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Abstract
Background  Researchers have long been interested in the potential drug–drug interactions (DDIs) between opioids and ben-
zodiazepines. However, much remains unknown concerning the interactions between these two drug classes. The objective 
of this work is to study the mechanism underlying the DDIs between opioids and benzodiazepines from the perspective of 
their pharmacokinetic (PK) interactions. A PK interaction occurs when two drugs are metabolized by the same cytochrome 
P450 enzymes and is one of the most common reasons for DDIs.
Methods  We quantitatively predicted the DDIs between three opioids (fentanyl, oxycodone and buprenorphine) and four 
benzodiazepines (alprazolam, diazepam, midazolam and triazolam) using a physiologically based pharmacokinetic (PBPK) 
modeling approach. A set of PBPK models was first constructed for these common opioids and benzodiazepines using Sim-
CYP software, and the DDIs between them were then explored at various dosages.
Results  Our simulation results suggested there were no PK interactions between normal doses of opioids and benzodiazepines; 
but weak interactions can be expected with the combination of opioids and overdosed benzodiazepines. Particular attention 
should be given to the combination of fentanyl and overdosed alprazolam since a PK interaction can be observed between them.
Conclusion  Our results appear to indicate that pharmacodynamics may play a more important role than PKs in causing DDIs 
between opioids and benzodiazepines. This study also demonstrated that molecular modeling can be a very useful tool to 
mitigate the problem of “missing metabolic reaction parameters” in PK modeling and simulation.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4026​8-019-00282​-3) contains 
supplementary material, which is available to authorized users.
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Key Points 

Weak pharmacokinetic (PK) interactions are expected 
when the normal doses of opioids are concomitantly 
taken with overdosed benzodiazepines.

Pharmacodynamic interactions may play a more impor-
tant role than PK interactions in causing drug–drug 
interactions between opioids and benzodiazepines.

1  Introduction

A key finding in clinical pharmacology and therapeutics is 
that most overdose fatalities involve multiple drug classes, 
complicating the safety of a specific drug. In fact, the 
coadministration of drugs is likely to be a risk factor. For 
example, sedatives were estimated to be involved in 11,843 
and 1847 deaths in 2014 and 1999, respectively, whereas 
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sedatives were virtually never solely implicated in those 
deaths [1]. Opioids are drugs that can act on opioid receptors 
and produce morphine-like effects. They have been widely 
used for pain relief for many years. However, opioids have 
both benefits and overdose side effects, including nausea, 
vomiting and coma [2, 3]. In the past two decades, opioid 
prescribing has increased tremendously in the USA. In total, 
16,651 deaths were related to opioid medications in 2010 
[4]. For example, the percentage of poisoning deaths caused 
by heroin itself increased 42.6% between 2007 and 2014 [1]. 
Opioids are also one of the most frequently used drugs in 
drug combinations. Despite the therapeutic benefits of opi-
oids, their safety issues cannot be ignored. The combination 
of opioids and other drugs can cause even greater risks. For 
example, the percentage of poisoning deaths increased to 
97.2% when heroine was combined with other drugs during 
2007–2014 [1].

Benzodiazepines are one of the most commonly coadmin-
istered drugs and are often prescribed for patients with anxi-
ety disorders, muscle spasms or major depression [5]. Since 
the 1970s, many researchers and physicians have investi-
gated the coadministration of opioids and benzodiazepines 
[6]; approximately 5000 publications related to these two 
classes were published between 1970 and 2012 [6]. Studies 
have indicated that, although the risk of overdosing on ben-
zodiazepines alone was mild, the combination of opioids and 
benzodiazepines (especially overdosed benzodiazepines) 
posed a potential danger to patients because of the increased 
risk of synergistic respiratory depression and overdose death 
[3, 7–10]. Research has confirmed that drug–drug interac-
tions (DDIs) between opioids and benzodiazepines do exist, 
and many studies have attempted to illustrate how these two 
drug classes interact with each other [6, 11, 12].

