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Abstract
Objective The objective of this study was to compare the predictive performances of a glomerular filtration rate (GFR) model 
with a physiologically based pharmacokinetic (PBPK) model to predict total or renal clearance or area under the curve of 
renally excreted drugs in subjects with varying degrees of renal impairment.
Methods From the literature, 11 studies were randomly selected in which total or renal clearance or area under the curve 
of drugs in subjects with different degrees of renal impairment were predicted by PBPK models. In these published studies, 
drugs were given to subjects intravenously or orally. The PBPK model was generally a whole-body model whereas the GFR 
model was as follows: Predicted total clearance  (CLT) =  CLT in healthy subjects × (GFR in RI/GFR in H), Predicted AUC = 
AUC in healthy subjects × (GFR in H/GFR in RI), where H is the healthy subjects and RI is renal impairment. The predicted 
clearance or area under the curve values using PBPK and GFR models were compared with the observed (experimental 
pharmacokinetic) values. The acceptable prediction error was within the 0.5- to 2-fold or 0.5- to 1.5-fold prediction error.
Results There were 33 drugs with a total number of 101 observations (area under the curve, total and renal clearance in 
subjects with mild, moderate, and severe renal impairment). From PBPK and GFR models, out of 101 observations, 94 
(93.1%) and 96 (95.0%) observations were within the 0.5- to 2-fold prediction error, respectively.
Conclusions This study indicates that the predictive power of a simple GFR model is similar to a PBPK model for the predic-
tion of clearance or area under the curve in subjects with renal impairment. The GFR method is simple, robust, and reliable 
and can replace complex empirical PBPK models.
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1 Introduction

Following the administration of a drug, the drug is excreted 
either by metabolism or by the renal route or by both mecha-
nisms [1]. The liver is the main organ for drug metabolism 
and the kidneys excrete both unchanged and/or metabolites 
of a drug. Kidneys remove both endogenous and exogenous 
substances. The urine formation mainly takes place from 
glomerular filtration at a rate of 120 mL/min and is a passive 
process [1]. The glomerular filtrate passes through the tubule 
where most of the water is reabsorbed. Besides glomerular 
and tubular filtration, drugs can also be removed by renal 

secretion, which is an active process. Thus, renal clearance 
can be described as three distinct processes: glomerular fil-
tration, reabsorption, and secretion [1].

There are a wide variety of kidney diseases but in the 
case of chronic renal failure, the kidneys cannot regulate 
the excretion of both endogenous and exogenous substances 
as efficiently as normal kidneys. If a drug is mainly elimi-
nated by the renal route, then renal impairment can alter the 
pharmacokinetics of a drug requiring a change in the dosage 
regimen as compared with subjects with normal renal func-
tion. The impact of renal impairment on the pathophysiology 
has been thoroughly investigated and well documented [2].

Total clearance is the sum of renal and nonrenal clear-
ances. Nonrenal clearance is generally equated with drug 
metabolism as well as any other route of excretion that is 
not renal. Renal impairment can also impact drug transport 
and metabolism [3, 4]. In renal impairment, both total and 
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Key Points 

In the case of chronic renal failure, the kidneys cannot 
regulate the excretion of both endogenous and exogenous 
substances as efficiently as normal kidneys. If a drug 
is mainly eliminated by the renal route, then the renal 
impairment can alter the pharmacokinetics of a drug 
requiring a change in the dosage regimen as compared 
with individuals with normal renal function.

Physiologically based pharmacokinetic (PBPK) models 
have been suggested for the prediction of area under the 
curve (AUC), or total and renal clearances of drugs in 
patients with mild to severe renal impairment.

A simple glomerular filtration rate method was used to 
predict AUC, or total and renal clearances of drugs in 
patients with mild to severe renal impairment and com-
pared with the PBPK model.

The results of the study indicated that the predictive 
power of the simple glomerular filtration rate model was 
as robust as a PBPK model for the prediction of clear-
ance or AUC in subjects with renal impairment.

The predicted AUC or total and/or renal clearance of 
drugs can be then used to select an appropriate dose in 
patients with different degrees of renal impairment to initi-
ate a first-in-human study in subjects with renal impairment.

2  Methods

2.1  Data Source for the Physiologically Based 
Pharmacokinetic Model

From the literature, 11 studies [6–14] were randomly 
selected in which total and/or renal clearance or AUC of 
drugs in subjects with renal impairment (mild, moderate, 
and severe) were predicted using PBPK models. Out of 11 
studies, three studies had at least six drugs in the analysis. 
From these studies, total or renal clearance or AUC data 
for 33 drugs with 101 observations were obtained. In these 
studies, drugs were given by the intravenous or oral route.

