolment [75]. 
Nirsevimab also continued to confer protection through into 
the second RSV season, as indicated by a 43% lower risk 
of RSV MALRTI in the treatment group between 361 and 
511 days [76]. In a pooled analysis of the preterm and term 
infant data mentioned above, nirsevimab resulted in a 80% 
relative risk reduction for RSV MALRTI [77]. Nirsevimab 
was registered for use in the European Union and the United 
Kingdom in November 2022 and granted licensure by the 
US FDA in July 2023, and was recommended by the Centre 
for Disease Control and Prevention Advisory Committee on 
Immunization Practices and the American Academy of Pedi-
atrics in August 2023, providing the first additional option 
for the prevention of RSV LRTI in over 20 years. Possible 
side effects are the development of a rash and local effects at 
the site of the injection, as well as hypersensitivity reaction, 
whereas contra-indications include administering the drug 
to children that have any history of serious hypersensitivity 
reactions to the active ingredients in the preparation.

A further long-acting monoclonal antibody with affinity 
for epitope site IV of the RSV F protein, clesrovimab (Merck 
Sharp & Dohme), is being evaluated in a multicenter, ran-
domized, partially blinded, phase 3 trial, with estimated 
completion in April 2026, after a phase 2a study reported 
a VE of 74% for prevention of MALRTI in infants during 
the first 6 months of life. Safety and efficacy will also be 
compared relative to palivizumab in infants and children 
at increased risk of severe RSV disease (NCT04938830 + 
NCT04767373).

4  Active Immunization

The initial 1966 failure of a formalin inactivated whole virus 
RSV vaccine (FIRSV) resulted in a decades-long delay in 
RSV vaccine development [78]. Children receiving the vac-
cine were provided no protection and developed more severe 
disease following RSV infection in the following season, 
including two deaths and 80% hospitalization in cases, espe-
cially if sero-negative prior to vaccination.
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The unfavorable outcome of the vaccine was attributed 
to vaccine-associated enhanced disease (VAED) due to a 
T-helper cell 2 type dominant immune response and induc-
tion of non-neutralizing antibodies. Neutralizing antibodies 
are the desired effect of vaccines against viral pathogens 
[79]. They bind to receptor binding domains of viruses and 
inhibit viral attachment, entry, and fusion with the host cell. 
They furthermore induce the formation of immune com-
plexes, which triggers further enhancement of the immune 
response. An abnormal accumulation of these immune com-
plexes may cause overstimulation of the immune response, 
and eventual VAED [79, 80].

There are numerous RSV vaccine candidates in various 
developmental stages, targeting different groups, includ-
ing infants, pregnant women, and the elderly (see Table 2 
and Supplementary Table 1 in the electronic supplemen-
tary material). The aim of maternal vaccination, with the 
subsequent maternal–fetal antibody transfer, is to prevent 
RSV LRTI in young infants, when 50% of RSV-associated 
hospitalizations and deaths occur [81–83]. The effective-
ness of vaccinating pregnant woman as a strategy to prevent 
respiratory infections during infancy has been illustrated 
by the administration of inactivated influenza vaccine (IIV) 
and acellular pertussis vaccine to pregnant women [84, 85]. 
Infants born to women vaccinated with IIV were less likely 
to become infected with influenza during the first 6 months 
of life (VE 29%) and were 43% less likely to be hospitalized 
for all-cause pneumonia during the first 3 months of life [86, 
87], while maternal acellular pertussis vaccination protected 
children for the age period of greatest mortality caused by 
pertussis, namely the first 2 months of life.

Numerous RSV vaccine candidates are currently being 
investigated [81]. For an updated snapshot, visit PATH at 
https:// www. path. org/ resou rces/ rsv- vacci ne- and- mab- snaps 
hot/. Different mechanisms for stimulating the host immune 
response to provide a future protective response against RSV 
are being examined. These include live attenuated virus 
vaccines (LAV), chimeric vaccines, protein-based vaccines 
(sub-unit or particle, including nanoparticles), nucleic acid 
vaccines (NAV), and recombinant vector-based vaccines.

LAV contain live replicating pathogens with reduced vir-
ulence that elicit either a robust cellular of humoral immu-
nerespone, which in the past have been either too reactogenic 
or not reactogenic enough, highlighting the difficulties for 
this type of vaccine [88]. The intranasal route of LAV admin-
istration results in stronger mucosal immunity than systemic 
administered vaccines. Current RSV LAV include pathogens 
attenuated through reverse genetic engineering with deletion 
of proteins that regulate viral synthesis or responses [89]. 
Most LAV candidates are still undergoing phase 1 or phase 
2 trials [90], including VAD00001 (SP0125), undergoing a 
safety, immunogenicity, and dosing, randomized, placebo-
controlled trial in children 6–18 months.Ta
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Chimeric vaccines are hybrid organisms comprising 
selected attenuated viruses with genetic material from the 
organism of interest. There are three candidates currently in 
phase 1 trials: parainfluenza 5 virus/RSV chimera, Bacillus 
Calmette-Guerin expressing RSV N gene, and Sendai virus/
RSV protein F [90].

