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Abstract
Large-scale vaccination strategies are currently being deployed against severe acute respiratory syndrome coronavirus-2 
(SARS-Cov-2). Whether systemic medication for skin diseases affects the efficacy of vaccination and whether temporary 
interruption or extension of the dosing interval is necessary is under debate. Most immunomodulating/immunosuppressive 
drugs only affect vaccine-induced immune responses to a limited or moderate extent, preserving sufficient immunity in most 
patients. Mycophenolate mofetil, Janus kinase inhibitors, and rituximab require a more cautious approach, and judicious tim-
ing of vaccination might be appropriate in patients receiving these treatments. It should be noted that, for most drugs except 
methotrexate, data on the length of the interruption period to restore vaccine-induced immune responses to normal levels 
are either very limited or absent. In these cases, only the drug half-life can be used as a practical guideline. In most patients, 
systemic medication can be continued through the vaccination process, although case-by-case decisions can be considered.

Key Points 

For most patients receiving immune-based treatments 
for inflammatory skin disorders, the therapy can be 
continued without affecting protective vaccine-induced 
immunity.

For some drugs, temporary treatment interruption or 
administration of the vaccine at the optimal period 
according to the pharmacokinetics of the drug and the 
individual level of disease control can be considered.

1 Introduction

In recent decades, the number of systemic medications avail-
able for skin disorders has increased. Given the inflamma-
tory nature of most dermatologic disorders, the majority of 
treatments act by influencing different parts of the immune 
system. Despite initial concerns, most systemic treatments 
in dermatology appear to carry a limited risk for severe coro-
navirus disease 2019 (COVID-19) infections. Some medica-
tions have even been proposed as useful in the treatment of 
the cytokine storm associated with COVID-19. Cyclosporine 
inhibits replication of different coronaviruses in vitro [1]. 
Data do not suggest an increased susceptibility to infection 
or severe disease course in patients treated with biologics 
[2]. Interestingly, epidermal cells express the angiotensin-
converting enzyme receptor (ACE)-2, which acts as an entry 
receptor for SARS-CoV-2, indicating that the skin could be 
an entry site for SARS-CoV-2 infection in case of barrier 
dysfunction. As such, appropriate treatment of skin diseases 
with impaired integrity of the skin such as eczema may be 
protective [3].

While some systemic drugs in dermatology are termed 
immunomodulatory and others immunosuppressive, the 
question remains as to whether the response to severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccina-
tion will be hampered by these treatments. This is a valuable 
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question, as the benefits of temporary interruption of the 
treatment may outweigh the risks, given that long-lasting 
irreversible damage is not expected for the most common 
skin diseases such as psoriasis, eczema, or urticaria. In this 
paper, we summarize the evidence of the effects of systemic 
immune-based interventions for skin disorders on vaccine 
responses and discuss the implications for SARS-CoV-2 
vaccination.

2  Types of COVID Vaccines and Assessment 
of Efficacy

SARS-CoV-2 is a member of the betacoronavirus genus, a 
family of RNA viruses that induce respiratory tract infec-
tions. It is the seventh type that can infect humans and the 
third (besides severe acute respiratory syndrome and the 
Middle East respiratory syndrome) to be associated with 
severe disease. Although controversy remains about its ori-
gin, the approximately 96% sequence homology with the 
RaTG13 virus found in bats suggests a plausible site of ori-
gin in zoonotic transmission [4]. SARS-CoV-2 is composed 
of four main structural proteins: the spike (S) glycoprotein, a 
small envelope glycoprotein, a membrane glycoprotein, and 
a nucleocapsid protein, with several additional accessory 
proteins [5]. The S protein binds to the ACE2 receptor on 

the host cell via the S1 subunit. After a cleavage process, the 
S2 subunit inserts into the host membrane [6].

Different strategies are being used to develop vaccines 
against SARS-CoV-2: RNA and DNA vaccines, replicating 
and nonreplicating viral vectors, inactivated vaccines, live 
attenuated vaccines, protein subunit vaccines, and virus-like 
particle vaccines.

RNA vaccines are a new approach to the vaccine arsenal 
(Fig. 1). Via intramuscular injection of RNA encapsulated 
in lipid nanoparticles to improve cell delivery, host cells 
encode proteins that induce a B- and T-cell response. The 
BioNTech SE/Pfizer vaccine contains the messenger RNA 
(mRNA) for the S glycoprotein. Similarly, the Moderna vac-
cine also contains mRNA encoding for the S protein in the 
stabilized prefusion form [6].