Two basic factors can contribute to DDIs: pharmacoki-
netic (PK) and pharmacodynamic (PD) interactions, with 
PK interactions the most common. These may occur when a 
coadministered drug causes a change in the absorption, dis-
tribution, metabolism and/or excretion (ADME) of another 
drug [13]. Another mechanism that underlies drug interac-
tions can be explained from the PD perspective. This kind 
of interaction occurs when two or more drugs are involved 
in the mechanisms of action that result in the additive, syn-
ergistic or opposite physiological outcome.

It is believed that benzodiazepines can alter the PKs of 
opioids [6, 14]. Opioids primarily undergo phase I metabo-
lism through cytochrome P450 (CYP) 3A4 enzymes and, 
therefore, may have significant interactions with other coad-
ministered drugs that are also sCYP3A4 substrates, inhibi-
tors or inducers [15]. Meanwhile, some benzodiazepines 
have been reported as CYP3A4 inhibitors since they are 
also mainly metabolized by the CYP3A4 enzyme [11, 14, 
16–19]. Some studies suggested that coadministration of 

benzodiazepines with opioids can potentially increase opi-
oid exposure. For example, research utilizing human liver 
microsomes demonstrated that midazolam was a moderate 
mechanism-based inactivator of buprenorphine N-dealkyla-
tion, which could cause time- and concentration-dependent 
inhibition of norbuprenorphine, a metabolite of buprenor-
phine produced mainly by the CYP3A4 enzyme [18]. By 
quantitatively analyzing the plasma concentrations of oxyco-
done and clonazepam, Burrows et al. [20] reported that con-
comitant clonazepam intake could reduce the metabolism 
of oxycodone. However, almost all these study cases were 
performed using rat or human liver microsomes. Therefore, 
we ask whether benzodiazepines can affect the metabolism 
of opioids in the human body. In this work, we used physi-
ologically based PK (PBPK) modeling to address this issue.

To study the DDIs between opioids and benzodiazepines, 
we constructed both full and minimal PBPK models for a 
set of commonly used opioids and benzodiazepines. Three 
opioid drugs (fentanyl, oxycodone and buprenorphine) and 
four benzodiazepine drugs (alprazolam, diazepam, mida-
zolam and triazolam) were selected for the PK interaction 
studies. We used molecular docking scores to calculate the 
missing inhibition parameters, Ki, and conducted sensitivity 
analysis to evaluate the impact of Ki on the PBPK modeling 
results. A PBPK model is useful only after it is validated 
with observed data, such as the drug’s concentration–time 
(CT) curves. The DDI profile of a drug combination is then 
generated through the simulation.

2 � Methods

2.1 � Representative Opioids and Benzodiazepines

We selected the opioids oxycodone, buprenorphine and fen-
tanyl to study the PK interactions. CYP3A4 enzyme is an 
important metabolizer of these three drugs [21]. Oxycodone 
is mainly metabolized by CYP3A4, and noroxycodone is its 
metabolite, although a small fraction of oxycodone also goes 
through CYP2D6 metabolism to produce oxymorphone [22]. 
Buprenorphine is mainly metabolized by CYP3A4, CYP3A5 
and CYP2C8 [23, 24]. The phase II metabolism by uridine 
diphosphate glucuronosyltransferase (UGT) is almost neg-
ligible for oxycodone and fentanyl since it contributes very 
little to their metabolism [25], although the metabolism 
of buprenorphine by UGT1A1, UGT1A3, UGT1A4 and 
UGT2B7 was taken into account [26] in this study.