2.2  Proposed Simple Method (Glomerular Filtration 
Rate Method)

The proposed simple method, hereafter called the “GFR 
Method”, is based on the GFR values in healthy subjects 
as well as subjects with renal impairment. The following 
methods were used to predict total and/or renal clearance or 
AUC of drugs in subjects with renal impairment.

Method I For the prediction of AUC in subjects with renal 
impairment, the following equation was used:

where H is healthy subjects and RI is renal impairment.
Method II Prediction of total clearance in subjects with 

mild, moderate, and severe renal impairment:

Method III Prediction of renal clearance in subjects with 
mild, moderate, and severe renal impairment:

where  CLT and  CLR are the observed clearances in healthy 
subjects (H) and GFR in H and in RI were GFR values in the 
healthy subjects and subjects with different degrees of renal 
impairment, respectively.

(1)
PredictedAUC = AUC in healthy subjects × (GFR inH∕GFR inRI),

(2)

Predicted total clearance
(

CLT

)

= CLT in healthy subjects

× (GFR inRI∕GFR inH).

(3)

Predicted renal clearance
(

CLR

)

= CLR in healthy subjects

× (GFR inRI∕GFR inH),

renal clearance of drugs are affected. The US Food and 
Drug Administration categorizes renal impairment in the 
following five categories based on the creatinine clearance 
or estimated glomerular filtration rate (eGFR). Based on cre-
atinine clearance, the five categories of renal impairment are 
as follows [5]: normal ≥ 90 mL/min; mild = 60–89 mL/min; 
moderate = 30–59 mL/min; Severe = 15–29 mL/min; and 
kidney failure ≤ 15 mL/min.

Physiologically based pharmacokinetic (PBPK) models 
have been suggested for the prediction of total and renal 
clearances of drugs in patients with mild to severe renal 
impairment [6–14]. However, it is possible to develop an 
alternative simple model that is comparable to the PBPK 
model to predict total and renal clearance of drugs in patients 
with renal impairment. Hence, the objectives of this study 
were as follows:

• To evaluate a proposed simple method that can be used 
to predict area under the curve (AUC) or total and renal 
clearances of drugs in patients with mild to severe renal 
impairment.

• To compare the predictive performance of the proposed 
simple method with the PBPK model for the prediction 
of AUC or total and renal clearances of drugs in patients 
with mild to severe renal impairment.
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2.3  Statistical Analysis

The accuracy of the methods (PBPK and GFR) for the pre-
diction of total or renal clearance or AUC was assessed by 
fold-error (FE) as the ratio of predicted-to-observed values:

An acceptable prediction error in the literature is twofold 
(0.5–2). Therefore, this traditional approach was taken and a 
twofold prediction error was used to compare the two meth-
ods. However, the author of this article considers a twofold 
prediction error too high to be acceptable for any practical 
purpose. Therefore, besides a twofold prediction error crite-
rion, a more stringent comparison was made based on a 30% 
(0.7–1.3) or 50% (0.5–1.5) prediction error.

Percent error, bias, and precision of the predictive power 
of the allometric model for clearance and  AUC were deter-
mined from the following equations. Statistical parameters 
such as bias or the mean prediction error (MPE), mean abso-
lute error (MAE), and precision in terms of root mean square 
error (RMSE) were also used to compare the two methods. 
Bias was calculated according to Eq. (5):

Mean absolute error was estimated by converting all the 
negative numbers to positive numbers obtained from Eq. (5).

The precision of the methods was estimated by calculat-
ing the RMSE according to Eqs. (6–8):

Mean prediction error, MAE and RMSE were expressed 
as the percent of mean using Eq. (8):

3  Results

Thirty-three drugs (oseltamivir carboxylate was in two stud-
ies) were evaluated in this study with a total number of 101 
observations (AUC, total clearance, and renal clearance in 
mild, moderate, and severe renal impairment). The AUC, 
total clearance, or renal clearance in subjects with renal 
impairment were predicted for 21 drugs (56 observations), 
12 drugs (24 observations), and 7 drugs (21 observations), 

(4)FE = predicted value∕observed value.

(5)MPE =

∑

(predicted − observed)

n
.