Self-amplifying RNA vaccines are genetically engineered 
amplicons that contain the mRNA coding for the desired 
antigen plus mRNA encoding an RNA-dependent RNA pol-
ymerase complex that amplifies synthetic transcripts in situ 
[7]. One such vaccine by the Imperial College London is 
currently in phase I of clinical development [8].

The replicating vectors are based on attenuated viruses or 
specialized strains of viruses developed for vaccination pur-
poses. These vectors harbor a gene that encodes for a viral 
protein, which is most frequently the S protein. Replicating 
vectors will invade host cells, which will lead to the pro-
duction of the viral antigen and generation of more vectors. 

Fig. 1  Working mechanism of mRNA-based vaccines for SARS-
CoV-2 and the main pathways where immunosuppressive/immu-
nomodulating treatments interact. CD cluster of differentiation, 
CYCLO cyclosporin, IL-17i interleukin-17-inhibitors or receptor 

blockers, IL-23i interleukin-23 inhibitors, JAKi JAK inhibitors, MMF 
mycophenolate mofetil, mRNA messenger RNA, MTX methotrexate, 
RITU rituximab, SARS-CoV-2 severe acute respiratory syndrome cor-
onavirus-2, Th17 Type 17 T-helper cell



343What Can We Learn for SARS-Cov-2 Vaccination Strategies?

These will subsequently infect additional cells and amplify 
the amount of viral antigen, leading to a robust humoral and 
cellular response. Both replicating and nonreplicating viral 
vectors are in development, and some have already been 
approved. The AstraZeneca/University of Oxford and Rus-
sian Sputnik V vaccines are based on nonreplicating viral 
vectors. The Janssen Pharmaceuticals vaccine uses a recom-
binant adenovirus. For all these vaccines, the SARS-CoV-2 
spike gene is inserted into the vector.

Inactivated vaccines are made by inoculation of (in most 
cases) mammalian Vero cells, followed by chemical inac-
tivation. Live attenuated vaccines have previously been 
shown to be an effective approach for numerous infections, 
including measles, mumps, rubella, varicella, tuberculosis, 
yellow fever, and influenza. The route of administration is 
important, as intramuscular injections only elicit a strong 
immunoglobulin (Ig)-G humoral immunity without leading 
to an increased IgA production in the respiratory tract or 
mucosal surfaces [9]. Intranasal delivery offers particular 
protection of the entry point of SARS-CoV-2, the upper res-
piratory tract. Protein subunit vaccines are the most popu-
lar approach in terms of developed vaccines. In contrast to 
RNA-based vaccines, which require the host cells to produce 
the antigen, protein subunit vaccines consist of synthetic 
peptides or recombinant proteins. The most obvious choice 
is again the S protein, as the induction of neutralizing anti-
bodies is likely to prevent infection. Virus-like particles are 
another strategy and involve the administration of nonrepli-
cating, noninfectious nanostructures that expose crucial viral 
proteins. Finally, DNA vaccines use plasmids encoding for 
the S protein. Although these types of vaccines are used 
in animals, the theoretical possibility of the DNA plasmid 
integrating into the host genome raises some concerns [10].

The primary goal of efficient vaccination is to induce a 
neutralizing humoral response preventing the virus from 
invading host cells. IgG antibodies are considered the most 
important, especially the IgG1 and IgG3 classes, as they 
offer the most protection. Nonetheless, as mucosal surfaces 
and both epithelial and endothelial cells in the respiratory 
tract are identified as cellular targets, the generation of 
sufficient IgA antibodies may also represent an important 
protective barrier. Serum IgA dominates the early neutral-
izing antibody response to SARS-Cov-2, and dimeric IgA, 
the primary form of antibody in the nasopharynx and other 
mucosae, is on average 15 times more potent. Intramuscu-
lar administration of vaccines is unlikely to elicit significant 
divalent IgA response in the mucosae, as opposed to intra-
nasal administration, which can result in both IgA and IgG 
responses such as intended for the attenuated COVI-VAC 
vaccine (NCT04619628) [11–13].