We selected four frequently used benzodiazepines (alpra-
zolam, diazepam, midazolam and triazolam). Alprazolam, 
midazolam and triazolam are predominately metabolized by 
CYP3A4 and CYP3A5 enzymes [27, 28]. Specifically, diaz-
epam is mainly metabolized by CYP3A4 and CYP2C19 to 
its metabolites, temazepam and nordazepam [29]. CYPC18 
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and CYP2C9 enzymes also make very limited contributions 
to its metabolism. Generally, all four benzodiazepines pri-
marily undergo phase I metabolism by CYP enzymes, and 
phase II metabolism is negligible.

2.2 � Physiologically Based Pharmacokinetic (PBPK) 
Modeling

We used SimCYP Simulator (v. 17, release 1; Sheffield, UK) 
software to build the PBPK models by conducting virtual 
clinical trials using 100 virtual healthy volunteers (“Sim-
healthy volunteers”). Full PBPK models with multiple com-
partments representing different organs of the human body 
were applied to the model development for diazepam and all 
opioids. Meanwhile, minimal PBPK models with the consid-
eration of only three or four compartments (with or without 
the single adjustable compartment) were developed for all 
benzodiazepines except diazepam. The software’s advanced 
dissolution, absorption and metabolism (ADAM) model 
was used to simulate the absorption process, particularly 
for diazepam. The ADAM model considers the complicated 
process of drug absorption and the interplay with the under-
lying physiological characteristics of the gastrointestinal 
tract [30, 31]. Figure 1 shows the schematic diagrams of a 

generic full PBPK model and an ADAM model, and Fig. 2 
shows that of a minimal PBPK model. PK data for ADME 
from in vitro or in vivo experiments were collected to gen-
erate the “compound profiles” of the drugs in study. The 
inhibitor profiles of alprazolam, midazolam and triazolam 
were created based on their corresponding substrate profiles 
stored in the SimCYP drug library.

2.2.1 � PBPK Model Development and Verification

To conduct a PBPK simulation, both the system-related and 
drug-related parameters are needed. All the system-related 
parameters, including comprehensive physiological param-
eters such as blood rates and volumes of different organs, 
come from the SimCYP internal database. We performed 
PBPK simulations using a virtual population of 100 healthy 
adults aged 18–50 years. SimCYP applies an algorithm 
to incorporate known variabilities in those system-related 
parameters so that the virtual population is representative. 
The drug-dependent parameters come from literature or pub-
lic databases (such as the PubChem database https​://pubch​
em.ncbi.nlm.nih.gov/) when available, otherwise they were 
estimated by the SimCYP software. To validate the PBPK 
models, observed PK data, especially the CT curves, were 

Fig. 1   The PBPK model (left panel) and ADAM model (right panel). ADAM advanced dissolution, absorption and metabolism, PBPK physi-
ologically based pharmacokinetic, PO oral

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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collected to be compared with the results from simulations. 
The dosages of opioids and benzodiazepines were deter-
mined so that in silico modeling was consistent with the 
corresponding experimental settings. The drug-dependent 
parameters, including the PK parameters of both opioids and 
benzodiazepines, are listed in Table S1.

2.2.2 � Inhibition Parameters

As per the previous research, we hypothesized that benzo-
diazepines were competitive inhibitors of opioids. When 
no experimental value of the inhibitory constant, Ki, of a 
metabolic reaction was available, we applied a molecular 
modeling approach to estimate its value. We first performed 
docking simulation using the Glide program implemented in 
Schrodinger’s small-molecule drug discovery suite (http://
www.schro​dinge​r.com) and then calculated the Ki value 
using Eqs. 2–3.

(1)S

kf

↔

kr

ES
Kcat

↔ E + P,

(2)ΔG0 = −RT lnKeq = −RT ln
kf

kr

,

(3)K
i
=

[E][I]

[EI]
=

kr

kf

,

where E, S, ES and P denote enzyme, substrate and enzyme-
substrate complex, and product, respectively. kf is the for-
ward reaction rate constant of E + S, and kr is the reverse 
reaction constant describing the rate of falling apart to E + S 
from ES. kcat is the forward rate constant of the formation 
of E + P. [E], [I] and [EI] are the concentration of enzyme, 
inhibitor and the complex. ΔG0 is the binding free energy 
that can be estimated using the Glide docking score (kcal/
mol). Keq = Kf /Kr, is the equilibrium constant for the revers-
ible reaction. The calculated Ki value for each benzodiaz-
epine is listed in Table S1.