(6)

Mean square error (MSE) =

∑

(predicted − observed)2

n
,

(7)RMSE = (MSE)0.5.

(8)

%MPE, %MAEor%RMSE = (MPE,MAE, or RMSE)

× (100)∕mean observedAUCorCL.

respectively, by the GFR method and the PBPK model. The 
results of the PBPK and GFR methods for the studies are 
summarized in Tables 1, 2, 3, 4, 5 and 6. A description of 
the results is provided below.

3.1  Hsueh et al. [6]

3.1.1  Prediction of Area Under the Curve

There were seven renally eliminated drugs (adefovir, avibac-
tam, entecavir, famotidine, ganciclovir, oseltamivir carboxy-
late, and sitagliptin). These drugs are all substrates of renal 
organic anion transporters [6]. Based on the renal clearance, 
these drugs can be classified as renally secreted drugs [6]. 
Avibactam and famotidine were given intravenously whereas 
the remaining five drugs were given orally.

The authors used a PBPK model to predict the AUC of 
these seven drugs (Table 1) in subjects with different degrees 
of renal impairment. There were 21 observations (mild, 
moderate, and severe renal impairment) and from the PBPK 
model, the predicted/observed ratio range was 0.57–1.38. 
All observations (100%) were also within the 50% predic-
tion error. Out of 21 observations, 18 (85.7%) observations 
were within the 30% prediction error. The MPE, MAE, and 
RMSE were -5.4%, 9.7%, and 20.7%, respectively.

From the GFR method, the predicted/observed ratio had a 
range of 0.70–1.90 (Table 1), the next highest ratio was 1.23. 
All observations (100%) were within the 0.5- to 2.0-fold 
prediction error, whereas 20 (95.2%) out of 21 observations 
were within the 50% prediction error. Out of 21 observa-
tions, 20 (95.2%) observations were within the 30% pre-
diction error (Table 1). The MPE, MAE, and RMSE were 
− 13.6%, 14.7%, and 32.5%, respectively.

3.1.2  Prediction of Renal Clearance [6]

The predicted and observed renal clearance of seven drugs 
by PBPK and GFR methods are shown in Table 2. There 
were 21 observations and from the PBPK model, the pre-
dicted/observed ratio range was 0.55–1.40. All observations 
(100%) were within the 0.5- to 2.0-fold prediction error or 
within the 50% prediction error. Out of 21 observations, 16 
(76.2%) observations were within the 30% prediction error 
(Table 2). The MPE, MAE, and RMSE were -9.5%, 21.2%, 
and 29.9%, respectively.

From the GFR method, the predicted/observed ratio 
range was 0.86–1.95 (Table 2). All observations (100%) 
were within the 0.5- to 2.0-fold prediction error, whereas 18 
(85.7%) out of 21 observations were within the 50% predic-
tion error. Out of 21 observations, 15 (71.4%) observations 
were within the 30% prediction error (Table 2). The MPE, 
MAE, and RMSE were 7.6%, 15.7%, and 20%, respectively.
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3.2  Yee et al. [7]

There were seven renally eliminated drugs (cases 1–4 [drug 
names not known], oseltamivir carboxylate, cidofovir, and 
cefuroxime). Two drugs (cases 3 and 4) were given orally 
whereas the remaining five drugs were given intravenously. 
Creatinine clearance was estimated by the Cockcroft–Gault 
formula.

The authors used the PBPK model to predict AUC of all 
these seven drugs (Table 3). There were 19 observations 
(mild, moderate, and severe renal impairment) and from 
the PBPK model, the predicted/observed ratio range was 
0.41–1.38. All but one observation (94.7%) were within 0.5- 
to 2.0-fold prediction error or the 50% prediction error. Out 
of 19 observations, 12 (63.2%) observations were within the 
30% prediction error (Table 3). The MPE, MAE, and RMSE 
were − 26.1%, 32.0%, and 52%, respectively. These values 
were calculated by using observed and predicted AUC ratio.

From the GFR method, the predicted/observed ratio range 
was 0.75–1.97 (Table 3), the next highest prediction error 
ratio was 1.24. All observations (100%) were within the 
0.5- to 2.0-fold prediction error. Out of 19 observations, 18 
(94.7%) observations were within the 50% and 30% pre-
diction errors (Table 3). The MPE, MAE, and RMSE were 
5.7%, 21.4%, and 35.2%, respectively.