To produce a robust antibody response, both B cells 
and cluster of differentiation (CD)-4+ T-helper cells must 
be stimulated.  CD8+ cytotoxic T cells are less essential 

for prevention but crucial to attack virally infected cells. 
To create a  CD8+-specific immunity, the antigen should be 
presented via human leukocyte antigen molecules by anti-
gen-presenting cells and/or infected cells. In general, vacci-
nation strategies induce a modest long-term T-cell response, 
especially when compared with vaccine-induced humoral 
immunity. For preventive purposes, this might be acceptable 
as  CD8+ lymphocytes play their primary role after the host 
cells are infected [10].

3  Efficacy of Vaccinations during Systemic 
Treatment

3.1  Methotrexate

Methotrexate is an antimetabolite and antifolate drug that 
is used in many autoimmune skin disorders because of its 
anti-inflammatory effects (including inhibition of T-cell 
proliferation). Substantial evidence shows that methotrex-
ate decreases the efficacy of vaccination. Vaccine responses 
(e.g., at least fourfold increase in antibody titer after vaccina-
tion compared with baseline) to influenza are decreased by 
15–20% [14, 15]. Stopping methotrexate 2 weeks before and 
2 weeks after or for 4 weeks postvaccination largely reverses 
this phenomenon [15]. Another study found no difference 
regardless of the timing of the last dose of methotrexate if 
patients stopped methotrexate for 2 weeks after vaccination. 
This short stop period was sufficient to restore the humoral 
immunity despite the slow working mechanism of this drug 
in many inflammatory diseases [14]. Stopping treatment for 
longer periods (e.g., 4 weeks) induces the risk of disease 
flares [15].

3.2  Cyclosporine

The calcineurin inhibitor cyclosporine decreases T- and 
B-cell proliferation by reducing interleukin (IL)-2 produc-
tion. This conventional immunosuppressant diminishes 
antibody titers after vaccination. Studies have mainly been 
conducted in transplant patients and have revealed decreased 
immunologic responses after vaccination for influenza, teta-
nus, and hepatitis B [16, 17]. In most studies, the adminis-
tration of cyclosporine seems to be not associated with a 
reduced immune response to influenza vaccination compared 
with other immunosuppressants [18]. Nonetheless, in lung 
transplant patients, antibody responses were borderline sig-
nificantly decreased in the cyclosporine versus the tacroli-
mus group [19]. In renal transplant patients, cyclosporine 
was associated with impaired immune responses to influenza 
vaccination, in contrast to azathioprine [17]. Cyclosporine 
has a relatively short half-life of 18 h. No data are available 
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on how long cyclosporine needs to be stopped for optimal 
responses to vaccination.

3.3  Mycophenolate Mofetil

By selectively inhibiting inosine 5ʹ-monophosphate dehy-
drogenase, a crucial enzyme in purine synthesis, mycophe-
nolate mofetil (MMF) decreases lymphocyte proliferation. 
MMF is one of the strongest inhibitors of postvaccination 
humoral immunity. This may not be surprising, as MMF is 
particularly useful in blistering skin disorders as it reduces 
pathogenic antibody formation. Significantly reduced anti-
body titers were confirmed in patients receiving MMF after 
pneumococcus and influenza vaccination [18, 20]. MMF has 
a half-life of 15.7–17.9 h [21]. No trials have investigated 
how long MMF should be discontinued to prevent a damp-
ened vaccine immunity.

3.4  Corticosteroids

Data in elderly patients receiving corticosteroids confirmed 
sufficient serum antibody responses following influenza vac-
cination [22, 23] Also, children who took prednisone for an 
acute asthma exacerbation were able to mount a humoral 
response similar to that in healthy controls [24]. Likewise, 
nephrotic children on high-dose prednisone had an antibody 
response comparable to that in controls [25]. In contrast, a 
study in asthma revealed an attenuated response to influenza 
B antigen in subjects on high-dose inhaled steroids [26]. 
Varicella zoster vaccination was also successful in patients 
on chronic/maintenance corticosteroids [27].

3.5  Dimethyl Fumarate

Fumaric acid esters are used for moderate to severe psoria-
sis and decrease lymphocyte counts, although its working 
mechanism has not been fully elucidated. Findings for dime-
thyl fumarate are reassuring: most patients receiving dime-
thyl fumarate mount responses against tetanus-diphtheria 
toxoid, pneumococcal, and meningococcal vaccine [28].