Protein-based vaccines can be particle or sub-unit based 
and elicit a robust humoral and cellular immune response. 
They contain nanoscopic particles that mimic selected anti-
gens on the viral surface. The F protein, both pre-fusion 
and post-fusion conformations, has been the main antigenic 
protein utilized, but G protein, small hydrophobic protein, 
matrix protein, and nucleocapsid (N) protein have also been 
investigated. There are two maternal F protein vaccines 
currently in phase 3 trials, with the Abrysvo™ (Pfizer), 
becoming the first maternal vaccine receiving FDA approval 
(Table 2). The F protein vaccine, albeit in early phase tri-
als, is also being evaluated in the pediatric population, and 
two F protein vaccines in adults older than 65 years of age 
have recently become the first RSV vaccines to be licensed 
[91, 92].

In a phase 3, randomized, observer-blind, placebo-
controlled trial, a pre-fusion RSV F nanoparticle vaccine 
(Novavax) administered to healthy pregnant women between 
28 and 36 weeks gestational age did not meet predetermined 
efficacy targets [83]. A single dose of vaccine was associated 
with a 39% reduction of the primary endpoint of RSV-asso-
ciated MALRTI in the first 3 months of life in the infants, 
with a VE of 40.5% in LMICs compared to 37% in HICs.

A further phase 3, randomized, double-blind, pla-
cebo-controlled study, evaluating the VE of a single 
dose of intramuscular pre-fusion RSV F protein vaccine 
(RSVPreF3–GlaxoSmithKline) administered to pregnant 
women 18–49 years of age for protecting against RSV-
associated LRTIs in their infants (NCT04605159), was 
voluntarily halted pending safety data analysis, due to an 
excess of premature deliveries and associated higher infant 
mortality rate in the vaccine arm [93]. Safety data presented 
recently (unpublished data) reported that RSVPreF3-Mat 
had an acceptable reactogenicity profile in maternal partici-
pants and that no imbalances were observed in pregnancy 
outcomes between groups, including fetal deaths. Preterm 
births were considered an identified risk for pregnant women 
following RSVPreF3-Mat vaccination, which led to the dis-
continuation of RSVPreF3-Mat development.

A phase 2, observer-blind, placebo-controlled trial of an 
RSV pre-fusion maternal vaccine administered to 213 preg-
nant women 18–40 years old during the second or third tri-
mester found the vaccine to be well tolerated, with success-
ful induction and transfer of maternal neutralizing antibodies 
against both RSV A + B to the newborn (NCT04126213) 
[94]. A further phase 2b trial, evaluating the efficacy of a 
bivalent maternal RSV A and RSV B stabilized pre-fusion 

protein vaccine administered to women between 24 and 36 
weeks gestational age, reported robust neutralizing antibody 
responses in the pregnant women, with highly efficient trans-
placental antibody transfer to the newborn (NCT04032093). 
Neutralizing antibodies in the infant persisted above the pro-
tective threshold against RSV LRTI through to 180 days of 
age. The MATISSE trial (NCT04424316) further reported 
a VE against severe RSV MALRTI during the first 90 days 
of life at 81.8% (99.5% confidence interval [CI] 40.6–96.3) 
and 69.4% (97.58% CI 44.3–84.1) through to 180 days of life 
[95, 96]. These results led the US FDA to grant licensure in 
August 2023, the first vaccine licensed for maternal vaccina-
tion (Abrysvo™–Pfizer). Although, after sub-group analy-
sis of live birth outcomes by country income status, there 
was no difference between HICs and LMICs with regard to 
increase in incidence of preterm birth, an increase in preterm 
births was noted in vaccine recipients (8.3%) compared with 
placebo recipients (4.0%) in South Africa (upper middle-
income country) [97].

NAV such as messenger RNA (mRNA) vaccines were 
successfully utilized for coronavirus disease 2019 (COVID-
19) vaccines [98]. Laboratory-based, pre-fabricated mRNA 
is utilized to stimulate the recipient’s cellular nucleus 
to encode for the production of a protein or part thereof 
[99]. This stimulates the host immune system to produce 
specific antibodies. An mRNA-1345 vaccine (Moderna), 
which encodes stabilized RSV pre-fusion protein, is being 
evaluated in women of child-bearing age (18–40 years) and 
RSV sero-positive children aged 12–59 months, with results 
expected by September 2023 (NCT04528719).

Replicating or non-replicating viruses with extra genetic 
material from a pathogen of interest make up recombi-
nant vector vaccines, with this engineered genetic material 
delivered to the recipient, eliciting an immune response. An 
adenovirus vector vaccine, Ad26.RSV.pre-F, is currently 
undergoing a phase 2 trial in RSV sero-positive toddlers, 
evaluating its safety, tolerability, and immunogenicity. 
Enrolment has been completed.

5  Treatment of RSV infection

The management of RSV LRTI is mainly supportive, with 
oxygen therapy and nutritional support. Nebulized hyper-
tonic saline,  beta2-agonists, nebulized adrenalin, nebulized 
ipratropium bromide, montelukast, and corticosteroids have 
been shown to be largely ineffective and are not recom-
mended [100–111].