2.2.3 � Simulation of Opioid–Benzodiazepine Drug–Drug 
Interaction (DDI)

Following the validation of the PBPK models of opioids and 
benzodiazepines, we then conducted simulations of DDIs 
between two kinds of drugs using the built-in “Sim-healthy 
volunteers” virtual population. We retained the doses and 
formulations of three opioids—oxycodone, fentanyl and 
buprenorphine—to be consistent with the model validation 
processes but unified the dosing strategy of four benzodiaz-
epines (alprazolam, diazepam, midazolam and triazolam). 
First, the single oral 10-mg dosage of four benzodiazepines 
was considered as a normal dose. This dosage was then 
changed to 500 mg (overdosed) and applied to these four 
drugs. Ten trials with ten subjects per trial, with an age 
range of 18–50 years, were simulated to evaluate the inhibi-
tory effects of benzodiazepines on the exposure of opioids. 
Finally, the predicted DDIs of opioid–benzodiazepine drug 
combinations were compared for the normal dose and over-
dose scenarios.

2.2.4 � Sensitivity Analysis for Ki

Since the docking scores may not be accurate enough, we 
conducted a sensitivity analysis to explore the impact of Ki 
value on the DDI effects by changing the Ki value from one-
tenth to 100-fold the current value. The sensitivity analysis 
was conducted using the built-in sensitivity analysis function 
in SimCYP.

3 � Results

3.1 � Validation of PBPK Models for Opioids 
and Benzodiazepines

The PBPK model of each drug was developed using in vitro 
and in vivo data from published literature or databases. 
Figure 3 shows the predicted and observed mean plasma 
CT profiles of all opioids and benzodiazepines. PK param-
eters, including area under the curve (AUC), maximal 

Fig. 2   Schematic structure of minimal PBPK model. CLin/CLout 
clearance into/out of single adjusting compartment, Fa fraction 
absorbed from gastrointestinal tract, Fg gut availability (fraction 
of drug escaping from the gut availability), GI gastrointestinal, Ka 
absorption rate, PBPK physiologically based pharmacokinetic, PO 
oral, QH blood flow rate from liver to systemic blood, Qpv blood flow 
rate from systemic blood to portal vein or from portal vein to liver

http://www.schrodinger.com
http://www.schrodinger.com
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concentration (Cmax) and time to Cmax (tmax) are listed in 
Table 1.

The predicted AUC, Cmax and tmax of the two types of 
drugs were all within the standard deviation (SD) ranges of 
observed values, except for buprenorphine and fentanyl. For 
buprenorphine, the calculated AUC and tmax were slightly 
smaller than the lower bound values, albeit the calculated 
Cmax was very close to the observed one. No measured PK 
parameters were available for fentanyl. Encouragingly, as 
shown in Fig. 3, the observed CT values of these drugs 
were also within the confidence interval (CI) ranges (the 
upper and lower gray dashed lines) of the simulated popu-
lation-based CT curves. Therefore, our PBPK models were 
well-validated.

3.2 � DDI Prediction

The validated PBPK models of opioids and benzodiazepines 
were then applied to predict the DDIs between any opioid 
and benzodiazepine. The predicted AUC ratios and the Cmax 
ratios of DDIs for both scenarios, normal dose and over-
dosed benzodiazepines, are listed in Table 2. Figure 4 shows 
the results of the simulated DDI effect of different doses of 
benzodiazepines on three opioids, i.e., oxycodone, fentanyl 
and buprenorphine.