3.3  Sayama et al. [8]

3.3.1  Prediction of Total Clearance

There were 12 drugs in this study and the clearance of 
these drugs were evaluated in subjects with moderate and 
severe renal impairment (same 12 drugs). All drugs were 
given intravenously. The authors predicted the clearance of 
these 12 drugs using the PBPK model and compared these 
with the predicted clearance values by setting up a range 

Table 1  Predicted and observed 
area under the curve (AUC, ng 
h/mL) by physiologically based 
pharmacokinetic (PBPK) and 
glomerular filtration rate (GFR) 
methods

Data from Ref. [6]
RI renal impairment

Drugs/RI Observed AUC Predicted AUC 
(GFR)

Predicted AUC 
(PBPK)

Ratio GFR Ratio PBPK

Adefovir
Mild 266 332 307 1.25 1.15
Moderate 455 548 628 1.20 1.38
Severe 1244 1217 1466 0.98 1.18
Avibactam
Mild 17,550 13,466 15187 0.77 0.87
Moderate 25,640 21,753 27075 0.85 1.06
Severe 47,080 42,418 45908 0.90 0.98
Entecavir
Mild 55 53 42 0.96 0.76
Moderate 76 84 82 1.11 1.08
Severe 172 142 122 0.83 0.71
Famotidine
Mild 909 1158 1049 1.27 1.15
Moderate 1424 1749 1690 1.23 1.19
Severe 4503 8570 3079 1.90 0.68
Gancicolvir
Mild 50,500 43,942 41,103 0.87 0.81
Moderate 99,700 69,856 77,006 0.70 0.77
Severe 252,000 227,033 258,880 0.90 1.03
Oseltamivir carboxylate
Mild 9931 7369 5655 0.74 0.57
Moderate 15,010 14,171 15,091 0.94 1.01
Severe 43,086 34,543 46,278 0.80 1.07
Sitagliptin
Mild 2888 2504 2160 0.87 0.75
Moderate 4057 4570 3826 1.13 0.94
Severe 6761 8308 5244 1.23 0.78
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of predicted values with a single observed value (Table 4). 
For example, isepamicin observed clearance was 40 mL/min 
and the predicted clearance range by PBPK was 24–47 mL/
min, the prediction was considered successful because the 
observed clearance was within the predicted range.

From the PBPK model, in subjects with moderate renal 
impairment, 10 out of 12 observations (83.3%) were con-
sidered successful because the range of predicted clearance 
values was within the observed clearance values (Table 4). 
In subjects with severe renal impairment, 7 out of 12 obser-
vations (58.3%) were considered successful (Table 4).

From the GFR model, 10 out of 12 observations (83.3%) 
and 7 out of 12 observations (58.3%) were considered suc-
cessful in subjects with moderate and severe renal impair-
ment, respectively. Because of the predicted range of clear-
ance values, it was not possible to estimate the predicted/
observed ratio by the PBPK model but it was possible by the 
GFR method. From the GFR method, the predicted/observed 

ratio was 0.45–1.41 (one value < 0.5) and 0.27–1.45 (two 
values < 0.5) for moderate and severe renal impairment, 
respectively.

Overall, from the prediction perspective, both models pro-
vided similar results. The results of the study indicated that 
the prediction of clearance in subjects (58.3%) with severe 
renal impairment by both methods was not as accurate as in 
subjects with moderate renal impairment (83.3%). Accord-
ing to recent US Food and Drug Administration draft guid-
ance [5] “A drug is considered to be substantially eliminated 
by the renal route when the fraction of systemically available 
drug or active metabolite that is eliminated unchanged in the 
urine (fe) is 0.3 or greater”. According to this definition, it 
was noted that three drugs (batanopride, cyclophosphamide, 
and lidocaine) had fe values < 0.3, indicating that these three 
drugs are not extensively renally excreted and significant 
non-renal clearance may be involved in the elimination of 
these drugs. It should be noted that in all the other drugs in 

Table 2  Predicted and observed 
renal clearance  (CLR, mL/
min) by physiologically based 
pharmacokinetic (PBPK) and 
glomerular filtration rate (GFR) 
methods