3.6  Apremilast

Apremilast, a selective phosphodiesterase-4 inhibitor, 
reduces the production of proinflammatory cytokines and 
is registered for psoriasis. No data are available on this drug 
following vaccination. Given the limited immunosuppressive 
properties of apremilast, vaccination is likely to be effective 
and no different than in the general population. Apremilast 
does not affect B-/T-cell proliferation or the production of 
immunoglobulins [29].

3.7  Azathioprine

Azathioprine has immunosuppressive effects as it inhibits 
purine metabolism, resulting in decreased lymphocyte prolif-
eration. Anti-hepatitis b surface antigen (anti-Hbs) titers were 
decreased in patients with inflammatory bowel disease receiv-
ing azathioprine (anti-HBs > 10 UI/L: 55% in the azathioprine 
group vs. 88% in controls) [30]. One study found that azathio-
prine did not affect the response to pneumococcal vaccination 
[31], whereas another detected an impaired antibody response 
for one of the 12 serotypes after pneumococcal polysaccharide 
vaccine-23 (PPSV-23) compared with controls [32]. Anti-influ-
enza vaccination evoked antibody responses similar to those 
in healthy controls in kidney transplant recipients and patients 
with inflammatory bowel disease on azathioprine. Most find-
ings suggest that azathioprine has a better vaccine-induced 
immunity profile than MMF and cyclosporine [17, 33].

3.8  Janus Kinase Inhibitors

Janus kinase (JAK) blockers reduce different cytokines and 
signaling of growth factor receptors depending on the type 
of JAK inhibition (JAK1, JAK2, JAK3, or tyrosine kinase-2). 
The JAK1/3 inhibitor tofacitinib has major effects on naïve 
B-lymphocyte development. This suggests a lost ability to 
raise immunologic protection against novel antigens [34]. 
Diminished responsiveness to PPSV-23 (tofacitinib: 45.1% 
vs. healthy controls: 68.4%) was found, especially in patients 
concomitantly receiving methotrexate. In contrast, results for 
influenza were reassuring. Temporary drug interruption for 
2 weeks (1 week before and 1 week after vaccination) did 
not restore the vaccine’s effectiveness [34]. Nonetheless, most 
patients with psoriasis treated with tofacitinib mounted ade-
quate immunity against pneumococcal infection (after pneu-
mococcal conjugate vaccine-13) and tetanus [35]. PCV-13 
vaccination was successful in 68% of patients with rheumatoid 
arthritis treated with the JAK1/2 inhibitor baricitinib, whereas 
only 43% achieved an at least fourfold increase in antiteta-
nus IgG concentrations. However, most patients in this study 
were also taking methotrexate (89%) and/or corticosteroids 
(30%) [36]. Similar results were found for the JAK1 inhibitor 
upadacitinib, with a satisfactory humoral response (at least 
twofold increase in antibody levels compared with baseline) 
to PCV-13 at 12 weeks in 65% and 55% of patients for 15 mg 
and 30 mg upadacitinib, respectively [37]. No data were found 
for the JAK1/2 inhibitor ruxolitinib.

3.9  Biologics

3.9.1  Tumor Necrosis Factor‑α Blockers

Tumor necrosis factor (TNF)-α blockers seem to modestly 
impair the serological response to influenza vaccination 
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in patients with spondyloarthritis (anti-TNFα: 51.6% vs. 
healthy controls: 74.3%; P = 0.002) [38]. In patients with 
rheumatoid arthritis, one study mentioned that this effect was 
more pronounced than with methotrexate [39]. In contrast, 
another report showed the opposite, with normal responses 
in anti-TNFα-treated patients and decreased results in meth-
otrexate-treated patients [40]. There is an overall consen-
sus that immune responses are lesser in patients receiving 
anti-TNFα treatment after influenza vaccination, although 
enough protective immunity is usually reached. The half-
life of anti-TNFα agents is relatively long (e.g., 14 days for 
adalimumab, 20 days for certolizumab pegol) but shorter 
for etanercept (4 days). Except for etanercept, which can be 
interrupted without marked reduction in efficacy after restart 
and is quickly eliminated from the circulation, interruption 
of TNFα-specific biologics for vaccination is more challeng-
ing. Longer injection intervals and start/stop strategies might 
lead to increased antidrug antibodies and reduced long-term 
efficacy [41]. Moreover, it is unclear which critical threshold 
of dosing is required to level the vaccination responses to 
those in healthy controls.
3.9.2  Interleukin (IL)‑17 Inhibitors and IL‑17 Receptor 

Blocker

Secukinumab does not affect the humoral response to influ-
enza or meningococcal vaccine [42–44]. Similar reassuring 
data have been reported for tetanus and pneumococcal vac-
cination for ixekizumab [45]. Secukinumab has a half-life 
of 27 days, ixekizumab 13 days, brodalumab 10.9 days, and 
bimekizumab 17–26 days [46–49]. No reports have been 
published on brodalumab and bimekizumab.