As shown in Table 2 and Fig. 4 for oxycodone and fen-
tanyl, the fold changes of AUCs increased significantly for 
the scenario in which benzodiazepines were overdosed. 

Conversely, for buprenorphine, there was no obvious change 
in AUC ratios even when the benzodiazepines were coad-
ministered at 500 mg. Note that the change in AUC ratios for 
fentanyl with normal or overdoses of benzodiazepines was 
significantly larger than that for oxycodone and buprenor-
phine, especially when alprazolam was considered. Even 
for the drug combination of fentanyl and alprazolam, the 
largest AUC ratio is only 1.98, suggesting PK interactions 
make no or limited contributions to DDIs between the two 
types of drugs. We also calculated the contributed portions 
of CYP3A4 to the total clearance (fmCYP3A4) of oxycodone, 
buprenorphine and fentanyl. The values of fmCYP3A4 for 
the three drugs were 34.49%, 1.47%, 92.63%, which better 
explains the DDI simulation results.

3.3 � The Impact of Ki Value

To estimate the impact of Ki value on the simulation results 
for each benzodiazepine, we conducted sensitivity analy-
sis by adjusting the Ki value from the 1/10- to 100-folds of 
the predicted value. Specifically, we adjusted the Ki values 
of alprazolam, diazepam, midazolam and triazolam to be 
0.163–163, 0.165–165, 0.217–217, 0.102–102 µM to inves-
tigate how AUC ratios of each opioid would change. The 
sensitive analysis results for the overdosed benzodiazepine 
scenario are summarized in Fig. 5. The predicted AUC ratios 
were consistent with the results shown in Fig. 4, and maxi-
mal AUC ratios were observed when applying 1/10 of the Ki 

Fig. 3   Predicted concentration profiles of sublingual buprenorphine 
4  mg, intravenous fentanyl 0.1  mg/kg, oral alprazolam 2  mg, oral 
midazolam 15 mg and oral triazolam 0.25 mg versus their observed 
data, respectively. Red open circle, blue open square and yellow open 

triangle represent the observed data. Black curves represent concen-
tration–time curves, and gray dashed curves represent 95% confi-
dence intervals of the population-based simulation of concentrations
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values in DDI simulations. However, the impact of Ki values 
on DDI simulation result is limited, and the maximum AUC 
ratio is still no larger than 3.0.

4 � Discussion

The purpose of this study was to explore the PK interac-
tions between opioids and benzodiazepines and to inves-
tigate the effects of benzodiazepines on the metabolism of 
opioids in the human body. Although previous studies have 
tried to uncover evidence of PK interactions between these 
two kinds of drugs, most were performed in in vitro set-
tings and/or with animals. Because experimental DDI stud-
ies in human bodies are rare, our state-of-the-art simulation 
provides an alternative approach to study PK interactions 
between these two types of drugs.

The simulated concentration profiles of three opioids 
and four benzodiazepines were mostly well-predicted 
compared with the observed data, as shown in Fig. 3 and 
Table 1, except for the AUC ratio and tmax of buprenorphine, 
for which the predicted values were slightly out of the SD 

Table 1   Measurements for buprenorphine, fentanyl, alprazolam, midazolam and triazolam in 24 or 12 h

AUC area under the curve, Cmax maximal concentration, tmax time to Cmax, N/A not applicable, PK pharmacokinetics, SD standard deviation
a Observed 1 and Observed 2 are experimental data collected from Drugs.com (https​://www.drugs​.com)
b Sourced from the report on the PKs of buprenorphine [33]
c PK data for fentanyl 0.1 mg/kg were sourced from the literature, without PK properties such as the AUC [34]
d Data sourced from Donovan et al. [35]
e Observed data were obtained from Friedman et al. [36]
f Sourced from Qiu et al. [37]
g PK profiles for young people when coadministered with triazolam [38]
h PK parameters for a single dose of triazolam in men (observed 2) and women (observed 3)