Data from Ref. [6]
RI renal impairment

Drugs/RI Observed  CLR Predicted  CLR 
GFR

Predicted  CLR 
PBPK

Ratio GFR Ratio PBPK

Adefovir
Mild 149 128 141 0.86 0.95
Moderate 86 77 74 0.90 0.86
Severe 35 35 27 1.00 0.77
Avibactam
Mild 76 99 97 1.30 1.28
Moderate 49 61 53 1.25 1.08
Severe 22 31 29 1.42 1.32
Entecavir
Mild 198 210 201 1.06 1.02
Moderate 136 132 103 0.97 0.76
Severe 40 78 44 1.95 1.10
Famotidine
Mild 264 227 194 0.86 0.73
Moderate 157 150 110 0.96 0.70
Severe 21 31 16 1.46 0.76
Gancicolvir
Mild 145 156 156 1.08 1.08
Moderate 61 100 80 1.63 1.31
Severe 21 33 19 1.58 0.90
Oseltamivir carboxylate
Mild 121 164 170 1.35 1.40
Moderate 70 86 76 1.23 1.09
Severe 26 33 24 1.28 0.92
Sitagliptin
Mild 242 235 177 0.97 0.73
Moderate 126 130 82 1.03 0.65
Severe 60 68 33 1.14 0.55
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the additional studies in this article and in the Sayama et al. 
study, the fe remained > 0.3, indicating that these drugs are 
substantially eliminated by the renal route.

In moderate renal impairment, cyclophosphamide- and 
lidocaine-predicted clearance values by the PBPK model 
were within the observed range but not for batanopride. 
From the GFR method, the predicted vs observed clearance 
ratios of batanopride, cyclophosphamide, and lidocaine were 
0.57, 0.45, and 0.66, respectively.

In severe renal impairment, only the predicted clear-
ance value of batanopride by the PBPK model was within 
the observed range. The predicted vs observed clearance 
ratios of batanopride, cyclophosphamide, and lidocaine by 
the GFR method were 0.27, 0.73, and 0.33, respectively, 
a poor prediction of batanopride and lidocaine. The poor 
prediction of clearance for these three drugs by both mod-
els is not surprising as renal excretion of these three drugs 
is not extensive. The MPE, MAE, and RMSE could not be 

estimated in this study because the exact predicted values 
were not available for the PBPK method.

3.4  Studies by Different Authors for Different Drugs 
[9–14]

There were eight drugs in this analysis as listed in Table 5. 
Ceftadizime and vancomycin were given intravenously, gly-
copyrronium was a metered dose inhaler, and the remaining 
five drugs were given orally. The creatinine clearance for 
ceftadizime, tenofovir, lamivudine, and emtricitabine was 
determined by the Cockcroft–Gault formula.

In these studies, the authors used the PBPK model to pre-
dict AUC for eight drugs (Table 5) in subjects with different 
degrees of renal impairment. There were 16 observations for 
these eight drugs and from the PBPK model, the predicted/
observed ratio range was 0.30–1.89. Fifteen observations 
(93.8%) were within the 0.5- to 2.0-fold prediction error. Out 
of 16 observations, 14 (87.5%) and 11 observations (68.8%) 

Table 3  Predicted and observed 
area under the curve ratio 
(AUCR) by physiologically 
based pharmacokinetic (PBPK) 
and glomerular filtration rate 
(GFR) methods

Data from Ref. [7]
RI renal impairment
a Ratio was obtained by dividing predicted AUCR by observed AUCR 

Drugs/RI Observed 
AUCR 

Predicted 
AUCR (GFR)

Predicted AUCR 
(PBPK)

Ratioa (GFR) Ratioa (PBPK)

Case 1
Moderate 2.4 2.7 2.4 1.12 1.00
Severe 5.4 5.2 2.9 0.97 0.54
Case 2
Mild 1.6 1.5 1.1 0.94 0.69
Moderate 2.3 2.7 1.9 1.16 0.83
Severe 3.8 4.7 2.7 1.24 0.71
Case 3
Mild 1.5 1.6 1.4 1.07 0.93
Moderate 2.2 2.6 1.8 1.17 0.82
Severe 4.3 4.8 3.0 1.12 0.70
Case 4
Mild 1.0 2.0 1.3 1.97 1.30
Moderate 1.5 3.4 2.0 1.15 1.33
Severe 2.1 5.7 2.9 1.20 1.38
Oseltamivir
Mild 2.4 2.0 2.2 0.85 0.93
Moderate 3.6 3.7 3.3 1.04 0.92
Severe 10.3 8.2 7.5 0.80 0.73
Cidofovir
Mild 1.6 2.0 2.0 1.24 1.26
Moderate 3.4 3.3 2.2 0.97 0.64
Severe 7.0 6.4 3.6 0.91 0.51
Ceforoxime
Moderate 1.7 1.9 2.0 1.13 1.18
Severe 9.8 7.4 4.0 0.75 0.41
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were within the 50% and 30% prediction error, respectively. 
The MPE, MAE, and RMSE were 15.4%, 25.7%, and 77.1%, 
respectively.