3.9.3  IL‑23 Inhibitors

The IL-12/-23 inhibitor ustekinumab does not impair the 
immunogenicity of influenza, pneumococcus, and tetanus 
vaccination [50, 51]. No data have been published regard-
ing guselkumab, risankizumab, or tildrakizumab, although 
similar results are to be expected. Ustekinumab has a half-
life of 20–39 days, guselkumab 12–19 days, risankizumab 
28 days, and tildrakizumab 23 days [52–55].

3.9.4  Dupilumab

The IL-4/-13 inhibitor dupilumab did not affect immunity 
in patients with eczema after tetanus and meningococcal 
vaccines [56]. Interestingly, transient inhibition of IL-4 and 
IL-13 using the decoy receptor IL-13Rα2 is being explored 
as a vaccine strategy to enhance mucosal and systemic 
immunity. IL-4 and IL-13 negatively modulate  CD8+ T-cell 
avidity [57].

3.9.5  Omalizumab

No data are available on the anti-IgE antibody omalizumab. 
Reduced efficacy of vaccination is not expected as IgE anti-
bodies play no role in developing protective vaccine-induced 
humoral responses.

3.9.6  Rituximab

As rituximab specifically targets  CD20+ B cells, it may 
inhibit protective vaccine-induced immunity. CD20 is not 
expressed on early precursor pro-B cells and long-lived 
plasma cells. Therefore, preexisting antibody titers are 
largely unaffected. Vaccination responses and the formation 
of neutralizing antibodies are expected to be blunted until 
naïve B cells reappear [58]. Decreased levels of seroconver-
sion and reduced titers to pneumococcal, tetanus, and influ-
enza vaccines have been confirmed. The response partially 
recuperates but is still impaired 6–10 months after infusion 
[59]. Inactivated herpes zoster vaccine can induce a T-cell 
response [60]. This might be important for vaccination as 
 CD8+ T-cell responses have been confirmed to be crucial for 
protective immunity against SARS-CoV-2 [61, 62].

4  Discussion

Several systemic treatments for skin disorders have been 
linked to reduced vaccine-induced protective immunity. 
Given the reversible damage caused by most inflammatory 
skin diseases, a temporary interruption might be considered 
for some patients in the context of SARS-CoV-2 vaccina-
tion (Table 1). Especially in patients with adequate disease 
control, holding treatment for a limited time period causes 
limited harm. The most data are available for methotrexate, 
where clinical studies have shown that a 2-week interruption 
after influenza vaccination is sufficient to reverse vaccine-
induced immunity to normal levels.

Data for other drugs such as cyclosporine and corti-
costeroids are more limited, although their short half-life 
suggests that a similar strategy might work. Nonetheless, 
most patients receiving corticosteroids or cyclosporine are 
able to develop sufficient responses without discontinua-
tion. MMF severely affects antibody formation, and tempo-
rary treatment adaptation might be considered if possible, 
although no strong evidence for the correct timing before 
or after vaccination is available. For TNF blockers (exclud-
ing etanercept), the moderately reduced efficacy of vacci-
nation might not outweigh the risk of reduced long-term 
efficacy because of the small increased risk for the devel-
opment of antidrug antibodies. The available data indicate 
that vaccine-induced immunity is not decreased in patients 
receiving IL-17 or IL-23 inhibitors. A largely uninvestigated 
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Table 1  Efficacy and practical information for systemic medication regarding SARS-Cov-2 vaccination for skin disorders

COVID coronavirus disease 2019, d days, IgA immunoglobulin A, IL interleukin, JAK Janus kinase, NR not relevant (the drug does not decrease 
the efficacy of vaccination), RWE real-world evidence, TNF tumor necrosis factor
a The drug half-life of rituximab does not represent the duration of its immunologic effect

Drug Half-life 94% elimination 
(4 × half-life)

Reduced efficacy 
of vaccination

What can we say to our patients?