Dosing strategy AUC​0-24h ± SD (ng·h/mL) Cmax ± SD (ng/mL) tmax ± SD (h)

Oral oxycodone 10 mg (0–24 h) Observed 1a 268.2 ± 60.7 39.3 ± 14.0 2.6 ± 3
Observed 2a 277.0 ± 89.6 48.5 ± 15.9 1.5 ± N/A
Predicted 311.83 ± 150.67 38.0 ± 14.69 1.2 ± 0.31

Oral buprenorphine 4 mg (0–24 h) Observedb 23.89 ± 10.29 3.31 ± 1.98 0.71 ± 0.196
Predicted 9.89 3.83 0.25

Intravenous fentanyl 0.1 mg/kg (0–24 h) Observedc N/A N/A N/A
Predicted 180.29 N/A N/A

Oral alprazolam 2 mg (0–24 h) Observedd N/A 33 ± 10 1.9 ± 1.4
Predicted 405.96 30.53 1.20

Oral diazepam 10 mg (0–12 h) Observede 1530 ± 464.33 317 ± 89.55 1.32 ± 0.56
Predicted 1677.12 ± 434.66 221.89 ± 51.5 1.15 ± 0.35

Oral midazolam 15 mg (0–24 h) Observedf 221.76 ± 63.78 95.17 ± 39.01 0.69 ± 0.60
Predicted 233.49 75.72 0.64

Oral triazolam 0.25 mg (0–24 h) Observed 1g 7.01 ± 3.47 2.02 ± 0.77 0.96 ± 0.51
Observed 2h N/A 3.0 ± 1.3 1.25 ± 0.9
Observed 3h N/A 2.3 ± 1.2 1.25 ± 0.6
Predicted 7.91 2.00 0.99

Table 2   AUC and Cmax ratio of DDI profiles in 24 h for normal dos-
age of opioids, including oxycodone 30 mg, buprenorphine 4 mg and 
fentanyl 0.1 mg/kg, and benzodiazepines, including alprazolam, diaz-
epam, midazolam and triazolam with normal (10 mg) and overdose 
(500 mg), respectively

AUC​0-24h ratio exposure of area under the curve ratio from time zero 
to 24 h, CI confidence interval, Cmax maximal concentration

Opioids Benzodiaz-
epines

AUC ratio (95% CI)

Normal dose Overdose

Oxycodone Alprazolam 1.03 (1.02–1.06) 1.39 (1.22–1.77)
Diazepam 1.01 (1.00–1.01) 1.13 (1.09–1.19)
Midazolam 1.00 (1.00–1.01) 1.06 (1.03–1.09)
Triazolam 1.01 (1.01–1.02) 1.20 (1.13–1.30)

Buprenorphine Alprazolam 1.00 (1.00–1.00) 1.01 (1.01–1.03)
Diazepam 1.00 (1.00–1.00) 1.01 (1.00–1.01)
Midazolam 1.00 (1.00–1.00) 1.01 (1.00–1.01)
Triazolam 1.00 (1.00–1.00) 1.01 (1.01–1.02)

Fentanyl Alprazolam 1.05 (1.03–1.08) 1.98 (1.63–2.33)
Diazepam 1.00 (0.99–1.03) 1.23 (1.12–1.32)
Midazolam 1.00 (1.00–1.01) 1.10 (1.04–1.15)
Triazolam 1.01 (1.01–1.03) 1.41 (1.25–1.59)

https://www.drugs.com
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range of the observed data. Our simulation results suggested 
there were no PK interactions between opioids and normal 
doses of benzodiazepines. However, the PK interactions 
could be observed when concomitantly taking a normal dose 
of opioids and with severe overdoses of benzodiazepines. 
This observation is particularly true for fentanyl, which 
demonstrated the largest AUC ratio increase when over-
dosed benzodiazepines were administered concomitantly 
(Fig. 4 and Table 2). This finding may be because the pre-
dicted liver fmCYP3A4 value for fentanyl, 92.63%, was much 
higher than that for oxycodone (34.49%) and buprenorphine 
(1.47%). There were almost no PK interactions between 
buprenorphine and all four benzodiazepines, even when the 

benzodiazepine doses were set to 500 times the normal dose, 
because the fmCYP3A4 of buprenorphine was only 1.47% in 
the liver.