From the GFR method, the predicted/observed ratio 
range was 0.66–1.73 (Table 5). All 16 observations (100%) 
were within the 0.5- to 2.0-fold prediction error, whereas 14 
(87.5%) out of 16 observations were within the 50% predic-
tion error. Out of 16 observations, 13 observations (81.3%) 
were within the 30% prediction error. The results of the 
analysis for eight drugs are shown in Table 5. The MPE, 
MAE, and RMSE were 5.9%, 13%, and 32.5%, respectively.

In Table 6, the results of the study are summarized. 
Overall, the results of this study indicated that the predic-
tive performance (the prediction of AUC or total and renal 
clearance of drugs in subjects with different degrees of renal 

impairment) of a simple GFR method is as robust and accu-
rate as a complex PBPK model.

4  Discussion

In this study, a comparative assessment of a simple model 
based on GFR and a PBPK model for the prediction of total 
and renal clearance or AUC in subjects with varying degrees 
of renal impairment was evaluated. The overall results from 
33 drugs and 101 observations indicated that the predic-
tive power of the GFR method was comparable to that of 
the PBPK model for predicting drug clearances or AUC for 
subjects with renal impairment.

The current study was undertaken with the objective of 
finding a simple method that can be used in place of the 
PBPK model for achieving the same objective. The simple 
model was based on GFR values in patients with different 
degrees of renal impairment. It is well established that the 
total or renal clearance of drugs is linearly related (a good 
correlation) with the GFR values [15]. Therefore, it was 
hypothesized that a simple GFR model may be used to pre-
dict AUC or total or renal clearance of drugs without requir-
ing the complexities of a PBPK model or any other empirical 
model. Indeed, the results of the study showed that to predict 
AUC or clearance of drugs in subjects with different degrees 
of renal impairment, one does not need a dozen organs or 
tissues, blood flow to these organs, and many physiological 
parameters. In other words, a PBPK model is not needed for 
this purpose.

The two PBPK studies [7, 8] used in this comparative 
study indicated that the AUC or clearance of drugs in 
subjects with mild and moderate renal impairment could 
be predicted fairly accurately but the prediction of these 
parameters may not be as accurate in subjects with severe 
renal impairment. Yee et al. [7] concluded that the accuracy 
of predictions was lower for the severe renal impairment 
population using the PBPK method, the PBPK model might 
be suitable for prospective predictions for early decision 
making, but the PBPK method could not be used for dose 
recommendations.

There has been a growing interest in the use of PBPK 
models for the prediction of human pharmacokinetic param-
eters as well as for dose selection in early clinical drug 
development or in drug discovery [16–20]. Physiologically 
based pharmacokinetic models are widely used for the pre-
diction of pharmacokinetic parameters, mainly clearance or 
AUC in pediatrics, drug–drug interaction studies, to predict 
drug concentrations in an organ or tissue, and in disease 
states such as renal impairment.

Physiologically based pharmacokinetic models are either 
whole-body or minimal or lumped models [16–25]. Whole-
body PBPK models require extensive data (physicochemical 

Table 4  Predicted and observed clearance (mL/min) by physiologi-
cally based pharmacokinetic (PBPK) and glomerular filtration rate 
(GFR) methods

Data from Ref. [8]
RI renal impairment

Drugs Observed Predicted 
(PBPK)

Pre-
dicted 
(GFR)

Predicted 
ratio (GFR)

Moderate RI
Isepamicin 40 24–47 37 0.93
Zanamivir 38 28–52 51 1.34
Cefepime 37 28–53 44 1.19
Cidofovir 26 29–54 30 1.15
Enprofylline 32 31–56 45 1.41
Carumonam 41 32–58 38 0.93
Meropenem 39 32–56 34 0.87
Tomopenem 34 34–65 43 1.26
Cefotetan 46 43–73 45 0.98
Batanopride 94 52–84 54 0.57
Cyclophospha-