Methotrexate 3–15 h 12–60 h Mild–moderate Vaccine-induced immunity is decreased but expected to be sufficient in most 
patients [14, 15]

Stopping treatment for 2 weeks after vaccination has successfully increased the 
efficacy of influenza vaccination [14]

Cyclosporine 18 h 72 h Mild–moderate Vaccine-induced immunity is decreased but expected to be sufficient in most 
patients [16–18]

Cyclosporine has a short half-life. Temporary interruption (e.g., stop 3 days 
before vaccination and ≥2 weeks after vaccination) might increase the effi-
cacy of vaccination, but RWE is lacking

Mycophenolate mofetil 15–18 h 60–72 h Moderate–severe Decreased antibody titers after vaccination are likely [18, 20]
Temporary interruption (e.g., stop 3 days before vaccination and ≥ 2 weeks 

after vaccination) might increase the efficacy of vaccination, but RWE is 
lacking

Corticosteroids 2–4 h 8–16 h Mild Vaccination responses are adequate in most patients [22–24]
Dimethyl fumarate 1 h 4h No–mild Vaccination responses are adequate in most patients [28]
Apremilast 6–9 h 24–36h Unknown No data are available, but normal responses are expected
Azathioprine 3–5 h 12–20h Mild Vaccination responses are adequate in most patients [17, 32, 33]
JAK inhibitors
(tofacitinib; baricitinib)

3 h; 12.5 h 12h; 50h Severe Diminished responses have been reported, but most patients can still mount 
sufficient immunity [34–37]

A 2-week interruption (1 week before and 1 week after vaccination) seems inef-
fective for reversing the decreased vaccine responses [34]. Therefore, a mini-
mum treatment-free period of ≥2 weeks after vaccination could be necessary 
for optimal antiviral immunity. However, this is not substantiated by RWE

TNF-α blockers 4–20 d 16–80d Mild–moderate Modestly impaired immunity after vaccination [38–41]
Longer intervals and starting/stopping can cause reduced long-term efficacy, 

except for etanercept, which also has a short half-life
Administration of vaccine midcycle or 2 weeks before the next dosage might be 

considered
IL-17 inhibitors, IL-17 

receptor blocker
11–27 d 44–108 d No Currently available vaccines (influenza, meningococcus) have excellent efficacy 

(only based on data for secukinumab and ixekizumab) [42–45]
It is unclear whether the vaccine-induced protection (IgA) in the upper airways 

will be as effective as in healthy controls
Ixekizumab and brodalumab have a moderately short half-life (13 and 11 days, 

respectively)
No evidence is available about whether temporary interruption seems reason-

able
IL-23 inhibitors 12–39 d 48–156 d No Currently available vaccines (influenza, tetanus, meningococcus, pneumococ-

cus) have excellent efficacy (based only on data for ustekinumab) [50, 51]
It is unclear whether the vaccine-induced protection (IgA) in the upper airways 

will be as effective as in healthy controls
Long half-life
No evidence is available as to whether temporary interruption seems reasonable 

in real life
Dupilumab NR NR No Data suggest that COVID vaccination will be as effective as in normal individu-

als [56]
Omalizumab NR NR Unknown No published data

No signals that vaccination is affected
Rituximaba NR NR Severe Protective antibody formation is severely impaired [59]

Cell-specific immunity is likely largely preserved
Given the partial recuperation of B cells after 6–10 months, this time period is 

preferable for vaccination
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topic is the theoretical decrease in IgA responses. IL-17A 
acts as a defense line for outside body barriers, includ-
ing the respiratory tract and mucosae, by influencing IgA 
antibody formation. In mice, subcutaneous priming with a 
recombinant antigen in a Th17-inducing adjuvant followed 
by airway boosting promotes high and sustained levels of 
dimeric IgA in the lungs, which are dependent on Th17 cells 
and deficient if IL-17A is depleted [63]. Systemic vaccina-
tion is unlikely to elicit significant divalent IgA responses in 
the upper respiratory tract, unlike mucosal (e.g., intranasal) 
vaccination. Additionally, the influence of blocking IL-17 or 
IL-23 on the protective upper inflammatory tract responses 
after mucosal vaccination remains to be elucidated.