The development of a satisfactory antiviral medication 
against RSV infection remains elusive; however, steady 
progress is being made, with many potential candidate mol-
ecules undergoing clinical trials. One of the difficulties of 
RSV treatment is that medications need to be administered 
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very early in the disease process, due to the RSV inoculation 
time being 3–5 days and severe disease generally developing 
within 4 days of symptom onset, a very small window of 
opportunity. There are no biomarkers available to indicate 
which children might develop severe disease, and the major-
ity will not develop severe disease, thereby not necessitating 
treatment.

The most researched antiviral drug targeting RSV is 
ribavirin, a broad-spectrum antiviral guanosine analog that 
inhibits the inosine monophosphate dehydrogenase enzyme, 
leading to decreased levels of guanosine triphosphate, which 
is needed by RSV for replication [112, 113]. Although riba-
virin is available in both oral and intravenous preparations, 
its use has been hampered by its high cost, poor tolerabil-
ity, and many reported side effects. In a recent systematic 
review, no difference in mortality rate was shown between 
individuals treated for RSV LRTI with ribavirin and those 
receiving supportive care, except for a lower mortality in 
individuals with hematological disease [114]. Furthermore, 
studies comparing oral and aerosolized preparations in adult 
recipients of hematopoietic cell and lung transplants have 
shown similar outcomes and safety profiles [112, 115–117].

Novel drug therapies being investigated include an F pro-
tein binding nanobody (ALX-0171 [Gontivimab–Ablynx], 
fusion inhibitors (GS-5806 [presatovir–Gilead Sciences], JNJ-
53718678 [rilematovir–Janssen Pharmaceutical], BTA-C585 
[enzaplatovir–Aviragen Therapeutics], and AK-0529 [zireso-
vir–Ark Biopharmaceutical]), a non-fusion N protein inhibitor 
(EDP-938 [Mavyret–Enanta Pharmaceuticals]), and an RSV 
polymerase inhibitor (ALS-008176 [lumicitabine–Alios BioP-
harma/Janssen Pharmaceuticals]) [118–122].

ALX-0171 is a trimeric nanobody that binds the F protein 
epitope site II [123]. Nanobodies are the smallest available 
heavy-chain portion of an immunoglobulin that retains its 
function and lends itself to aerosol delivery [124]. However, 
in a double-blind, placebo-controlled, phase 2b trial evaluat-
ing the safety and antiviral properties of nebulized ALX-0171 
in 175 children hospitalized with RSV LRTI, no difference in 
clinical outcomes, time to clinical response, or global severity 
score was shown [125].

Fusion inhibitors inhibit the fusion of RSV F protein with 
the cells of the respiratory tract and act on a late-stage fusion 
intermediate during the process of the RSV F protein confor-
mational change [126]. In a phase 2b, double-blind, placebo-
controlled, adult RSV, challenge study, presatovir reduced 
viral load and severity of the clinical illness in 54 cases [119]. 
However, in another phase 2b, double-blind, placebo-con-
trolled trial, in 60 hematopoietic cell transplant recipients with 
RSV LRTI, presatovir did not improve virological or clinical 
outcomes [119, 127]. JNJ-53718678 was well tolerated and 
exhibited antiviral activity in a phase 1b trial in children 1–24 
months of age, and caused a reduction in viral load and clini-
cal disease severity in healthy adults in a challenge study [121, 

128]. Further studies examining the efficacy of this compound 
will be forthcoming. Enzaplatovir is undergoing a phase 2a, 
double-blind, placebo-controlled, challenge study in healthy 
adult volunteers, evaluating its safety and antiviral activity 
(NCT02718937). In a phase 2 trial, AK-0529 was reported to 
be safe and to reduce the viral load in children (1–24 months) 
infected with RSV, and a phase 3, randomized, double-blind, 
placebo-controlled trial in infants hospitalized with RSV infec-
tion is underway (NCT04231968).

In a phase 2, randomized, double-blind, placebo-con-
trolled, challenge study in 62 healthy adult volunteers, the 
polymerase inhibitor ALS-008176, which selectively inhib-
its RSV RNA polymerase activity, resulted in a decreased 
viral load and an improvement of clinical disease severity 
in the treatment group [120]. However, a further phase 2 
trial evaluating the antiviral activity and clinical outcomes 
in hospitalized infants and children showed an increase in 
reversible neutropenia and no antiviral activity [129].

6  Conclusion

RSV is the most common cause of LRTI in children, and has 
been associated with long-term pulmonary sequelae after 
infection, but despite this, treatment and preventative options 
have remained very limited. Recent successes, such as the 
licensure of nirsevimab as a preventative monoclonal anti-
body treatment for infants and the approval of two vaccines 
targeting RSV in the elderly and one in pregnant women, has 
led to renewed hope, with multiple other vaccine candidates 
also under examination. It remains only a question of time 
until the RSV landscape changes forever.
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