mide
71 54–87 32 0.45

Lidocaine 77 67–95 51 0.66
Severe RI
Isepamicin 20 8–23 20 1.00
Zanamivir 23 13–34 25 1.09
Cefepime 22 14–35 23 1.05
Cidofovir 11 15–37 16 1.45
Enprofylline 8 17–40 11 1.38
Carumonam 21 19–39 29 1.38
Meropenem 23 18–37 27 1.17
Tomopenem 17 24–51 18 1.06
Cefotetan 33 33–72 36 1.09
Batanopride 63 47–80 17 0.27
Cyclophospha-

mide
44 49–81 32 0.73

Lidocaine 45 65–96 15 0.33
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properties of drugs, organ or tissue weights, blood flow rates, 
enzymatic activity) and require specialized software to solve 
the ordinary differential equations (owing to the complex-
ity of the PBPK model). Over time, it was realized that in 
a PBPK model not every organ or tissue or physiological 
parameters were required. This led to the development of 
‘minimal’ or ‘lumped’ PBPK models [21–25]. Minimal or 
lumped PBPK models indicate that three to four organs are 
adequate to construct a robust PBPK model that provides 
similar results to a whole-body PBPK model. Naturally, in 
a practical world, a minimal PBPK model is more attractive 
than a whole-body PBPK model.

Liver and kidneys are the two most important organs of 
elimination of foreign compounds from the body. Using 
these two organs and respective blood flow to these organs 
(in all, four physiological parameters without the need of 
physicochemical properties of drugs), some ‘very minimal 
physiological’ models were developed to predict drug clear-
ance in neonates and toddlers [26–28].

In a study, Mahmood et al. [26] developed a minimal 
physiological model to predict drug clearances of nine glu-
curonidated drugs in children < 3 months of age. The model 
used liver weight, liver blood flow, and UDP-glucuronosyl-
transferase activities (two organs and one enzymatic activ-
ity). This minimal physiological model was compared with 
the whole-body physiological model and comparable results 
for mean and individual clearance of these nine drugs were 
obtained by the two models.

The studies [26–28] indicate that a minimal physiologi-
cal model developed on a spreadsheet can provide the same 
results as a whole-body physiological model. The cited 
works (21–28 and there are many more examples for mini-
mal or lumped PBPK models) indicate that it is not neces-
sary to use all body tissues or organs, blood flow to every 
organ, and physiochemical information of drugs to develop 
PBPK models. The current study also indicates that it is 
possible to replace a PBPK model with a simple model that 
uses just one physiological parameter in terms of GFR to 
achieve the same objectives.

Table 5  Predicted and observed 
area under the curve (AUC) 
by physiologically based 
pharmacokinetic (PBPK) and 
glomerular filtration rate (GFR) 
methods

Data from Refs. [9–14]
RI renal impairment

Drugs/RI Observed AUC Predicted 
AUC (GFR)

Predicted 
AUC 
(PBPK)

Ratio GFR Ratio PBPK

Dabigatran (ng h/mL)
Mild 1727 1525 1580 0.88 0.91
Moderate 2447 2478 2470 1.01 1.01
Severe 4130 4955 6150 1.20 1.49
Ceftadizime (µg h/mL)
Mild 243 214 231 0.88 0.95
Moderate 382 348 369 0.91 0.97
Severe 756 695 562 0.92 0.74
Vancomycin (µg h/mL)
Moderate 121 126 164 1.04 1.36
Severe 347 315 255 0.91 0.73
Tenofovir (mg h/L)
Mild 3.1 3.4 3.9 1.09 1.26
Moderate 6.0 5.5 6.4 0.92 1.07
Emtricitabine (mg h/L)
Mild 19.9 18.2 14.9 0.91 0.75
Lamivudine (mg h/L)
Moderate 46 31 14 0.66 0.30
Olaparib (µg h/mL)
Mild 61 82 85 1.35 1.40
Moderate 71 123 134 1.73 1.89
Glycopyrronium (ng h/mL)
Mild 103 105 76 1.02 0.74
Moderate 113 176 92 1.55 0.81
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In recent years, allometric models were developed for the 
prediction of drug clearance in children (from neonates to 
adolescents) and compared with the PBPK models and the 
comparison showed that the predictive power of the allo-
metric models was similar to PBPK models [29–32]. The 
allometric approach is much simpler than the PBPK model, 
and there is no reason not to use allometry in place of PBPK 
models if it provides similar results and allometric models 
are also time and cost effective. Similarly, PBPK models 
are widely advocated for drug–drug interaction studies. In 
a recent study [33], Mahmood showed that the clearance of 
drugs following drug–drug interaction studies can be extrap-
olated to children from adult drug–drug interaction studies 
using a simple allometric model with reasonable accuracy.