In patients receiving rituximab, the timing of vaccination 
beyond 6 months after the last infusion leads to improved 
outcomes. JAK inhibitors decrease vaccination results. Evi-
dence of how long this treatment should be interrupted to 
reach the efficacy seen in healthy controls is lacking, except 
that it is likely to be longer than 2 weeks. Anti-IL-4, anti-
IL-13, or anti-IgE are unlikely to interfere with proper vacci-
nation responses. Other drugs used in dermatology for their 
immunomodulating effects, such as dapsone, hydroxychloro-
quine, and antibiotics (e.g., tetracyclines), have limited data 
and/or are not expected to interfere with vaccination [64].

How long immunomodulating/immunosuppressive drugs 
should be stopped before and after vaccination is controver-
sial. For live vaccines, biological agents or disease-modify-
ing drugs should not be started until after 5 half-lives after 
administration (high-dose corticosteroids: 4 weeks; etaner-
cept: 4 weeks; TNFα inhibitors: 3 months; methotrexate ≥20 
mg/week: 4 weeks; and rituximab: 6–12 months) [65]. None 
of the currently authorized COVID-19 vaccines contain 
live virus particles. For nonlive vaccines, this period is less 
clearly defined as most recommendations state that treat-
ment should be continued in patients with immune-mediated 
conditions [21]. As this also applies for COVID-19 vaccines, 
most national guidelines on SARS-CoV-2 vaccination agree 
that treatment should be continued [66, 67]. In general, after 
4–5 half-lives, 94–97% of a drug will be eliminated, which is 
believed to lie below clinically relevant concentrations [68]. 
Humoral responses for primary vaccinations begin with the 
production of specific low-affinity IgM antibodies after a 
lag phase usually within the first week after vaccination. 
Higher affinity and avidity IgG antibodies can be detected 
after 10–14 days, with maximum titers taking up to 4–6 
weeks [21]. A minimum period of 2 weeks, up to 4 weeks, 
is generally recommended before (re-)initiation of the immu-
nosuppressive/immunomodulatory treatment [69]. For drugs 
given in dosage intervals of ≥4 weeks, administration of 
vaccines midcycle or 2 weeks before the next dose seems a 
reasonable option [21]. It should be noted that the data on 
influenza, pneumococcal, meningococcal, and tetanus vac-
cination may not be directly generalizable to SARS-CoV-2 

vaccines because of differences in the types of vaccination. 
The classic influenza vaccines are inactivated, mostly split-
virus or subunit vaccines, and some contain live attenuated 
influenza virus (e.g., nasal spray vaccines). Pneumococcal 
vaccines (PCV 13 and PPSV-23) carry a mixture of capsular 
polysaccharides from Streptococcus pneumoniae. Tetanus 
vaccines are based on tetanus toxoid combined with alu-
minum or calcium salts, and meningococcal vaccines are 
conjugate or recombinant protein vaccines. This contrasts 
with the emphasis on RNA-based and viral vector vaccines 
most frequently used for SARS-CoV-2 vaccination.

Based on these differences, (inter-)national guidelines 
struggle to give consistent recommendations [66, 67, 
70–72]. Although some expert statements indicate that 
the risk of reduced SARS-Cov-2-induced vaccine protec-
tion is not proven and no measures should be taken, others 
recommend performing the vaccination before initiating 
treatment, interrupting some treatments, or administering 
the vaccine midcycle in patients receiving biologics. In 
our opinion, the data on rituximab are sufficient to post-
pone the vaccination until 6 months after the last dos-
age of rituximab. For immunosuppressive drugs such as 
methotrexate and cyclosporine, we recommend stopping 
treatment for 2 weeks after vaccination for patients aged 
> 65 years or for patients with comorbidities that place 
them at risk for a more severe COVID-19 infection. Spe-
cial consideration should be given to patients receiving 
multiple immunosuppressants. However, in our opinion, 
treatment should only be temporarily stopped in patients 
with well-controlled skin disorders where the risk of dis-
ease flare is low. We believe that biologics (excluding 
rituximab) can be continued without additional measures, 
although administering the vaccine midcycle or 2 weeks 
before vaccination can be considered for TNFα inhibitors 
if practicable. The value of shared decision making seems 
underappreciated in most national guidelines.

5  Conclusion

Although most guidelines recommend continuing the 
immunosuppressive/immunomodulating treatments for 
skin disorders, dermatologists should be aware of their 
potential to decrease vaccine-induced immunity. This is 
especially clinically relevant in patients aged > 65 years 
or those with comorbidities that place them at risk for a 
more severe COVID-19 infection.
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