Among the four benzodiazepines studied, alprazolam 
had the strongest inhibitory effect on fentanyl (Fig. 4 and 
Table 2). The AUC ratio of fentanyl with coadministration of 
overdose alprazolam was 1.98, which is dramatically higher 
than the AUC ratios when fentanyl was coadministered with 
the other benzodiazepines. As such, the combination of fen-
tanyl and overdosed alprazolam should be avoided, or close 
attention should be paid to adverse effects if the drugs are 
coadministered in clinical practice. To further validate this 
finding, we searched the literature and found that, during 

Fig. 4   The area under the curve 
ratio of oxycodone, buprenor-
phine and fentanyl with the 
presence of normal dose and 
overdose of four benzodiaz-
epines in 24 h. AUC​ area under 
the curve, ND normal dose, OD 
overdose

Fig. 5   The area under the curve 
ratio of oxycodone, buprenor-
phine and fentanyl with the 
presence of overdose benzodi-
azepines (500 mg) in 24 h when 
applying 1/10- to 100-fold Ki 
value to the drug–drug interac-
tion models in 24 h. AUC​ area 
under the curve
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2012–2017, one of the most frequent co-intoxicants reported 
with fentanyl was alprazolam (15.5%) [32].

In this study, we also applied molecular modeling tech-
niques to solve the “missing parameter” problem in PK 
modeling and simulation. PK modeling is becoming an 
essential part of drug discovery and development, but it is 
very challenging to build predictive models since many PK 
parameters are not available in the literature or public data-
bases. Using molecular modeling to assign parameters for 
PK modeling provides a practical way to investigate DDIs 
for drugs lacking experimental PK parameters. Furthermore, 
molecular modeling is not restricted to describe a drug’s 
metabolic process; it can also be used to study DDIs from 
the PD and poly-pharmacological perspectives.

This study has some potential limitations. First, the trans-
porter DDI was not considered because of the lack of clinical 
evidence. However, some transporters in the blood–brain 
barrier (BBB) might cause significant interactions between 
the two types of drugs. Second, the inhibitory abilities of 
metabolites of benzodiazepines were ignored since we 
assumed the concentration of most of the metabolites was 
much lower than the parent drugs, leading to underestimated 
inhibitory effect of benzodiazepines on the opioids. Last, 
the molecular docking approach might not be accurate, and 
the predicted Ki value may differ from the real value. More 
advanced binding free energy calculation methods should be 
applied in future studies. Fortunately, our sensitivity analysis 
suggested that the predicted AUC ratios due to DDI were not 
sensitive to the Ki value. Therefore, the results of our DDI 
simulation should still be reliable.

5 � Conclusion

The PK interactions between opioids (oxycodone, buprenor-
phine and fentanyl) and benzodiazepines (alprazolam, diaz-
epam, midazolam and triazolam) are negligible when both 
drugs are coadministered with the normal doses. Weak PK 
interactions are expected when the normal doses of opioids 
are concomitantly taken with overdosed benzodiazepines. 
PD interactions may play a more important role than PK 
interaction in causing DDIs between opioids and benzo-
diazepines. However, variance still exists in terms of PK 
results when the three opioids are taken together with differ-
ent benzodiazepines. In particular, obvious PK DDI occurs 
with concurrent use of fentanyl and overdosed alprazolam. 
Therefore, in daily clinical practice, alprazolam should be 
replaced with other benzodiazepines in patients addicted to 
fentanyl.
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