It should be recognized that all models have uncertainty 
and some degree of inaccuracy is imbedded into them 
because the models’ accuracy is based on the assumptions 
and the information provided to the model. In a practical 
world (especially in the biological system), it is not pos-
sible to have all the assumptions and information correct. A 
very recent example related to the uncertainty of the mod-
els is the COVID-19 virus model. The model’s predictive 
power remains uncertain. The model was revised several 
times because of new information and it is highly unlikely 
that this model will ever be able to provide some sort of 
accurate result mainly owing to the continuous change in 
assumptions and information. This is the nature of models 

(uncertainty and inaccuracy) and neither the modelers nor 
the models are at fault.

In a recent article [34], “On the fallibility of simulation 
models in informing pandemic responses”, Gurdasani and 
Ziauddeen have very elegantly described the uncertainty in 
the predictive power of empirical models. The authors write 
“Empirical, real-world data must be considered alongside 
mathematical models when devising pandemic responses. 
Models are fallible and scientists and policy makers must 
be mindful that an over-reliance on models, and a lack of 
caution in interpreting them, could be a costly exercise”. 
The reality is that not only for a pandemic but for any pre-
dictive purpose, empirical models must be interpreted with 
great caution for the ultimate application of these models. 
Models are certainly useful in early drug development, but 
the ultimate decision to market a drug should be based on 
clinical trials and real-world data and real observations and 
not on models.

5  Conclusions

This study indicates that the GFR method, which is far sim-
pler than a PBPK model, can be used to predict AUC or 
total and/or renal clearance of drugs in subjects with vary-
ing degrees of renal impairment with the same magnitude 
of accuracy as a PBPK model. It is time to search for sim-
pler methods that are less stringent, require very minimal 
parameters or covariates and less effort, time, and cost. A 
complex model with unnecessary covariates and param-
eters is neither attractive nor very practical. As shown in 
this study, a single physiological parameter in terms of GFR 
was robust enough to produce a similar result as a PBPK 
model, which requires a dozen organs, blood flow rates, and 
physicochemical properties of drugs. There is no reason to 
use a complex empirical model whose results can also be 
obtained by a simple method. It should be recognized that a 
complex model does not necessarily provide a better result 
than a simple model. In an era of “Fit for Purpose”, several 
models should be tested to find the simplest but reasonably 
applicable and accurate model for the purpose.

It is also time that regulatory agencies worldwide rec-
ognize the uncertainty and inaccuracy of empirical mod-
els. New and simpler models should be acceptable in place 
of traditionally complex models as adding complexity to a 
model does not necessarily improve the predictive power 
of a model [23–33]. The new and simpler models will be 
cost and time effective (as shown in this study and some 
previously published studies [26–33]) and attention should 
be focused on their development. A minimal physiological 
model is a good step in this direction and considering the 
overall predictive performance of the minimal physiologi-
cal model, the use of a whole-body physiological model is 

Table 6  Summary of the results by the two methods

AUC from Refs. [6, 7, 9–14], and renal CL from Ref. [6]. Total CL 
ffrom Ref. [8]
AUC  area under the curve, CL clearance, GFR glomerular filtration 
rate, NA could not be determined, PBPK physiologically based phar-
macokinetic
a Fold-error could not be calculated because the acceptable predic-
tion was within a range; it was assumed that the acceptable prediction 
error was within twofold

Methods 0.5- to 2.0-fold error 50% error 30% error

PBPK (AUC) [n = 
56]

54 (96.4%) 54 (96.4%) 43 (79.6%)

GFR (AUC) [n = 56] 56 (100%) 52 (92.9%) 51 (91.1%)
Total CL (PBPK) [n 

=  24]a
19 (77.8)a NA NA

Total CL (GFR) [n 
=  24]a

19 (88.9%)a NA NA

Renal CL (PBPK) [n 
= 21]

21 (100%) 21 (100%) 16 (76.2%)

Renal CL (GFR) [n 
= 21]

21 (100%) 18 (85.7%) 15 (71.4%)

Total N = 101 N = 77 N = 77
PBPK 94 (93.1%) 73 (94.8%) 59 (76.6%)
GFR 96 (95.0%) 70 (90.9%) 66 (85.7%)
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questionable. It is also possible to further reduce the mini-
mal physiological model to only a three- or four-parameter 
PBPK model and where needed include a suitable allometric 
exponent.
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